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Abstract

Contrast-enhanced ultrasound (CEUS) has recently becninepsrtant technology for lesion detection and charazégion in
cancer diagnosis. CEUS is used to investigate the perfldi@tics in tissue over time, which relates to tissue vamtzation. In
this paper we present a pipeline that enables interactstgal/exploration and semi-automatic segmentation angifitzsion of
CEUS data.

For the visual analysis of this challenging data, with chtmastic noise patterns and residual movements, we peopaosbust
method to derive expressive enhancement measures fromsgratib-temporal neighborhoods. We use this informaticen$taged
visual analysis pipeline that leads from a more local irigasibn to global results such as the delineation of anataegions
according to their perfusion properties. To make the visxaloration interactive, we have developed an accelefaamoework
based on the OpenCL library, that exploits modern manyschaedware. Using our application, we were able to analyzsdts
from CEUS liver examinations, being able to identify selévaal liver lesions, segment and analyze them quickly amdigely,
and eventually characterize them.

Keywords: Medical Visualization, Interactive Visual Analysis, Coawt-Enhanced Ultrasound

1. Introduction (see figure 1) include Time-of-Arrival of the contrast (TQA)
. : . . . Time-to-Peak (TTP) enhancement, Peak Enhancement (PE),
Contrast-enhanced imaging (CE) is an increasingly used aise Time (RT), Area-Under-the-Curve (AUC), Mean Transit

proach in medicine. A contrast agent tracer is injected @ th Time (MTT), Wash-in Rate (Slope/WiR) and Wash-out Rate
blood stream of the patient before the imaging process. ThﬁNoR) 5 6]'

contrast agent increases the enhancement in the images$y whi . ] ) ]
makes it easily detectable. It can be used to determineduoelbl 1 he typical analysis workflow consists of three stagestFirs

concentration in the imaged tissue at specific time steps Ththe €xaminer attempts to delineate regions of interestROI
makes it possible to analyze tperfusion kineticof blood in  ¢ording to their B-mode characteristics and perfusion ao&a
tissue, which correlates with the level and type of tissieena  MeNt, by looking at the cine-loop (animated image sequence)
larization [1]. This non-invasive imaging modality is ieers- of the CE data. This can be.alded by additional parametric im-
ingly used in ischemic stroke assessment and oncologie diag9es- Secondly, ROIs showing abnormal enhancement mattern
nosis; In oncology, for instance, the presence of abnoraml v '€ selected, and the perfusion in these regions is charste
cularization can be an indicator of a malignant lesion. Qfean The final stage COH§IStS Of comparing the perfusmn paraspete
in blood perfusion kinetics can therefore be used for thatide  ©f the selected regions with each other or with healthy &ssu
fication and diagnosis of possibly malignant tissue in pemgn ~ (When possible), eventually leading to a diagnosis.
matous organs, such as the liver [2], breast [3], and pasftga CE imaging became interesting also in conjunction with ul-
To perform the diagnosis, the imaged data can be analyzadasonography (US): recently, safe contrast agents hage be
after the examination using dedicated quantification saféw  developed, consisting of gas-filled microbubbles. Theylwan
So-called time-intensity curves (TIC) are computed from th administered intravenously into the systemic circulatiand
time series for each pixel (2D+time data), or voxel (3D+timeexcreted through respiration and breakdown in the livere Th
data). A TIC represents the enhancement in the correspondiicrobubbles have a high degree of echogenicity, and behave
ing region as a function of time, and correlates with theyerf like signal-emitting micro particles, flowing with the bldo
sion kinetics of the blood in the location after the injentiof ~ Moreover, the CEUS contrast agents are so-called blood pool
the contrast agent. Parameters describing the kineticoflb agents, meaning that, contrary to X-ray contrast medig, dioe
perfusion are extracted from the TICs, then analyzed and connot leave the blood vessels [7]. This provides the clinisiaith
pared in different regions to diagnose lesions charae@érizy  an excellent tool for following the dynamic phases of costtra
abnormal perfusion. Typical descriptive perfusion par@me enhancementin both large vessels and the microcirculaten

Preprint submitted to Computers and Graphics October 7, 2010



Wash-out
Il

lineating the vascular structure in the tissues.

