
Firefly: Virtual Illumination Drones for Interactive Visualization

Sergej Stoppel, Magnus Paulson Erga, and Stefan Bruckner, Member, IEEE Computer Society

Fig. 1. Lighting designs with static light sources aim to emphasize properties of the illuminated object such as the average surface
variation or curvature. Sophisticated as those approaches can be, they can never account for all local properties of the illuminated
object. We propose animated lights, or Fireflies, to solve this challenge by moving the light on a path that emphasizes the local
properties over the time. In this image we show four consecutive positions of a Firefly designed to emphasize the brain.

Abstract—Light specification in three dimensional scenes is a complex problem and several approaches have been presented that
aim to automate this process. However, there are many scenarios where a static light setup is insufficient, as the scene content and
camera position may change. Simultaneous manual control over the camera and light position imposes a high cognitive load on the
user. To address this challenge, we introduce a novel approach for automatic scene illumination with Fireflies. Fireflies are intelligent
virtual light drones that illuminate the scene by traveling on a closed path. The Firefly path automatically adapts to changes in the
scene based on an outcome-oriented energy function. To achieve interactive performance, we employ a parallel rendering pipeline for
the light path evaluations. We provide a catalog of energy functions for various application scenarios and discuss the applicability of
our method on several examples.

Index Terms—Dynamic lighting design, lighting drones

1 INTRODUCTION

Illumination has a crucial impact on the appearance of 3D objects and
shape perception in computer-generated scenes. Once the geometry,
textures, and material properties of the scene have been defined, its
appearance is greatly affected by the illumination setup. Shape percep-
tion, for example, is highly dependent on light placement. Uncommon
positioning of light sources can distort the perceived geometry as it
is known from crater or dome illusions. The traditional approach for
lighting specification is an iterative process of trial and error, where
the user continuously adjusts the light parameters and evaluates the
rendered image. This makes lighting design a challenging task even for
static lights.

Moreover, in interactive scenarios static lights alone may not be
sufficient. When asked to visually assess the geometry of objects,
observers most commonly rotate them back and forth. Studies show that
the motion of an object relative to the light source helps to evaluate its
geometry and material properties [10, 40]. When the object of interest
cannot be moved easily, observers tend to obtain geometry and material
cues by moving the light source. It has been shown that participants
have a clear intuition of how the light source distance and position

• Sergej Stoppel is with the University of Bergen, Norway, E-mail:
sergejsto@gmail.com

• Magnus Paulson Erga is with the University of Bergen, Norway, E-mail:
magnus.p.erga@gmail.com

• Stefan Bruckner is with the University of Bergen, Norway, E-mail:
stefan.bruckner@uib.no

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

affect the shading patterns for a variety of different surfaces [35]. This
indicates that animated lights could be used to enhance shape perception
in 3D scenes.

Modern animation approaches use moving light sources to empha-
size temporal changes in the scene or to adapt the light conditions to
a dynamic setup. While static lighting specification is already a chal-
lenging task with some existing solutions for automated support, the
simultaneous control of the camera and moving light sources represents
an even greater hurdle for most users. Furthermore, when consider-
ing the rapid advances in immersive virtual reality technology, which
limit the available degrees of freedom for interacting with parameters
like light source configurations, the requirement for ”intelligent” light
sources that automatically adjust to the movement of the camera be-
comes more and more pressing. To address this challenge, we propose
a novel automated approach for scene illumination with dynamic light
sources that offers additional perceptual cues compared to static lights.
In addition to the static light sources in the scene, we generate a Firefly
– a moving light drone that illuminates the scene while flying on an
automatically generated path. Our system continuously optimizes the
Firefly path based on a flexible energy function, tailored for various vi-
sualization tasks. We propose several energy function constructions for
different visualization scenarios, that are designed to enhance different
aspects of the rendered objects, while following established lighting
design rules from photography and art.

2 RELATED WORK

Automation and optimization techniques have a long tradition in the
field of visualization. A common problem is the choice of suitable
parameters for a particular visualization technique and/or dataset. In
volume rendering, for instance, the specification of transfer functions is
a challenging task. While presets can provide some additional support
to the user, the presence of additional variables such as differences in

the data acquisition necessitates more advanced approaches. Examples
include the work of Ruiz et al. [34], who presented a framework to
define transfer functions based on a target distribution provided by
the user. Similarly, Borga et al. [6] proposed an optimization based
algorithm that shifts preset transfer functions, to account for general
deviations and local variations in the data. To deal with occlusion in
flow visualization, Günther et al. [16] translate the occlusion problem
into a view-dependent global optimization problem that is solved with
the least squares method. Modern visualization solutions for 3D scenes
often employ large and complex scene geometries. Early on it was
found that the increased scene complexity hindered the orientation of
the user and impaired the ability to navigate effectively. Freitag et
al. [13] automatically adjusted the camera speed based on viewpoint
quality to reduce the cognitive effort for camera control in indoor scenes.
Xie et al. [45] proposed an automatic camera path planing method, that
aims to improve the user’s sense of direction in VR setups. The roles of
static, animated, and interactive presentations of 3D scenes have been
investigated by Froes et al. [14]. Coffey et al. [7] extended the study to
virtual reality. Our approach can be seen as a natural development of
expanding animations to light setups.

As our approach aims to generate virtual drones to automatically
support the user in their task, we draw inspiration from physical au-
tonomous vehicles. Already in 1969, Keiser and Peebles [21] discussed
a concept for automatic drone control. Nikolos et al. [29] used an evolu-
tionary approach to design a Bezier path for unmanned aerial vehicles.
While their setup significantly differs from ours, Srikanth et al. [38]
used physical light drones for rim illumination of dynamic objects in
indoor photography. Joubert et al. [19] presented an interactive path
planing tool for drone cinematography, particularly focusing on the
importance of the trajectory smoothness and the spatial awareness of
the user.

Illumination has a significant impact on the perception of a scene,
but can necessitate a tedious trial and error process in order to arrive
at a desired result. Cost et al. [8] discussed an automated approach
for lighting design that employed optimization strategies based on
object geometry, material properties, and design goals. To support
non-experts, Shacked et al. [36] developed a method for fully automatic
lighting design based on a perceptual quality metric. Gumhold [15]
used entropy to place a light source that maximizes the information
added by illumination. Halle et al. [17] presented LightKit, a lighting
system for 3D scenes inspired by light designs of artists and photog-
raphers. Lee et al. [26] introduced Light Collages, an illumination
system that enhances local features using a globally inconsistent light-
ing setup. Wang et al. [43] proposed a lighting system that enhances
visual cues for local and global features. Zhang and Ma [47] extended
automatic three-point lighting setup to volume rendering employing
global illumination. Recent work by Wambecke et al. [42] introduced a
lighting design approach based on photographic rules, taking into ac-
count the shapes and materials of the objects. A coherent lighting setup
is especially important in augmented reality, as the rendered object
must be integrated into an already illuminated scene. Haller et al. [18]
used real-time shadow maps to add realism to the augmented scene.
Okumura et al. [30] and Klein et al. [25] incorporated blurring filters
on the rendered image to match the depth of field of the captured video
stream. Aittala [5] used real-world observations from a diffuse sphere
to adjust virtual lighting parameters for augmented reality setups.