CEUS examinations are generally performed freehand by th
operator, who keeps the US probe as still as possible, fogusi
on the region of interest for a certain period of time afteoa-c
trast agent bolus is injected intravenously. The recorited-t
dependent dataset consists of a sequence of staggeredsima
(2D + time), acquired alternately in B-mode and a specific con 25% |
trast mode, that uses low power and specific acoustic setting
to filter out the tissue signal from the bubble signal. Thiywa
each contrast image, containing the contrast enhanceworeat f
specific time-step, has a corresponding B-mode image, sigowi —_——
the anatomy clearly. Compared to contrast-enhanced cauput
tomography (CT) or dynamic contrast-enhanced magnetic re&igure 1: IIIu_stra_tion of_ an approach to compute descripperfusion parame-
onance imaging (DCE-MRI) data, CEUS data show analogou$§'s ffom @ ime-intensity curve.
perfusion kinetics. Therefore the analysis process cdaviol
a workflow comparable to the other CE modalities. However2, Related work
there are certain unique characteristics that CEUS dataigxh

which pose serious Cha”enges for the data ana'ysis' Applications forthe analySiS of CEUS data have mainly been
developed by ultrasound scanner manufactdréesy., GE,

Philips, Siemens, Toshiba), and are generally integrated i

First, US has a lower signal-to-noise ratio, when compareéheir workstations. Some of them are also available as stand
with MR and CT. Secondly, the data exhibit a non-lineardlone software solutions, such as Philips Q-Lab [8], Tashib
enhancement behavior, caused by the nature of the contrdsti!-Q [9], VRI [10], and a custom application developed by
agent. The gas-filled microbubbles have a discrete dimensioloshiba for the Tokyo General Hospital [11]. All of these ap-
(~ 10um), and do not fuse with the plasma but rather flow to-Plications offer a relatively basic quantification and ciwer-
gether with the blood stream. The enhancementis genengted #ation; They allow the user to manually define one or mul-
the presence of bubbles under the US probe, and we observi@le ROIs, and extract perfusion parameters for thesenegi
that it is not continuous, but, to a certain extent, has an "onSome of the manufacturers, e.g., Siemens and Toshibathecen
off” type of behavior. We also observed that this behavior is2dded rigid registration capabilities to correct for bhéag ar-
more prominent with high resolution transducers, probably  tifacts. More advanced stgnd-alone applications have deen
to supersampling of the fixed-sized microbubbles and also oféloped by Bracco Imaging, an US contrast-agent producer.
the voids between them. Thirdly, CEUS data are difficult toBracco has developed several applications for CEUS data an-
register, as the acquisition is performed freehand. Itrisost ~ alysis and quantification, ranging from general purpose SEU
impossible to keep the probe perfectly still, and defororati  @nalysis (Qontrast [12], QontraXt [13]) to applicationsiegbs-
and off-plane movements add up to the effects of breathidg ani"d specific diagnostic questions (SonoLiver [14, 15], Sono

pulse. In such a scenario, even deformable registrationadst ~ Prostate [5]). In contrast to the software packages intedra
cannot provide maximum accuracy. into the scanners, the solutions from Bracco are capable-of d

formable registration of the image stack. This is useful mvhe
dealing with issues more complex than only breathing move-

In this paper we present an interactive and iterative visual€nts.
analysis approach for CE data exploration, analysis, and ti Regarding the techniques as adopted in the approach pre-
sue classification. It is specifically tailored for the arsigyof ~ Sented in this paper, visualization techniques that expfoall
CEUS data, incorporating an innovative data processimgdra voxel neighborhoods have been proposed for building trans-
work that extracts accurate enhancement parameterseistabl  fer functions by considering local histograms [16] or cerre
presence of noise and movements. It offers a visual expld@tion [17]. Local neighborhoods have often been consid-
ration metaphor to discover relationships in the anatontp wi ered in the field of image processing, e.g., for extracting-no
respect to perfusion by using interactive similarity magch ~ Parametric statistics to de-noise MRI data [18]. _
maps visualize clearly and precisely areas with similafuper In the domain of visualization approaches for perfusiomagdat
sion kinetics with respect to the selected region, and atso d @ number of techniques have been proposed in the last decade.
lineate other homogeneous areas. Our approach allows to ghutomatic or semi-automatic segmentation techniques have
tract automatically selection masks from similarity mapsg ~ ©een proposed for DCE-MRI, PET and SPECT data, using clus-
a degree-of-interest function, and to combine such masks eatering [19, 20], principal component analysis [21], or wwi
ily and quickly. Finally, we make use of different visualizeans
to enable effective analysis and comparison of selecteksnas 1| prand names and trademarks mentioned in this paper afeefties of
(elected as ROI), and assess the tissue condition. their respective owners
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" ¢ Figure 3: Screenshot of the perfusion analysis softwargsptén the GE Logiq
1|\ 9 workstation. The region of interest must be manually natli and an average
'I TIC is displayed on the right, together with a function tlatdémputed to best-
}\ fit the data. On the bottom various perfusion parameter dractgd and shown.
\ ”I\
Y W *1 Jl/\ ft A . .
e (non time-varying).