To produce an effective lighting setup, it is important to account for
various aspects of human perception. Studies by Ramachandran [31],
Kleffner and Ramachandran [24], and Mamassian et al. [27] investi-
gated the assumptions made by the human visual system and how they
are affected by the light position. Doerschner et al. [10] identified three
motion cues the visual system relies on to distinguish between matte
and shiny surfaces. Kersten et al. [23] performed a study on informa-
tion provided by cast shadow motion. Their research suggests that
the visual system assumes a stationary light source even if a moving
light source is present. However, this may be due to the fact that no
visual cues for the light position where presented to the participants. A
recent study by Schütt et al. [35], where the participants could control
the light position to some degree, suggests that participants do have

Firefly
Init Path

Energy
Function Fe

Optimizer
New points

Evaluation Pool
Creates Testscenes

Fig. 2. A conceptual overview of the Firefly system. The system operates
in a parallel multi-threaded manner. The only input required by the
user is a selection of the energy function from a provided library. The
system iteratively updates the Firefly path by creating a set of new paths
and evaluating them in the background (Evaluation Pool). The Firefly
transitions to a better path when one is found.

a clear intuition of how light positions affect the appearance of the
illuminated object. Guided by these findings, we inform the user of the
Firefly position through visual cues and avoid sudden and unexpected
trajectory changes by imposing constraints on the path shape.

In a cinematic context, lighting is often used to convey emotions,
and the effects of lighting on the perceived scene atmosphere have
been investigated in several studies. An overview of different lighting
setups can be found in the book Advanced RenderMan by Apodaca
and Gritz [4]. De Melo et al. [9] focused on the emotions induced by
different lighting setups and proposes a model for the expression of
emotions in virtual humans with a composition of lights, shadows, and
chromatic filters. Wisessing et al. [44] investigated how animated char-
acters are perceived when viewed under different lighting conditions.
Nasr et al. [11] presented a lighting system that automatically adjusts
to accommodate variations of the dramatic scene characteristics. We
use the findings of these studies as guidelines in the construction of the
Firefly paths.

3 FIREFLY

The goal of our approach is to support users by providing an animated
light source – a Firefly – that moves along an adaptive path continuously
adjusting its trajectory if necessary. The Firefly complements additional
static light sources and in particular aims to enhance dynamic aspects
of the exploration process. As the control and planning of a moving
light source is even more complex than the design of a static lighting
environment, automatic generation and adaptation of the Firefly path is
a key component of our system.

Whereas previous approaches for the placement of static lights could
partially rely on precomputation, our aim is to provide a fully dy-
namic solution that adapts interactively to changes in the camera and
scene setup, and does not impose any constraints on the content of
the scene. A key aspect of our approach is that the FireFly acts in a
view-dependent manner, i.e., it aims to adjust its trajectory according
to what the user sees. As such, our approach is an online optimization
process. We designed Firefly as an independent component that can
be easily integrated into existing systems. To achieve a high degree
of flexibility for versatile illumination tasks, we created the Firefly
system as a plugin-based detached optimization process. We explain
the general Firefly system in the remainder of this section, discussing
the individual components in detail in the following subsections.

A general overview of our approach can be seen in Figure 2. The

Pk-1

Pk

Pk+1

Pk+2 a b

Fig. 3. (a) To reduce the complexity during the optimization process
we compute the tangents at point Pk automatically from the neighboring
points Pk−1 and Pk+1. (b) Assuming that small changes of the camera
position introduce only small changes to the scene, we transform the
Firefly path with the camera around the object of interest to provide an
initial path.

Firefly generation and optimization works as a parallel process to the
rendering pipeline. The only input required from the user is the selec-
tion of an energy function from a catalog. When a Firefly is triggered
during the interaction process, an initial Firefly path is constructed and
placed in similar positions as lights in common photography setups.
Next, the optimizer suggests a new set of light paths. The light paths are
sent to an evaluation pool, which handles every test path in a separate
thread. In each thread a new scene with the Firefly path is generated and
the path is evaluated according to the energy function. After all paths
have been processed, the evaluation pool returns a fitness value for each
path to the optimizer. When the optimizer has found a better path than
the one that is currently displayed, the Firefly transitions to the new
best light path, without interrupting the optimization process. If the
user moves the camera during the optimization, the existing Firefly path
is transformed accordingly. To provide the user with visual ques on
the position change of the Firefly, we display a tail behind the moving
light source. The user is able to remove or adjust the tail through a
simple slider. During the development of the Firefly, we found that
users preferred a Firefly with a tail as reference.

3.1 Path Generation and Adaptation
Before discussing the optimization process of the Firefly path, we
briefly describe the generation of the initial Firefly path and the adapta-
tion to the camera movement. The Firefly path is defined by a set of
control points as a smooth, closed, three dimensional curve. While our
system is not limited to a specific path formulation, we implement the
Firefly path as collection of cubic Bezier curves, with a C1 transition at
the endpoints. To reduce the complexity during the optimization, we
automatically compute the tangent vectors for the Bezier curve and use
the segment endpoints as optimization parameters.

Because we designed the Firefly system with the goal of high flexi-
bility, we generate the initial Firefly path as a simple shape that is able
to adapt very fast, i.e., as a circular path between the camera and the
object of interest. The simple circular shape has several advantages, as
it has the lowest curvature of all possible shapes in the same space, thus
avoiding sudden trajectory changes at the initialization. Furthermore,
the circular shape naturally provides well distributed initial control
points for the optimization process, as the control points are evenly
spaced and cover a relatively large portion of the design space. Thus,
the circular shape provides a fast convergence rate at the beginning of
the optimization process. A common approximation for a circle with n
Bezier curves is to construct the tangents at a point pk with the length l
as:

l =
4
3
· tan

(
π

2n

)
, (1)

and the same direction as the circle tangent. To keep the Firefly path
consistent, we keep the initial ratio of the tangent length and the distance
between neighboring points fixed. Having saved the initial tangent
length l and the initial distance d between two points pk−1 and pk+1,
we can compute the new tangent tk at the point pk as:

tk = (pk+1− pk−1) ·
l
d

(2)

We illustrate the automatic tangent computation in Figure 3(a). The
initial placement of the path is inspired by photography rules discussed
in Section 3.5 as an elevated key light.

As the control points are updated during the optimization, the Firefly
transitions from the old to the updated path on a linearly interpolated
trajectory. The intermediate position of the Firefly is then computed as:

Ptrans = Pnew ·
t
w

+ Pold ·
w− t

w
, (3)

where w is a time window for the interpolation and t is the time that
has passed since the interpolation start. In our implementation, we use
a window size w of three seconds. As the sum of two smooth functions
is smooth as well, the transition occurs without undesired jumps of
the Firefly. When the user changes the camera position, the Firefly
path needs to adapt to the changes in the visible scene. A reasonable
assumption is that small changes to the camera transformation result in
small changes to the visible scene and thus the path energy. Therefore,
to create a well suited initial condition for the path, we rotate the Firefly
path together with the camera position around the object of interest.
We illustrate this transformation in Figure 3(b).