Figure 2: (a) Example of 2D CEUS data of the intestinal wallaopatient Compared with these approac'hes, We. do not attempt to au-
suffering from Crohn's disease: B-Mode data. (c) The relatentrast data to_mqucally segment or CharaCt.enze the. tissues. The_ 'H@SO
showing a typical (noisy) CEUS enhancement pattern. (dgfimensity-curve  this is that even the best algorithms fail under certainurire
relative to the pixel highlighted in red in (a,b), after trentrast administration,  stances, such as imperfectly aligned data or data congganin
showing the characteristical unstable enhancement. noisy signal, which is especially common in CEUS. We also do
not want to replace the expertise of well-trained physigjdut
rather to involve them in the process to achieve a more accu-
rate result. We aim to provide fast and interactive explomt
and visually convey the segmentation of the data into region
of analogous perfusion behavior. We then offer a fast and in-
teractive approach to segment these regions, combine them i

! . . necessary, and extract meaningful parameters to analyke an
cal data, according to a user-specified template. The tgakni ) : )
) ) mpare them. With this approach we want to help the physi-
is applied to MRI and PET phantom datasets, and a SPECT. . : : .

. L cians speeding up the diagnosis, by using the knowledge they
dataset of a patient with kidney problems. Kohle et al. [25]

have in the best possible way. To obtain the performance that

presented a new approach for volume visualization of these

Wwe need in the interaction, we make use of the latest GPGPU

datasets introducing the closest vessel projection to agthd
) . ) ; . S . technologies such as OpenCL.
information to maximum intensity projection. In this work a
HSV colormap is used to better convey abnormal tissue. Hauth
et al. [26] adopt a three-timepoints TIC analysis for autdena 3, Requirement analysis
classification of the tissues. Rognin et al. [14] propose an
analogous approach, which also requires the identificaifon  Before we present our CEUS exploration and analysis solu-
a healthy region of reference. tion, we discuss the related application questions from d-me

For the visual exploration of time-dependent medical dataical perspective (gastroenterology and cardiology). Bahaes-
Behrens et al. [27] proposed some basic visualization techpects of the data analysis process are covered, and can be sum
nigques. A more intuitive concept to probe and annotate thee damarized as follows:
was presented with the Profile Flags [28]. Interactive diana
alysis techniques have also been proposed for the exmlorati
and characterization of time-varying perfusion data [6hey{f
have been specifically applied to the analysis of cerebréilipe
sion data [29]. Recently, GlaRer et al. [22] proposed a Visua
analytics approach to characterize malignant tissuesmrae
al. [30] provide a comprehensive survey on the visual exploAt the present, the specification of the ROIs is considered a
ration and analysis of perfusion data. lengthy and cumbersome process, as the area of interest is no

With respect to automatic classification and charactéamat always clearly delineated in the image. The placement of the
of tissues in CE imaging, neural networks [31] and the selfROls is a critical task in the process, as the ultimate gotief
organizing map [32] have been employed to automatically disanalysis is to assess the extent, shape and composition of le
criminate benign and malignant breast lesions in DCE-MRIsions. The physician has to examine different parametrigsma
Recently, Napel et al. [33] developed a system for automatelefore being able to distinguish regions and then decideevhe
retrieval of similar lesions from a database of CE-CT datase to place the ROIs. Another emerged problem with the avalabl
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growing [22] to identify abnormal areas. Enhancement scat-
terplots have also been proposed to select the voxels af inte
est [23]. Fang et al. [24] propose the use of the Euclideal
distance and the maximum cross-correlation as similargym

ric between TICs to segment volumetric, time-varying medi-

e What limitations of the available tools cause the physigian
the greatest discomfort, and should be improved?

e What visualizations solutions would the physicians benefit
most from?
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dava(x,t), da1(x,t),da3(%t),enhk(x,t) |

\ 4

TIC, parameters and parametric maps ‘
TOA(x), TTP(x), PE(x),AUC(x),... ‘ |

v

Visual Analysis

Interactive exploration and feature extraction

Image exploration and area identification
SimilarityMaptic-ei(x) = PMCC(x, ticref)

\ 4

Area selection (similarity-map-based)
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Selection refinement
Selectionn+1 = f(Selectioni [, Selection;]), or brushing
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Region of Interest specification
ROlr:1 = Selectioni
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ROIs characterization

ROIs analysis and comparison ‘

Figure 4: lllustration of the proposed pipeline. In the fatstige enhancement metrics are extracted (a) and paramejiare computed (b). In the IVA stage, data
are explored interactively using correlation analysis &) selection masks can be automatically extracted (dgkMean be automatically combined or refined
(e) and selected as ROI (f). Finally, the ROIs can be analgpeidcompared to assess the tissue condition.

quantification software is how the perfusion curves are@ppr maps are probably close to the maximum complexity that clin-
imated and the parameters extracted. Figure 2(d) illestridie  icians are willing to use for visualization — visualizatsfor
typical enhancement in CEUS data, that exhibits high inlstab clinical practice have been requested toalsesimple and easy
ity. Available software solutions perform little to no prep  to understand as possib{end also contain quantitative infor-
cessing of the data, partly due to the high computational cognation where possible). It is however likely that physisan
of the operation. Since the unprocessed data are almost unusore oriented towards research are more willing to undertak
able due to their extreme instability in the enhancemem, tha learning process and to use more compact but complex visu-
currently most followed approach consists of fitting a statal ~ alization metaphors. From the discussion it also emergad th
distribution to the samples, with characteristics simitathe  physicians would benefit from an application capable tortjea
blood perfusion kinetics in the tissue (e.g., a lognormsirdi  convey where the boundaries of homogeneously perfused re-
bution function [5]). Unfortunately, in some real-lifewsittions, gions are, so that the selection of these regions would bergas
the approximation provided by this approach might be not notjuicker and more precise. Therefore it seemed promisingto i
very accurate (see figure 3, the fitting do not match the samvest into the interactive nature of the visual analysis apph,
ples well). Finally, the performances of the available soamle  while keeping the visualization techniques easy to readaand
also seen as a limiting factor, and a faster and more infeeact plain and unambiguous as possible.
solution for exploring the data is needed.

Wg algo had int.erdisciplinary discussions gbout the use of v 4 vjigual CEUS Data Exploration and Analysis
sualization techniques that have been previously propfised
perfusion visualization in the scientific community. Whée The visualization pipeline presented in this paper cossist
(color) map of a single parameter does usually not sufficeeglo of three stages, intended to gradually extract and viseidfie
from our discussions it emerged that clinicians are gehyeral perfusion trends (see figure 4). To overcome the noiseegtlat
skeptical towards visualization techniques that combing- m challenges and the on-off signaling aspect of the contrgsita
tiple parameters, such as in a glyph visualization. Pandenet the first stage extracts enhancement information for eagélvo
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(pixel/timestep) from its local spatio-temporal neighaod.  and simply requires already aligned datasets.
We propose to derive three enhancement metrics: the mean en-
hancement valudavg, the firstdy and thirddyg quartiles of  4.1. Perfusion metrics extraction

the values in the neighborhood, and the percentage of eatlanc  As mentioned above, CEUS generates a signal that is not sta-
voxelsenh. We also experimented with a number of other, re-ple and may contain large oscillations. To better extraet th
lated, measures, but these these three metrics provedtog®o enhancement value for each voxel location in space and time
stable and accurate profiles of the local enhancement, @il r (x, t) along a TIC, we propose to extract three simple statistical
resenting the evolution of the contrast agent over timeail®t measures from the local spatio-temporal neighbortisod )

on this stage with an explanation and more motivation arergiv of the voxel (Figure 5(a)). We refer to the enhancement val-
in section 4.1. ues of each voxel( t) asd(x, t). We computed the mean value

As a result of the first stage, useful enhancement curves ag,(x, 1), as the average of the enhancement valueg(int) :
available, as well as parametric maps of the perfusion param
ZpeN(x,t) d(p)

ters described in the introduction, derived using the caegbu

enhancement curves (see figure 4(b)). The second stage con- IN(X, 1) |
sists of an interactive visual analysis approach to idgratifd This measure is needed to obtain a much stabler TIC shape for
e computation of the similarity factor between TICs. UWsin

segment the regions of interest. To do so, the examiner Woulg]
the raw intensity data, the similarity derivator strugdiasing

avg(X, 1) = (1)

start getting an overview of the perfusion enhancement®f th
anatomy by looking at parametric maps, for example of the

AUC, PE, or another expressive parameter. Each of these pgpough correlation between any pair of TICs, while staingjz

: and improving the shape of the curves proved to produce more
rameters only represents a selected aspect of the perfasidn . .
! . . meaningful results. Together with the mean, we also compute
we found that parametric maps, singularly, do not precisel : ; .
: . o . he quartileslyi(x, t) anddg(x, t) of the values in the neighbor-
outline the boundaries of suspicious regions . Therefore

w : .
included an interactive similarity map derivation, thay, $e- %OOd’ defined as:

lecting a pixel, a region, or a template curve shape, alltws t d o fdeNXx ) [d>f} 3 5
classification of the data according to how similar the perfu (X1 = mn IN(X, 1) | =2 @
sion pattern is with respect to the selection (see figure).4(c)