3.2 Energy Function

We aim for a flexible and easily-adjustable lighting system that au-
tomatically creates a well-suited light path for various application
scenarios. To achieve this goal, we draw inspiration from approaches
as active contour models [20], originally developed in the context of
image segmentation, where the outline of an object is modeled as an
energy-minimizing deformable curve using a combination of energy
terms for the contour shape and image properties. This provides a
high degree of flexibility in modeling specific application requirements
using different variations of the individual energy terms. Inspired by
this concept, we define the Firefly path through a plugin-based energy
function. The optimization of the Firefly path can be formulated as a
minimization problem of the used energy function. As such, the choice
of the energy function directly determines the shape and the evolution
of the Firefly path. In this section, we discuss the components of an
energy function for light path optimization on a conceptual level, while
we introduce detailed formulations of energy functions for specific
application scenarios in Section 5.

Previous approaches for lighting design are guided by rules taken
from photography or image properties such as entropy. In addition,
our approach needs to take the path shape into consideration as well.
For instance, drastic and unexpected changes of the light trajectory
can be confusing for the user [23], as they might be misinterpreted
as object movement in the scene. Hence, a general energy function
consists of two components, one component for the rendered scene and
one component for the path properties. A general energy function for
light path optimization can be constructed as follows:

E = α ·EI +(1−α) ·EP (4)

where EI is the image energy, EP the path energy, and α is a weight
to control the influence of the energy components. The weight α

essentially controls the degree of directional change of the Firefly path.
A value of α = 1 discards the path shape completely and can produce
very sharp trajectory changes. On the other hand a value of α = 0
results in a closed curve with the least trajectory change, i.e., a large
circle. Because we ensure C1 continuity of the path, we can choose a
relatively high α without causing excessively sharp trajectory changes.
While this weight can differ for various application scenarios, we used
α = 0.95 for all examples in this paper. In Figure 4, we illustrate the
light trajectories resulting from different values for the weight α . In
the remainder of this section, we discuss the image and path energy in
detail.

Image Energy: The image energy is the most versatile and impor-
tant component of the energy function. With image energy, we denote
any energy formulation that can be derived directly from the rendered
scene. The formulation of this component indirectly determines how

a b c

Fig. 4. The influence of α on the light trajectory shape. The weight is set
to 0, 0.95 and 0.999 in (a), (b), and (c), respectively. Using α = 0 results
in a circular trajectory (a), whereas neglecting the path shape too much
can result in sharp trajectory turns (c). An α of 0.95 (b) results in a light
path that is able to accommodate the image energy without excessively
sharp turns.

the light path will illuminate the scene. As there are countless possibili-
ties to define a meaningful image energy, we illustrate only a handful
formulations and their effects on the resulting light path.

As we are interested in how the light path affects the scene as seen
from the current camera position, we only consider illumination con-
tributions that are visible from the current camera’s point of view. As
mentioned before, we formulate the path computation as a minimiza-
tion problem of the energy function, and therefore the light path must
be aggregated into a single energy value. To achieve this, the illumi-
nation evaluation must be aggregated over the rendered image as well
as over the path. Therefore, we define the image energy as two nested
functions. Using the notation I for image and P for the path domain,
we define the energy function as:

EI = FP (FI(sc)) or: (5)
EI = FI (FP(sc)) (6)

As the respective functions are not necessarily commutative, the or-
der of the evaluation can have critical impact on the resulting energy
function and should be chosen according to the application scenario.

The purpose of a light is the illumination of the scene. Therefore
the image energy must account for the scene illumination explicitly
or implicitly. A straight forward measure of the scene illumination is
the measurement of the brightness of the rendered object. A useful
target for a Firefly would be the illumination of the scene with a desired
intensity. We can formulate such behavior with the following energy
function:

EI = maxP (avgI(br(sc)− γ)) (7)

where γ is the target brightness. Such a formulation forces all light
positions on the path to be close to the desired brightness on average.
However, the energy does not penalize an image with too dark and too
bright regions, as long it does not change the average brightness of the
scene. Changing the order of the functions yields the following energy
function:

EI = avgI
(
maxP(brx,y− γ)

)
. (8)

This energy function first creates a new image with the maximal differ-
ence along the path for each pixel and then computes the average of the
image. This means that we first aggregate over time and evaluate the
influence of the light path locally. Therefore, this formulation penalizes
paths that produce surface illuminations differing strongly from the
desired brightness anywhere on the illuminated object, hence enforcing
a uniformly illuminated object for the whole Firefly path.

In Figure 5, we illustrate the effects of these two energy functions on
the Firefly path shape and the illuminated scene. For this example we
have chosen γ as 0.3. The first row of Figure 5 shows the paths of the
Firefly. In Figure 5(a) we show the initial Firefly path, in (b) and (c) we
depict a Firefly path after 30 iterations with the image energy defined
in Equation 7 and Equation 8, respectively. The second row shows a
captured scene that illustrates the differences in the energy functions.
The initial path comes close to the object, creating an overly bright
appearance in Figure 5(d). Using the maxP(avgI) energy function

a b c

d e f

Fig. 5. An illustration of path shapes with varying energy functions. The
first row shows the paths seen from above while the second row presents
a scene state typical for the energy function. (a) and (d) show the path
and a scene for the initial path. The object is too bright for some positions
of the Firefly. (b) and (e) show the resulting path for the energy function
described in Equation 7. On this path the Firefly can take positions that
create strong shadows in the scene. In (c) and (f) the path was changed
according to the energy function in Equation 8. The scene is much more
evenly illuminated compared to (e).

a b c

Fig. 6. We allow the user to select objects of interest. Here, the user
selected the paint jar in (a) with a object mask shown in (b). If the user
wants to further specify a local region of interest, they can use an input
mask. The combined object and input mask are shown in (c).

enforces a greater distance between the object and the light, but it can
create strong shadows, as shown in Figure 5(e). Using avgI(maxP)
results in a scene as in Figure 5(f). Clearly, the surface is much more
evenly illuminated compared to the one in Figure 5(e). We want to
point out that we have chosen these energy functions to demonstrate the
importance of the function order and not necessarily as best suited for
certain illumination scenarios. We introduce energy functions tailored
to specific application scenarios in Section 5.

Lighting setups are commonly centered around an object of interest.
However, the user may be interested in multiple objects in the scene
or might want to change the object of interest. To address this, we
allow the user to select objects of interest in the scene though a simple
click on the object. When an object is selected, the system generates an
object mask Mob j to evaluate only the pixels covered by the mask. We
illustrate such a mask in Figure 6(b), where the ink container in Figure
6(a) is selected as the object of interest resulting in a mask as shown in
Figure 6(b), which discards the background completely. If the user is
only interested in parts of the image, they can add an additional input
mask Min to emphasize these regions. The input mask is defined as a
smooth function between 1 and 0, that decreases with the distance to
the mouse position. A combination of the object mask and input mask
can be seen in Figure 6(c).