Our method uses the Pearson product-moment correlation co- dea(%. 1) = min deNx.Old=fll 1 3)
efficient applied to the TICs as similarity function (desaih ' f IN(X, 1) | ~ 4

section 4.2). Once the examiner has outlined an area o€stter h d Wit don t {10 be a bett .
with the similarity map, the region can be saved as a mask foW en compared Witllavg, gz tumns out to be a better approxi-

later refinements. This procedure can be repeated to save m ation for the curve upper envelope in case of unstable ligna
masks, which then can be combined using set and morpholo i_lotted together \.N'tld(x’ ), d‘ﬁl anddeg are used to convey the
cal operators (see figure 4(f,e)). In the third stage, theniner degre_e of oscillation of the signal for single TICs, or théehe- _
elects the result of the processing operations on masks ks rodeneity of a ROI. These measures are eventually used to build
and, for each ROI, perfusion parameters are automatioadhy c

puted. In this stage these ROIs can be analyzed and compare

with the system presenting the information about tissuéuper , N
sion for the selected ROIs, to eventually lead to the charact 840 Upier TIC envelage (sketch} ‘

zation of the regions. In the design of this pipeline we atoid
solely automatically characterize the tissues. Insteadkeep
the physician involved and aid the characterization preces
that the result benefits also from her or his knowledge. In to¢ 2
many situations, in fact, single approaches alone would tea o000, 4
the wrong diagnosis (such as only TIC comparison in our case VN
while an expert can usually combine the information exagdct .., VRN
from the data to achieve a more accurate diagnosis.

4868

3245

0500 50% / AR

Motion Correction. The presented approach does not include o« mTT A VAN
any motion correction stage per se, and we assume that the ir = 200 / V-
age stack loaded in the application is already aligned. Wewe 0000 :
. . 10 15 20 25 30 35
as this is usually not the case when the data come from the US
scanner, we have used ImageJ [34] to register the datasets Byure 5: Iilustration of a 5x5x3 neighborhood consider@estract the perfu-
fore the analysis. It uses the scale invariant feature foams  sion measures (a) from a noisy dataset. Comparison betleeiginal TIC,
(SIFT) [35] for feature extraction and, depending on theset also shown in figure 2 (red), the TIC built using ttiggq measure (black, b)

h o iqid . . d' f bl .. and the profile built with thenh measure (red, c), showing the percentage of
_C aracterlst|c_s, ngi reg|§trqt|0n or detorma e rafg.mbr? US=  voxels in each neighborhood greater than a vél(feere set to 25 over 255). In
ing vector-spline regularization [36]. Our applicationhisw- case of highly unstable signal, teatx profile proves to produce more accurate
ever not dependent on the motion correction approach adopteresults during the perfusion parameter extraction (e.g.TM
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up TICs, helping with the problem of voids in the perfusion4.2.1. Similarity measure for TICs
pattern, as the value is now an aggregated over the locaineig The perfusion enhancement for a pixel is defined by its TIC.
borhood. To measure how similarly two pixels enhance, we use the Pear-
However, to cope with the considerable "on-off’ enhance-son product-moment correlation coefficient (PMCC [37])eTh
ment behavior present in certain CEUS datasets, typicaly a PMCC between two variables (TIC8)andB is defined as the
quired with high resolution transducers, we propose aldird t  covariance of the two variables, divided by the product efrth
measure, callegercentage of enhanceme/e refer to it as  standard deviations:
enh(x, 1), and it is computed for each neighborhdéfx, t) as:

_ lp e Nt | dp) = k| . Pcaa gy - A NG D)
enhdxt) = NG, D) ) VEL(A - A2 50, (B - By

By spgufylng an e'nhanc.ement' thresholq vaedeally rep- with A being the average of the samplgsover the entire time
resenting the minimum intensity value in presence of con-

trast,enh represents the percentage of enhanced voxels in ea?s};])an. The PMCC is a measure of the linear dependence be-
neighborhood. The valueis dependent on the dataset, as dif- ween two value sequences, giving a value between +1 and -1

) o . A value of 1 implies that a linear equation describes pelsfect
ferent scanners/setups produce signals with differeansity. : .
. : . : the relationship between the two value sequences. A valQe of
However we let the user interactively modify this threshold implies that there is no correlation, and a negative valygiea
with the aid of a histogram of the dataset intensity values. W b ! 9

: X : : i that the variables are inversely correlated. In other wathtks
d!scqvered that this metnc,.used to b@dhancement pr.oflles PMCC is a measure of shape similarity of two TICs. Therefore
highlights better the perfusion trends in presence of kight

. we can visualize how similarly two anatomical areas perfuse
stable enhancement, as compared with the raw and the aderagéa y P

data. In such situations, profiles created with the otherpxee ver time by showing PMCC values as parametric map.

posed metrics tend to move away from the TIC upper envelope. o ) )

So the enhancement profile, although not containing quantit 4-2-2. Similarity-based exploration and segmentation

tive information, is useful to extract time-dependent nuees To obtain a similarity map for an area, understand perfusion