Path Energy: The visual system is very sensitive to changes in
the lighting conditions. Sudden and unexpected changes of the light
trajectory can lead to misinterpretation of the scene dynamics. As
indicated by Kersten et al. [23], users can misinterpret unexpected
changes of light conditions as movements in the scene. The likelihood
of such misinterpretations can be reduced using two strategies: by
employing a smooth light trajectory without sharp turns and by giving
the user explicit feedback on the light positions. The path energy
ensures the former. The degree of how drastically a path is changing

a b

Fig. 7. The brightness values of the rendered image in (a) are partitioned
into 64×64 segments resulting in a down-sampling shown in (b). This
partitioning provides a good trade-off between the preserved level of
detail and data reduction.

can be measured through the curvature of the path. To avoid sharp
turns, the path energy is defined as the maximal curvature κ(s) over
the path P:

EP = max(κ(s)), s ∈ P. (9)

This simple restriction in addition to the C1 continuous path formulation
ensures a smooth trajectory of the Firefly without excessively sharp
turns.

3.3 Optimization
Having specified the desired energy function, a well-suited path for
the Firefly is one that minimizes the total energy. Choosing a suitable
optimization approach is crucial for the quality of the Firefly path.
As mentioned in Section 3.1, the Firefly path is defined by a set of
control points. Thus, the dimensionality of the parameter space is
equivalent to the number of control points. Hence, there is a trade-
off between the problem complexity and the granularity of the direct
path shape specification. Because the Firefly is created as a supportive
tool during user interaction, the optimization must provide adequate
results on the fly. In our examples, we construct the Firefly path with
eight control points, which provides enough control for the Firefly path
definition, while constraining the optimization to a reasonable degree
of complexity that allows us to maintain interactivity.

As the energy functions are dependent on the scene composition,
they can be highly non-convex, resulting in many local minima. This
imposes a challenge for many gradient descent algorithms. Even mod-
ern methods such as Adagrad, AdaDelta, RMSprop, and NADAM [33]
can get stuck in local minima. To overcome local minima, we im-
plemented an adapted version of the Simulated Annealing (SA) algo-
rithm [41]. Traditional SA considers one neighboring state S̃ of the
current state S, and decides whether to update the system state to S̃,
based on a temperature-dependent probability function. In each itera-
tion, the system temperature is decreased, stabilizing the energy state,
until the computational budget has been used up. In our approach, we
always evaluate an ensemble of neighbors at once, thus increasing the
convergence speed of the algorithm.

A straight-forward adoption of SA to ensemble sampling is a Monte
Carlo sampling of the ensemble over the parameter subspace. However,
several publications [22, 37, 46] show an improved convergence rate
of Latin hypercube sampling over Monte Carlo, due to its improved
space filling properties. Therefore, in each iteration, we perform a Latin
hypercube sampling, computed using the method of Stein [39]. We
assume a normal parameter distribution and no parameter correlation
for the sampling process. In each iteration, we use the best state of the
ensemble for the update decision.

3.4 Sample Evaluation
As mentioned previously, computation speed is crucial for interactive
scenarios. A common bottleneck for light design approaches is the
evaluation of the scene. This is even more true for our approach, as
the scene needs to be evaluated not just for different light positions but
for different light paths. To approach this challenge, we can essentially

Back

Fill

α

Key

90o

Fig. 8. Firefly can be easily integrated into existing lighting setups. In this
Figure, a Firefly is integrated into a three-point lighting setup as the key
light at an angle α of 30◦. A fill light is positioned at 90◦ to the key light.
The back light is placed behind the illuminated object with respect to the
camera position.

employ two strategies: increase the computational performance of our
approach and reduce the computational complexity of the problem.

To increase the performance of our approach, sampling and evalua-
tion of the scene are performed in a detached parallel rendering pipeline.
We employ a worker thread pool to generate the scenes and collect
their information for each a test path. Optimization techniques require
an aggregation of the fitness to a numeric value. For the Firefly path,
the fitness is computed through the energy function. As mentioned in
Section 3.2, the order of the energy function components affects the
order of the aggregation over the image domain and the path domain.
If the aggregation is performed over the image domain first, then the
worker can return a single numerical value for each scene. However, if
the aggregation is performed over the path domain first, then the worker
would need to store the scene information for every light sample on the
path before performing the aggregation.

Clearly, this creates a substantial overhead for the worker perfor-
mance. To address this challenge, we need to find a suitable trade-off
between computational efficiency and the preservation of features of
the energy function. Usually, light affects the scene over neighborhoods
instead of isolated points. Therefore it is reasonable to assume that
neighboring pixels will have similar energy characteristics. We use
this fact to abstract the localized energy states in the scene through
partitions that store the average energy of their pixels. We illustrate
the partition of the illumination energy in Figure 7. In our current
implementation, we divide the scene image into 64 by 64 partitions,
which still captures enough details. For each path, the workers evaluate
the partitions first over the path domain and then over the image domain
according to the energy function, and then report the resulting image
energy as a single value.

3.5 Lighting Design

The three-point lighting setup is a common lighting method used in
photography, cinematography, and computer-generated imagery. It is a
relatively simple but versatile approach which forms the basis for most
lighting setups. In the following, we briefly discuss the integration
of Firefly into a basic version of three-point lighting as described in
several photography text books [12, 32]. As the name suggests, three-
point lighting uses three light sources, a key light, a fill light, and a back
light, as shown in Figure 8.

The key light is the main and usually the strongest light of the setup.
The goal of the key light is to produce tonal variations in the image.
Therefore, it is usually placed to one side of the illuminated object in
order to produce shadows visible to the camera, as illustrated in Figure
8. A strong key light can create very strong shadows and thus hide
geometric details. To overcome this problem, a secondary light is used
to ”fill” out the shadows with a soft light. The fill light is often placed
at 90◦ to the key light (see Figure 8). The fill light is usually less bright
and softer than the key light, playing only a secondary role for the
illumination. The back light is placed behind the illuminated object.
Instead of providing direct illumination of the object, the back light

a b c

Fig. 9. A comparison between (a) a single key light, (b) a combination of
key and fill light, and (c) a three-point lighting setup.

Optimizer
Simulated
Annealing

Fitness
Evaluation

Energy
Function

Path Manager

Worker Pool

Worker

Path Evaluation

Scene
Eval.

Sampler

Sampling
queue

Fig. 10. The Firefly system is implemented as a background process
running parallel to the main thread. To achieve on-the-fly adaptation of
the Firefly path, we evaluate 40 paths at once in a worker pool. When
the paths are evaluated, the information is sent to the optimizer that
computes the path energy and requests further samples.

emphasizes and provides subtle highlights of the object’s silhouette.
This helps to separate the object from the background and provides
additional depth cues.