(e.g., TOA, TTP, MTT) more precisely (see figure 5). relationships and specify ROIs, the examiner must be able to
We have not been able, so far, to automatically compute therovide a target enhancement pattern. Once a similarity map

ideal neighborhood size for a given dataset, as there arg mahas been obtained, it is superimposed semi-transparevaly o

variables to take into consideration (e.g., scanner tdoggp  the cine-loop visualization. As the final goal of the IVA pro-

transducer wavelength, contrast agent type). Thereforimwe CeSS is to characterize suspicious tissue, similarity mapse

clude the option to interactively modify the size of the riigr- ~ converted into selections, processed and finally used as.ROI

hood, giving a visual feedback to let the examiner adjussitee  In the application, a degree-of-interest (DOI) ramp funictis

to the data under analysis (in figure 2(a,b) the neighborliwod used as soft threshold for the conversion. In our applioatio

highlighted in green). This stage is computationally vexy e enhancement patterns can be provided in different ways:

pensive, and to enable the possibility of interactivelyradiag

the neighborhood dimension and the threshold vijuee de-

veloped a GPGPU implementation of the described statistic e

traction techniques.

(5)

By pixel selection using the cursor, it is possible to interac-
tively select a pixel in the image. The system computes
and displays the similarity map using the TIC of this pixel
(Figure 8(e,f,9)).

4.2. Interactive visual analysis . . . o .
y By template TIC using a special widget, it is possible to

Ig orderl.to cErrectIy l;]nderstand t:e boun.damra]s of the RO||S sketch a perfusion enhancement pattern. The system uses
and to outline them, at the present the examiner has to ental s hattern to compute a similarity map highlighting re-

Correlgte different pgrametnmmages toget.her W|th thﬁmt gions perfusing similarly to the sketched pattern (Fig-
data cine-loop. We instead propose a multi-stage interaeti ure 6)

sual analysis (IVA) approach. In the first stage, a perfusion
hancement pattern is selected. The SyStem automatic&ﬂy co By area selection using an a|ready stored Se'ection' the Sys-

putes asimilarity map, highlighting regions with a perfusion tem can compute the similarity map from the TIC averaged
behavior similar to the selection. This map can be autoralitic over the selection. In combination with the proposed map-
converted into a selection, and can be also thresholdedeon th  tg-selection conversion approach, this allows iteraticero

similarity value. Finally, saved selections can be furtpes- a selection to obtain a similarity map built upon a more

cessed and combined with other selections via common mor-  representative TIC of the tissue under inspection.
phological or set operators to accurately define the ROI (See

section 4.2.2). In such maps, however, other homogeneeus re Arbitrarily shaped selections can also be created, by using
gions also appear in uniform value and color, and can beyeasibrush or a lasso tool, and once a selection has been stored, it
spotted. Therefore, this procedure caniteeatively repeated is displayed in a selection list, from where it can be spatifie

to inspect other areas, and specify other ROIs using thtetkla to perform further operations. The operations on selestioa
similarity maps. included are:
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REGIONS OF INTEREST
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Figure 7: Selection-based generation of the ROIs: the tiahacare kept in a
list, and can be processed with set/morphological operstid/hen a selection
is suitable, it can be promoted to ROI, and is shown on theobofa). ROIs

can be analyzed singularly (b) or together (c). When m@tiRDIs are ana-
lyzed, the regions where two or more ROI overlap is treatatsidering the

uncertainty in that area, and if the uncertainty is too hipk, area is removed
from all the ROIs, and shown in grey.

Figure 6: ROls created using curve templates to investif@evariation in . . . . )
perfusion characteristics. Three templates (continuédmrement, stabilizing  the healthy tissue (if available) or between different oagito
enhancement, measurable wash-out; depicted as dashedniag and their refine the diagnosis, as we show in section 5.1.
corresponding similarity maps (b, ¢, and d). The templatih Wigher wash- The application lets the user select which of available ROIs
out profile highlights the boundaries of the lesion showimmpssible perfusion .
from the surrounding healthy tissue (d) , while the one wither wash-out 1O compare. SeI?CtEd ROlS are superimposed over the CEUS
highlights the core of the lesion (b). The differences betwthe TICs of the  data, each one with a different color. When more than one ROI
ROIs, shown in (a) (solid curves), are however, minimal, migg that the le- |5 selected and displayed, there may be a partial overlaw.— Ho
sion is fairly homogeneous. . . . . .
ever selections are not binary: as mentioned, they contaéh p
values within the [0,1] range. Therefore we developed agpoti
e extraction of an averaged TIC, used for similarity mapscheme approach, that uses a user-specified thresholdjga as
generation. Using smooth selections, we perform the TIGhese overlapping areas to the ROI they most likely belong to
averaging taking into consideration the amount of DOI forlt can be formalized as follow:
each TIC. v £,
ROI(x) > ROI;(x), if |{j]ROI;j(x) > k}
-1, if |{j|ROIj(x)>k}
-2, if Vj, ROlj(x)=0