We integrate our Firefly into a three-point light setup by considering
it as the key light. A common placement of the key light is at an angle
α of 30◦ to 45◦ at the side of the camera and the illuminated object,
as shown in Figure 8. Furthermore, the key light is commonly placed
slightly above the camera. We initialize the Firefly path position at
an α value of 30◦ and a relative elevation above the camera equal to
half of the path radius. The fill light moves with the key light and is
placed at an angle of 90◦ to the key light rotated on a plane defined by
the right and front camera vectors. The back light is placed behind the
object in the view space. However, this setup should be considered as
guideline rather than a rule, as the Firefly path converges quickly even
when poorly initialized.

In Figure 9, we illustrate the effect of the number of lights on a
model from the animated short film Adam [1]. In Figure 9(a), only the
key light is used and in (b) a fill light was added to the scene creating
a more even illumination. In Figure 9(c), the addition of a back light
provides additional subtle highlights of the geometry.

4 IMPLEMENTATION

We implemented the Firefly system as a camera component in Unity [3].
Unity is a popular multi-purpose engine that supports 2D and 3D graph-
ics. The drag-and-drop functionality of Unity and the C# scripting
interface provide fast prototyping possibilities. Furthermore, the effi-
cient plugin system allows for easy sharing of the results across multiple
platforms. To use the system, the user simply adds Firefly as a camera
component to the scene setup. For selecting the object of interest, Fire-
fly only requires that the 3D objects have a collision geometry and a
unique name.

Firefly is implemented as a background process, running in parallel
to the main rendering thread, as illustrated in Figure 10. When an
object of interest is selected, a new Firefly path is initialized and the
optimizer creates a list with control point offsets that is sent to the path
manager. The path manager creates the light paths that are evaluated in
a worker thread pool. The workers create a sampling queue of scenes
that are rendered and evaluated in a process that is fully transparent
to the user. The primary benefit of a worker thread pool over creating
a new thread for each path evaluation is that the thread creation and

destruction overhead is restricted to the pool creation. The size of the
worker thread pool depends on the used hardware. We found that on an
Intel Core i7 3.00 GHz CPU, a worker thread pool of size five delivered
the best performance.

Each worker evaluates one path at a time by computing its image and
path energy. The image energy is computed on the GPU by rendering
the scene for uniformly-sampled Firefly positions along the path. Thus,
the number of scene evaluations directly corresponds to the evaluation
time for the image energy. During the development of the Firefly
system, we found that evaluating 14 samples for each path provides
a robust estimate of the path quality while still allowing for a fast
computation. When a worker has finished the evaluation of a path, the
information of this path is stored in the worker pool. When all paths
have been processed, the worker pool sends the results of all paths to
the optimizer.

In the optimizer, the collected information is used to compute the
final energy function. Next, the optimizer evaluates the fitness of the
paths and possibly updates the Firefly path to a better one. The last step
of the iteration is the computation of a set of new sampling parameters
that are sent to the path manager. On an Nvidia GeForce GTX 780
GPU and an Intel Core i7 3.00 GHz CPU and a screen resolution of
1920× 1200, one such iteration requires on average 973 ms for the
evaluation of 40 paths with 14 rendered images for each path. The main
thread is virtually unaffected by this computation and we did not detect
a noticeable drop of the frame rate for the rendered scene.

5 RESULTS

In the following, we demonstrate the use of Firefly for four different
scenarios. To show the versatility of our approach, we selected exam-
ples covering scientific visualization applications as well as scenarios
inspired by applications in the entertainment industry. All Firefly paths
described in this paper are initialized according to the basic three-point
lighting setup. In each iteration, the sampling is performed with 40
test paths and 14 samples for each path. As it is difficult to fully cap-
ture the dynamic behavior of our approach in text and still images, we
encourage the reader to also refer to our supplemental video.

5.1 Molecular Structures
The exploration and analysis of molecular data is a prominent topic
in scientific visualization. The purpose of molecular visualization is
to provide an understanding of the rich and highly complex world of
atomic structures, by mapping molecular structures, their functionality,
properties, and interactions to visual characteristics. Molecular data is
commonly very crowded, and the visualization of molecules features
high visual complexity. The illumination of such complex geometry
is a challenging task. In this example we use a 3D model of a tRNA
structure 1GAX, consisting of 17210 atoms. This molecule has several
deep cavities and tunnels, that pose a challenge to an illumination setup.
A static setup will often result in deeply shadowed cavities and tunnels,
hindering the geometry assessment. We can address this challenge by
guiding the Firefly to the regions we want to illuminate using an input
mask. We define a simple energy function that illuminates the surface
with a desired brightness value of γ = 0.3. As strong shadows can
be beneficial for shape perception, we use the energy function given
in Equation 7. In Figure 11, we show two images of the same scene
illuminated with two different Firefly paths. In Figure 11(a) ,the mask
was set to cover the left side of the molecule, while in (b) the right part
was the focus. The Firefly path automatically deforms to create a better
energy for the masked part only. One can clearly see that tunnels on the
left side of the molecule are much better illuminated in the top image.

5.2 Human Anatomy
Advances in computer technology have profoundly affected the domain
of medical education. It has been shown that using 3D computer
models as a teaching medium of human anatomy significantly improves
the recollection of anatomical structures [28]. Often such models
are slightly exaggerated to emphasize structures and textures of the
anatomical objects. The visualization of such structures highly benefits
from a lighting setup that highlights the variations of the model surfaces.

a

b

Fig. 11. Input mask guided illumination. In (a) the mask was held over
the left side of the molecule. In (b) the right molecule side was masked.
The Firefly path adapts automatically to the input mask. This way the
user is able to adjust the illumination indirectly by moving the input mask.

a b

Fig. 12. (a) A model of the human head with a static light setup. (b) A
firefly path after 34 iterations.

However, as the models tend do be highly complex, it is difficult
to find a static light source that provides a good illumination of all
relevant structures. We illustrate such a scenario on a model of the
human head [2]. We show the model illuminated with the preset static
lights in Figure 12(a). The complex spatial relationships between
the individual structures can significantly benefit from a moving light
source. Intuitively, a well-suited light path should not illuminate the
object near to the camera position as this would decrease perceived
shape variation [27]. Instead, the light should illuminate the object
from several sides to account for all aspects of the model surface.

The shape of the brain gyri and sulci is most prominent with a high
contrast between the valleys and ridges of the surface. We can indi-
rectly measure the local contrast of the model through a local variance
measure. However, using the variance alone does not account for the
brightness of the image. Therefore, the image brightness must be in-
cluded in the energy as well. Because the image brightness value is
much higher than the variance, we multiply the variance with an impor-
tance factor ξ . To allow for stronger shadows, we measure the average
instead of the maximum brightness for this example. Incorporating the
difference in brightness and variance results in the following energy
function:

EI = ∑
x,y

ξ ·
(
minP|(var(sc,s)−θ |)+avgP(|brx,y− γ|)

)
(10)

where θ is the desired variance. Here, we used θ = 0.02 and ξ = 5.
Using this energy function favors paths that emphasize high variance
in the scene while maintaining uniform illumination. In Figure 12(b),
we show the resulting Firefly path after 34 iterations. One can see that
the Firefly path resembles two loops with a relatively uniform distance
to the model. We show four consecutive snapshots for this Firefly path

a b

c d

Fig. 13. Four consecutive positions of the Firefly. The Firefly travels on a
loop illuminating the head from (a) below, (b) right, (c) above and (d) left.

in Figure 13. One can see that the Firefly indeed travels on a path that
illuminates the scene from different directions (up, down, left, right).
Interestingly, the Firefly path forms a loop, as this light trajectory is
better suited to emphasize the features at the edge of the brain as well
as the ones in the center of the model.

5.3 Animation

Lighting setup is a crucial part of cinematic animations. In addition to
static lights, many animation techniques employ dynamic lights as they
can be used to convey the passing of time, emphasize a dramatic change
of a character, or change the focus of attention. When an illuminated
character moves in the scene, the dynamic light needs to adjust to this
motion, which poses a challenge on the animator to carefully construct
a lighting path that still creates the desired result while in motion. With
our approach this challenge can be addressed through the automatic
adjustment of the Firefly path. As the Firefly path is defined relative to
the object of interest, it moves with the object automatically adapting to
the changing conditions. In this example, we use a character from the
animated short film Adam [1]. We illuminate the same scene with three
different illumination setups that create different effects for the user.
The first setup creates a dramatic atmosphere, the second a threatening
one, and the third setup aims to produce a calm atmosphere.

To create a dramatic effect, cinematography often employs rim
lights. Rim lights are used to create dramatic scenes with a Chiaroscuro
lighting. This artistic technique, developed in the Renaissance, uses
strong lighting on one side of the object to create distinct one-sided
shadows. We can formulate this by maximizing the variance and
requiring a certain brightness in the image. To restrict the effect to one
side of the object, we compute the dot product between the normalized
vector from the Firefly to the object lo and the right vector r in camera
space. Minimizing the dot product favors light positions on the right
side of the object.

To create a threatening scene effect, we follow the guidelines of
digital cinematography [4]. Disregarding the light color, a threatening
effect can be generated by using a low key light, that has a light intensity
ratio of 8:1 between the key and fill light, and a strong back light.
Furthermore, the light should illuminate the object from underneath
creating a high variance in the scene.

In contrast, a calming atmosphere can be achieved with a high key
light, i.e., a similar intensity of key and fill light. This setup is reduces
the overall variance in the image. In addition, the light elevation should

a b

c d

e f

Fig. 14. Difference between scenes with different moods encoded
through the energy function. (a) shows a dramatic scene, (b) a threat-
ening scene and (e) a calm scene. Images (b),(d) and (f) show the
corresponding paths, respectively.

be close to the elevation of the camera. Following these guidelines we
can define the three energy functions as:

dramatic: EI = ∑
P
−varI(s)+ |brs− γ|+(l0 · r) (11)

threatening: EI = ∑
P
−varI(s)+ |brs− γ|+ |el +

π

3
|ds (12)

calm: EI = ∑
P

varI(s)+ |brs− γ|+ |el|ds. (13)

Where el is the elevation angle in radians. In Figure 14, we show a
representative result for the energy functions and the corresponding
paths. One can clearly see the different moods present in the images.
Figure 14(a) shows a dramatic scene, (c) a threatening scene, and (e)
shows a rather calm atmosphere. The corresponding paths are shown
in (b),(d), and (f).

5.4 Still Life
The assumption of light position is stronger for scenes with a familiar
setup. Illuminating such a scene with a Firefly constructed with the
previously described energy functions might create an odd scene not
matching the user’s expectations. Therefore, when designing an an-
imated light for a realistic scene, for example a still life, we need to
closely follow photographic lighting setup rules.

In this example, we illuminate a still life and formulate the energy
function guided by the approach of Wambecke et al. [42]. This method,
based on photographic rules, optimizes the azimuth and elevation of the
light to emphasize the surface variation of the object while constraining
the light position to the upper front hemisphere. Illuminating the scene
with this method results in a rendering as shown in Figure 15(a).

A Firefly constructed in accordance with this method should be
arranged above the camera and the object, with an azimuth range
that accounts for the majority of the surface variation. Following the
approach of Wambecke et al., we break down the light position into
the light azimuth and elevation. The azimuth is computed using the
structure tensor of the geometry measuring the direction of surface

a b

c d

Fig. 15. Still life rendered with the method of Wambecke et al. (a). The
same model illuminated with the Firefly method (b,c,d). The lighting in
(a) and (b) is almost identical, but (c) and (d) reveal the surface variation
of the remaining model parts.

variance, and the elevation is used to produce a grazing light. For more
details, we refer to the paper of Wambecke et al. [42].

For the azimuth, we first obtain the gradient of the surface depth
∇d for each pixel, and compute the local structure tensor Sx,y for each
image partition Px,y:

∇d =

(
−nx

nz
,
−ny

nz

)
(14)

Sx,y = ∑
p∈Px,y

∇d ∇dT . (15)

The eigenvector e1 of S associated to the largest eigenvalue λ1 repre-
sents the direction in which most surface variations appear for each
partition. If e1 is pointing downwards, then the vector is simply flipped.
Wambecke et al. define the light azimuth at an angle of e1 in view
space. In our approach, we measure the fitness of the Firefly azimuth
by computing the dot product between e1 and the normalized vector
from the Firefly to the center of gravity of the illuminated object lo.

To favor light positions close to e1 for the whole path, we define the
azimuth energy as:

Eaz = maxs (1− (e1 · lo)) . (16)

The elevation of the light is chosen such that lo is orthogonal to hidden
surface normals n0 defined as:

n0 =

{
n if le0,o ·n > 0
~0 if le0,o ·n≤ 0

(17)

where le0,o is the vector between the light position projected on an
elevation of 0 and the object of interest. Therefore, the elevation energy
is defined as:

Eel = maxs(le0,o ·n0). (18)

Incorporating the information of the optimal light direction can lead to
light positions too far away or too near to the object, resulting in too
weak or to strong illumination. A straightforward solution would be
to define a minimum distance between the object and the Firefly, but
such a condition could produce rather unnatural illumination. Using the
energy function, we can instead easily control the distance between the

a b

Fig. 16. The Firefly path for the still life scene seen from the front (a) and
from the side (b). In (b), the Firefly moves away from the object briefly to
generate illumination from the front that does not produce shadows on
the object.

object and the Firefly indirectly by minimizing the maximal brightness
difference for each image partition.