e modification of the selection using morphological opera-

tors (dilation/erosion) ROIC. k) =

<1
~1 ©

e combination with other selections using set operators
(union/intersection/subtraction/inversion) When two or more overlapping selection in a pixel have a value
Syeater than the threshdidthen we cannot precisely determine
to which of the ROI that pixel belong. Therefore the pixel is
dassigned to an "uncertain” grey region (-1 in equation 61-Ot
erwise, the pixel is assigned to the ROI that has highesevalu
in that location (see figure 7(c)). Once this voting schense ha
4.2.3. ROIs comparison and characterization been applied, we have two different set of parameters dlaila
In the first IVA stage, ROIs have been defined. In this |asllhose relateq to the original ROIs and those related to this RO
stage, these regions can be analyzed individually, or cozopa after the voting scheme has been applied. The two set can be
with each other. Our application extracts and visualizes th analyzed separately, or overlapped to convey the changes.

TICs and the enhancement profiles of the ROIs. TICs are visu-

alized as an average curve, upper and lower bounded by the firs Results

and third quartile, to visually convey the degree of homagen

ity of the ROI (see figure 4(g)). Each ROl is also accompanied With our approach we have analyzed a number of CEUS
by its perfusion parameters and a histogram matrix shovieg t datasets imaging focal liver lesions. These datasets pre-re
distribution of their values over the range. This way thepgha sentative for their respective diagnostic field, conceysipatial
dimension and perfusion behavior can be analyzed to charaend temporal resolution, and also concerning the obsenved e
terize the region. These parameters can also be comparedhancement behavior. Our application makes use of the OpenCL

7

As a result of these operations, new selections are produc
and inserted into the selection list, from where they candeelu
Once the output selection is satisfactory, is ready to be an
lyzed, and it can be promoted to ROI (see figure 7(a)).



Figure 8: Interactive visual analysis of a dataset with arliesion. One B-Mode image showing the imaged anatomy (ag dntrast image from the dataset,
showing diffuse enhancement, where only vessels are glghli (b). Similarity map for a point specified on the (preably) healthy liver parenchyma, in green.
The healthy tissue highlights, and also delineates othectstes in the liver, such as the vessels and the lesioneolefh(c). Similarity map for a point specified
on the lesion. The lesion highlights entirely (d). Simiiannap for the kidney (e). ROIs defined on the healthy tissueefu), lesion (red), lesion feeding vessel
(blue) and kidney (purple). In grey the uncertain area.TRCs for the four ROIs. The lesion exhibits a kinetic similathe feeding vessel, much earlier (TOA and
TTP) when compared with the healthy tissue, similar pealaeodment, and almost iso-echoic behavior in the mid phase (g

computing framework to perform real-time measures extvact Case Study.The patient suffered from flank pain and appeared
and PMCC computation operations. To be run, it requires @ have several liver lesions. Each one of them was sepgratel
computer supporting it. We therefore ran the applicatiormon imaged in a dedicated perfusion examination. Here we d&scri
workstation with an Intel Core CPU 2.5GHz and an nVIDIA the analysis of one of the scans, which is also represeatativ
GeForce GTX280 graphics card, for which nVIDIA provides for the other cases we studied. The sequence is cut short (in
drivers that support OpenCL. From a performance point otime), before the contrast is completely washed out from the
view, this system allows interactive exploration withoatficu-  area, thus containing only the arterial phase. It is enowagé,d
lar delays using typical settings. Increasing the neighbods  however, to assess the vascular structure in the lesioethteg
diameter over 10 pixels, however, begins to generate wgitinwith its shape and echogenicity. The resolution of the daia ¢
times even using the gpu to perform the computations. Howtaining the liver and the right kidney is 24040 pixels, with
ever, too large neighborhoods bring no benefits to the aisalys 257 timesteps, acquired at approximately 9 frames per secon
and particularly they cause a loss of detail on the edgeseof thfor a total duration of about 30 seconds.