Putting all parts of the energy function together, the image energy is
evaluated as a sum of the individual energy states over the image:

EI = ∑
x,y

(
Eaz +Eel +maxP(|brx,y− γ|)

)
. (19)

Where x and y are the partition indices. The desired brightness γ was
set to 0.3. Using this energy function results in a scene illumination
shown in Figure 15(b), (c), and (d). We show the static lighting setup
computed with the method of Wambecke in Figure 15(a). Naturally,
the Firelfy produces very similar results as the static state-of-the-art
method – in fact the light positions in images (a) and (b) are almost
identical. However, for the static setup we had to adjust the distance be-
tween the light source and the object to achieve the desired brightness.
Our method adjusted the distance automatically based on the desired
brightness value. Furthermore, our method emphasizes all of the geom-
etry throughout the path. In Figure 15(c), the Firefly creates shadows
that emphasize the shape of the cake and in Figure 15(d) the shape of
the coffee bag is much more prominent. We show the corresponding
Firefly path in Figure 16. As expected, the path is organized above and
in front of the object, forming an arc on the azimuth plane. In Figure
16(b), one can see that the path moves away from the object over a
short path section in front of the object. This movement of the light
away from the object generates a light position that produces almost no
shadows on the object, thus creating an overall stronger illumination of
the scene. To account for this, the light moves farther away in order to
achieve an illumination close to the desired values.

6 DISCUSSION

In our experiments we found that the animated light of the Firefly
provides a powerful and versatile addition to a static lighting setup.
We deliberately chose relatively simple energy functions for most of
our examples, but nonetheless showed that our approach is capable of
incorporating state-of-the-art solutions for static lighting design in a
dynamic setup. The Firefly approach can be easily integrated into other
renderers, but we believe that our implementation as a Unity plugin
makes it already accessible to a large number of applications. Our
method is independent of the scene content and rendering method, and
hence can be used with a wide variety of different types of data.

While the evaluation of the test paths requires around 500 millisec-
onds on average, the fact that this process is executed in the background
makes it transparent to the user. After the initialization, the optimiza-
tion requires 35 to 40 iterations to reach a stable state. We show a
representative convergence rate in Figure 17. The whole optimization
process takes around 34 seconds for full convergence, but since the
Firefly continuously updates to the best available solution, a good result
is typically already achieved after about 9 seconds. When the user
changes the view, the optimization needs 3 to 6 iterations to update the
Firefly path to a new stable state, requiring 2.5 to 5 seconds. Because
these background computations do not affect the performance of the
main rendering thread and the Firefly transitions smoothly into a new

0.13
0 10 20 30 40

0.39

0.65

1.17

0.91

Stable
State

Iterations

Energy

Fig. 17. A representative convergence curve for an energy function
described in Equation 8. The Firefly path significantly improves already
after a single iteration. After 10 iterations (approximately 9 seconds) the
energy was more than halved. After 30 iterations, the energy state was
almost optimal. The stable state was reached after 36 iterations requiring
just under 33 seconds.

path, we did not experience any negative effects on the overall usability.
The initialization of the worker pool requires around 9 seconds during
the program start, since all the workers need to be initialized with the
corresponding Unity scene and settings.

When the user employs a selection mask, regions outside the se-
lection are not accounted for in the illumination optimization. This
can cause unwanted effects outside the selection mask, such as strong
shadows or change of light intensity. However, we believe that these
results are tolerable as the user deliberately shifts the attention to se-
lected substructures. While dynamic light can emphasize and enhance
certain aspects of the scene, it can also be misleading in some situa-
tions. Dynamic lights might be unsuitable for scenarios with highly
dynamic scenes or dynamic textures as the change of light position
might be interpreted as a change in the scene. Furthermore, dynamic
lights might deflect the user’s attention and thus may not be not suitable
for applications where high concentration is needed to carefully study
the data.

In this paper, we define a limited number of energy functions. To
allow for an easy energy function formulation, we construct the energy
function as an assembly of building blocks, measuring different proper-
ties in the scene and the rendered image. New energy functions can be
constructed by using different combinations of these building blocks.
However, the current version of the Firefly requires the user to define
the energy function by writing a short code segment combining the
building blocks. We are working on a visual editor that will allow the
user to easily construct custom energy functions by combining the build-
ing blocks in a drag-and-drop manner. Finally, the effects of animated
lights on the perception need to be formally evaluated, and we plan to
conduct a user study investigating their perceptual consequences.

7 CONCLUSION AND FUTURE CHALLANGES

We presented a novel approach for the automated generation of dynamic
illumination paths in interactive scenes. Our approach shows that
animated light provides a powerful and versatile addition to static
lighting setups. We designed the Firefly tool as a flexible plugin that
can be easily added to various visualization scenarios. The applicability
of Firefly was demonstrated on various examples ranging from scientific
visualization to applications for the entertainment industry. At present,
the Firefly travels with a constant speed over the curve. In the future,
we would like to investigate how the speed of the Firefly can be adapted
for a better illumination without appearing unnatural to the user. While
in this paper we only used point lights, Firefly is not restricted to a
specific light type. In the future, we will investigate how Firefly can
be integrated into complex lighting setups with box lights, strip lights,
ring lights, and reflector probes. Moreover, we will investigate how a
Firefly with dynamic chromatic light could emphasize changing moods
in the scene.

ACKNOWLDEGMENTS

The research presented in this paper was supported by the MetaVis
project (#250133) funded by the Research Council of Norway.

REFERENCES

[1] Adam. https://unity3d.com/pages/adam. Accessed: 2018-03-17.
[2] U-anatomy; ufulio anatomy realistic. https://ufulio.wixsite.com/
ufulioanatomy. Accessed: 2018-03-23.

[3] Unity game engine. https://unity3d.com. Accessed: 2018-03-23.
[4] A. A. Apodaca and L. Gritz. Advanced RenderMan: Creating CGI for

Motion Pictures. Morgan Kaufmann, 1999.
[5] M. Aittala. Inverse lighting and photorealistic rendering for augmented

reality. The Visual Computer, 26(6):669–678, 2010.
[6] M. Borga, A. Persson, R. Lenz, S. Lindholm, and G. Lathen. Automatic

tuning of spatially varying transfer functions for blood vessel visualization.
IEEE Transactions on Visualization and Computer Graphics, 18(12):2345–
2354, 2012.

[7] D. Coffey, F. Korsakov, H. Hagh-Shenas, L. Thorson, A. Ellingson,
D. Nuckley, and D. F. Keefe. Visualizing motion data in virtual reality:
Understanding the roles of animation, interaction, and static presentation.
Computer Graphics Forum, 31(3pt3):1215–1224, 2012.

[8] A. C. Costa, A. A. de Sousa, and F. N. Ferreira. Lighting design: A goal
based approach using optimisation. In Proc. Eurographics Workshop on
Rendering, pp. 317–328, 1999.

[9] C. de Melo and A. Paiva. Expression of emotions in virtual humans using
lights, shadows, composition and filters. In Proc. Affective Computing and
Intelligent Interaction, pp. 546–557, 2007.

[10] K. Doerschner, R. W. Fleming, O. Yilmaz, P. R. Schrater, B. Hartung, and
D. Kersten. Visual motion and the perception of surface material. Current
Biology, 21(23):2010–2016, 2011.

[11] M. S. El-Nasr and I. Horswill. Real-time lighting design for interactive
narrative. In Proc. Virtual Storytelling. Using Virtual RealityTechnologies
for Storytelling, pp. 12–20, 2003.

[12] F. Hunter, Steven Biver, and P. Fuqua. Light Science & Magic: An
Introduction to Photographic Lighting. Focal Press, 2015.

[13] S. Freitag, B. Weyers, and T. W. Kuhlen. Automatic speed adjustment for
travel through immersive virtual environments based on viewpoint quality.
In Proc. 3DUI, pp. 67–70, 2016.

[14] M. E. Froese, M. Tory, G. W. Evans, and K. Shrikhande. Evaluation of
static and dynamic visualization training approaches for users with differ-
ent spatial abilities. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2810–2817, 2013.

[15] S. Gumhold. Maximum entropy light source placement. In Proc. IEEE
Visualization, pp. 275–282, 2002.

[16] T. Günther, H. Theisel, and M. Gross. Decoupled opacity optimization
for points, lines and surfaces. Computer Graphics Forum, 36(2):153–162,
2017.

[17] M. Halle and J. Meng. Lightkit: A lighting system for effective visualiza-
tion. In Proc. IEEE Visualization, pp. 48–57, 2003.

[18] M. Haller, S. Drab, and W. Hartmann. A real-time shadow approach for
an augmented reality application using shadow volumes. In Proc. ACM
Symposium on Virtual Reality Software and Technology, pp. 56–65, 2003.

[19] N. Joubert, M. Roberts, A. Truong, F. Berthouzoz, and P. Hanrahan. An
interactive tool for designing quadrotor camera shots. ACM Transactions
on Graphics, 34(6):238:1–238:11, 2015.

[20] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models.
International Journal of Computer Vision, 1(4):321–331, 1988.

[21] B. E. Keiser and P. Z. Peebles. An automatic system for the control of
multiple drone aircraft. IEEE Transactions on Aerospace and Electronic
Systems, AES-5(3):515–524, 1969.

[22] M. Keramat and R. Kielbasa. Latin hypercube sampling monte carlo esti-
mation of average quality index for integrated circuits. Analog Integrated
Circuits and Signal Processing, 14(1):131–142, 1997.

[23] D. Kersten, P. Mamassian, and D. C. Knill. Moving cast shadows induce
apparent motion in depth. Perception, 26(2):171–192, 1997.

[24] D. A. Kleffner and V. S. Ramachandran. On the perception of shape from
shading. Perception & Psychophysics, 52(1):18–36, 1992.

[25] G. Klein and D. Murray. Compositing for small cameras. In Proc.
IEEE/ACM International Symposium on Mixed and Augmented Reality,
pp. 57–60, 2008.

[26] C. H. Lee, X. Hao, and A. Varshney. Light collages: lighting design for
effective visualization. In Proc. IEEE Visualization, pp. 281–288, 2004.

[27] P. Mamassian and R. Goutcher. Prior knowledge on the illumination
position. Cognition, 81(1):1–9, 2001.

[28] D. T. Nicholson, C. Chalk, W. R. J. Funnell, and S. J. Daniel. Can virtual
reality improve anatomy education? a randomised controlled study of a

computer-generated three-dimensional anatomical ear model. Medical
Education, 40(11):1081–1087, 2006.

[29] I. K. Nikolos, K. P. Valavanis, N. C. Tsourveloudis, and A. N. Kostaras.
Evolutionary algorithm based offline/online path planner for UAV naviga-
tion. IEEE Transactions on Systems, Man, and Cybernetics, 33(6):898–
912, 2003.

[30] B. Okumura, M. Kanbara, and N. Yokoya. Augmented reality based
on estimation of defocusing and motion blurring from captured images.
In Proc. IEEE/ACM International Symposium on Mixed and Augmented
Reality, pp. 219–225, 2006.

[31] V. S. Ramachandran. Perception of shape from shading. Nature,
331(6152):163–166, 1988.

[32] A. Richards. How to Set Up Photography Lighting for a Home Studio.
CreateSpace, 2014.

[33] S. Ruder. An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747, 2016.

[34] M. Ruiz, A. Bardera, I. Boada, I. Viola, M. Feixas, and M. Sbert. Auto-
matic transfer functions based on informational divergence. IEEE Transac-
tions on Visualization and Computer Graphics, 17(12):1932–1941, 2011.

[35] H. H. Schütt, F. Baier, and R. W. Fleming. Perception of light source
distance from shading patterns. Journal of Vision, 16(3):9, 2016.

[36] R. Shacked and D. Lischinski. Automatic Lighting Design using a Percep-
tual Quality Metric. Computer Graphics Forum, 20(3):215–227, 2001.

[37] M. D. Shields and J. Zhang. The generalization of latin hypercube sam-
pling. Reliability Engineering and System Safety, 148(1):96–108, 2016.

[38] M. Srikanth, K. Bala, and F. Durand. Computational rim illumination with
aerial robots. In Proc. Computational Aesthetics, pp. 57–66, 2014.

[39] M. Stein. Large sample properties of simulations using latin hypercube
sampling. Technometrics, 29(2):143–151, 1987.

[40] Y. Tani, K. Araki, T. Nagai, K. Koida, S. Nakauchi, and M. Kitazaki. En-
hancement of glossiness perception by retinal-image motion: Additional
effect of head-yoked motion parallax. PLOS ONE, 8(1):1–8, 2013.

[41] P. J. M. van Laarhoven and E. H. L. Aarts. Simulated annealing. Springer
Netherlands, 1987.

[42] J. Wambecke, R. Vergne, G.-P. Bonneau, and J. Thollot. Automatic
lighting design from photographic rules. In Proc. Eurographics Workshop
on Intelligent Cinematography and Editing, pp. 1–8, 2016.

[43] L. Wang and A. E. Kaufman. Lighting system for visual perception
enhancement in volume rendering. IEEE Transactions on Visualization
and Computer Graphics, 1(19):67–80, 2013.

[44] P. Wisessing, J. Dingliana, and R. McDonnell. Perception of lighting and
shading for animated virtual characters. In Proc. ACM Symposium on
Applied Perception, pp. 25–29, 2016.

[45] J. Xie, Y. Zhou, W. Wu, and Z. Zhou. Automatic path planning for
augmented virtual environment. In Proc. International Conference on
Virtual Reality and Visualization, pp. 372–379, 2016.

[46] M. Yang, Z. Liu, and W. Li. A fast general extension algorithm of latin
hypercube sampling. Journal of Statistical Computation and Simulation,
87(17):3398–3411, 2017.

[47] Y. Zhang and K.-L. Ma. Lighting design for globally illuminated volume
rendering. IEEE Transactions on Visualization and Computer Graphics,
19(12):2946–2955, 2013.

https://unity3d.com/pages/adam
https://ufulio.wixsite.com/ufulioanatomy
https://ufulio.wixsite.com/ufulioanatomy
https://unity3d.com

	Introduction
	Related Work
	Firefly
	Path Generation and Adaptation
	Energy Function
	Optimization
	Sample Evaluation
	Lighting Design

	Implementation
	Results
	Molecular Structures
	Human Anatomy
	Animation
	Still Life

	Discussion
	Conclusion and Future Challanges