regions. We experienced that, even for datasets acquirtbd wi

high resolution probes, the neighborhood diameter shooid n Visual Analysis.The results of the visual analysis are illus-

exceed a size of 7-9 pixels for the best results. trated in figure 8. After the data was loaded, the perfusion
metrics were automatically extracted using the defaulinggt
5.1. Liver Lesion diagnosis for the neighborhoods size (diameter of 5 pixels for theiapat
In the case of a liver lesion, the parameters that have to bdimensions and 3 timesteps for the temporal dimension). The
evaluated to assess the type of the lesion [2] are: system also provided an enhancement profile computed aver th

i whole enhanced area (thus excluding areas that are never en-
» the enhancement dynamics, to assess the type of vasculyfanced) to automatically identify the global TOA (TOA in the
ization in the lesion regions enhanced first). The computation of the other parame

there are multiple layers with different perfusion pattern then ran the cine-loop to identify frames with alignmenoesr
so that they could be excluded from the analysis, and the val-

e the shape of the lesion ues interpolated using neighboring frames (Figure 8(g) el



bands on the plot represent timesteps with interpolatedds).  real-time interaction may provide the user with a betteramd
After this procedure was completed, we visually examined th standing of the relationships in the data. By using suchlaimi
map of the various parameters to identify the regions with th ity map, it is then possible to interactively specify sei@as on
highest perfusion (Figure 4(b)). This map highlighted tkkerl homogeneously perfusing tissue highlighted in the map. The
parenchyma, part of the kidney parenchyma (that usually haspecified selections can be quickly combined into ROIls, that
a fast wash-out and thus a small AUC), and most prominentlgan eventually be analyzed and compared to assess the tissue
the vessels as well as a region on the left not consistently deondition. Compared to the available solutions, our sygiesn
fined among the maps. So we selected a pixel on the (presunaides a faster and more accurate method for identificatiah an
ably) healthy liver parenchyma, to obtain a similarity map f segmentation of the ROIs, which has the potential to lead to
the healthy tissue (Figure 8(c)). We converted the sintylari a more accurate diagnosis. The solution presented here is th
map for the healthy area into selection, to use as referéige ( result of an interdisciplinary cooperation — between a tedm

ure 8(f,g) (green)). In the similarity map of the healthystie, technologists (visualization researchers with a backaglon

the non-consistently defined region on the left gained a muchomputer science) and physicians (with a background in gas-
sharper contour, as it was very different in perfusion. Sénve troenterology). The cooperation extended over the whate pr
vestigated that area by selecting a pixel, and obtaineditfte s cess from the initial assessment of limitations of curreri-s
ilarity map for what turned out to be a lesion (see figure 8(d))tions all the way to the iterative improvement of the presdnt
The lesion was precisely highlighted and we converted @ int new technology and its initial informal evaluation studi&¥e

a selection, and then we specified a rough lasso selectian ovdiscussed our approach with two experienced gastroenterol

it, that we used to intersect the similarity-based selectiig-  gists, both familiar with CEUS in the clinical routine. Both
ure 8(f) (red)). We also noticed how the lesion was surrodndewere positive toward the interactivity of the applicatiand

by an area with higher enhancement on the right, presumablgonfirmed that the presented approach was not seen before in
the supplying vessel. We segmented it, using the similarityhe available applications, and may be useful for the etitnac
map, to compare the arterial input to the lesion (Figure 8(fland analysis of the ROIs.

(blue)). At this point, thanks to the similarity map, we had

assessed the composition of the lesion (single compoumal), tAcknowIedgements

shape (regular) and the size (diameter of about 3cm). Then we

entered the last stage of the analysis, and compared the-perf Thjs work has been carried out within the lllustraSound re-
sion in the lesion with the perfusion in the healthy paremhy search project (# 193170), which is funded by the VERDIKT
(Figure 8(g)). We found that the lesion enhanced earliem thaprogram of the Norwegian Research Council, with support

the healthy tissue (TOA and TTP), and in the late phase it Wagf the MedViz network in Bergen, Norway (PK1760-5897-
almost iso-echoic. But the peak enhancement was lower and {Brgject 11).

general the wash-out began slightly earlier, which indisdhe
absence of the portal phase. These features should characte
ize the lesion as a rare hepatocellular adenoma (benig88]2,
After the patient also underwent a liver biopsy, the diagmos
was eventually confirmed.

6. Conclusion

In this paper we demonstrated how interactive visual an-
alysis can lead to an improved analysis of CEUS data. For
this application, we make use of an innovative data process-
ing step that extracts robust enhancement measures froth sma
spatio-temporal voxel neighborhoods to overcome the chal-
lenges arisen from the peculiar characteristics of CEU&.dat
With this approach, we can extract meaningful and realistic
perfusion parameters even from this challenging data. \&e ar
also investigating the potential of such approach with otired
of time-dependent data. We introduce the possibility terint
actively explore the data using a real-time parametric nfap o
similarity that improve the visual comprehension of thecext
of suspicious tissues, and of the relationships betwederdif
ent tissues with respect to the perfusion enhancement behav
ior. Such approach showed a good potential also when com-
pared with automatic segmentation techniques such as auto-
matic clustering, using the same similarity function. Hehe
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