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Abstract

Contrast-enhanced ultrasound (CEUS) has recently become an important technology for lesion detection and characterization in
cancer diagnosis. CEUS is used to investigate the perfusionkinetics in tissue over time, which relates to tissue vascularization. In
this paper we present a pipeline that enables interactive visual exploration and semi-automatic segmentation and classification of
CEUS data.

For the visual analysis of this challenging data, with characteristic noise patterns and residual movements, we propose a robust
method to derive expressive enhancement measures from small spatio-temporal neighborhoods. We use this information in a staged
visual analysis pipeline that leads from a more local investigation to global results such as the delineation of anatomic regions
according to their perfusion properties. To make the visualexploration interactive, we have developed an acceleratedframework
based on the OpenCL library, that exploits modern many-cores hardware. Using our application, we were able to analyze datasets
from CEUS liver examinations, being able to identify several focal liver lesions, segment and analyze them quickly and precisely,
and eventually characterize them.
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1. Introduction

Contrast-enhanced imaging (CE) is an increasingly used ap-
proach in medicine. A contrast agent tracer is injected in the
blood stream of the patient before the imaging process. The
contrast agent increases the enhancement in the images, which
makes it easily detectable. It can be used to determine the blood
concentration in the imaged tissue at specific time steps. This
makes it possible to analyze theperfusion kineticsof blood in
tissue, which correlates with the level and type of tissue vascu-
larization [1]. This non-invasive imaging modality is increas-
ingly used in ischemic stroke assessment and oncologic diag-
nosis; In oncology, for instance, the presence of abnormal vas-
cularization can be an indicator of a malignant lesion. Changes
in blood perfusion kinetics can therefore be used for the identi-
fication and diagnosis of possibly malignant tissue in parenchy-
matous organs, such as the liver [2], breast [3], and pancreas [4].

To perform the diagnosis, the imaged data can be analyzed
after the examination using dedicated quantification software.
So-called time-intensity curves (TIC) are computed from the
time series for each pixel (2D+time data), or voxel (3D+time
data). A TIC represents the enhancement in the correspond-
ing region as a function of time, and correlates with the perfu-
sion kinetics of the blood in the location after the injection of
the contrast agent. Parameters describing the kinetics of blood
perfusion are extracted from the TICs, then analyzed and com-
pared in different regions to diagnose lesions characterized by
abnormal perfusion. Typical descriptive perfusion parameters

(see figure 1) include Time-of-Arrival of the contrast (TOA),
Time-to-Peak (TTP) enhancement, Peak Enhancement (PE),
Rise Time (RT), Area-Under-the-Curve (AUC), Mean Transit
Time (MTT), Wash-in Rate (Slope/WiR) and Wash-out Rate
(WoR) [5, 6].

The typical analysis workflow consists of three stages: First,
the examiner attempts to delineate regions of interest (ROI) ac-
cording to their B-mode characteristics and perfusion enhance-
ment, by looking at the cine-loop (animated image sequence)
of the CE data. This can be aided by additional parametric im-
ages. Secondly, ROIs showing abnormal enhancement patterns
are selected, and the perfusion in these regions is characterized.
The final stage consists of comparing the perfusion parameters
of the selected regions with each other or with healthy tissue
(when possible), eventually leading to a diagnosis.

CE imaging became interesting also in conjunction with ul-
trasonography (US): recently, safe contrast agents have been
developed, consisting of gas-filled microbubbles. They canbe
administered intravenously into the systemic circulation, and
excreted through respiration and breakdown in the liver. The
microbubbles have a high degree of echogenicity, and behave
like signal-emitting micro particles, flowing with the blood.
Moreover, the CEUS contrast agents are so-called blood pool
agents, meaning that, contrary to X-ray contrast media, they do
not leave the blood vessels [7]. This provides the clinicians with
an excellent tool for following the dynamic phases of contrast
enhancement in both large vessels and the microcirculation, de-
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lineating the vascular structure in the tissues.

CEUS examinations are generally performed freehand by the
operator, who keeps the US probe as still as possible, focusing
on the region of interest for a certain period of time after a con-
trast agent bolus is injected intravenously. The recorded time-
dependent dataset consists of a sequence of staggered images
(2D + time), acquired alternately in B-mode and a specific con-
trast mode, that uses low power and specific acoustic settings
to filter out the tissue signal from the bubble signal. This way
each contrast image, containing the contrast enhancement for a
specific time-step, has a corresponding B-mode image, showing
the anatomy clearly. Compared to contrast-enhanced computed
tomography (CT) or dynamic contrast-enhanced magnetic res-
onance imaging (DCE-MRI) data, CEUS data show analogous
perfusion kinetics. Therefore the analysis process can follow
a workflow comparable to the other CE modalities. However,
there are certain unique characteristics that CEUS data exhibit,
which pose serious challenges for the data analysis.

First, US has a lower signal-to-noise ratio, when compared
with MR and CT. Secondly, the data exhibit a non-linear
enhancement behavior, caused by the nature of the contrast
agent. The gas-filled microbubbles have a discrete dimension
(∼ 10µm), and do not fuse with the plasma but rather flow to-
gether with the blood stream. The enhancement is generated by
the presence of bubbles under the US probe, and we observed
that it is not continuous, but, to a certain extent, has an ”on-
off” type of behavior. We also observed that this behavior is
more prominent with high resolution transducers, probablydue
to supersampling of the fixed-sized microbubbles and also of
the voids between them. Thirdly, CEUS data are difficult to
register, as the acquisition is performed freehand. It is almost
impossible to keep the probe perfectly still, and deformations
and off-plane movements add up to the effects of breathing and
pulse. In such a scenario, even deformable registration methods
cannot provide maximum accuracy.

In this paper we present an interactive and iterative visual
analysis approach for CE data exploration, analysis, and tis-
sue classification. It is specifically tailored for the analysis of
CEUS data, incorporating an innovative data processing frame-
work that extracts accurate enhancement parameters, stabler in
presence of noise and movements. It offers a visual explo-
ration metaphor to discover relationships in the anatomy with
respect to perfusion by using interactive similarity maps.Such
maps visualize clearly and precisely areas with similar perfu-
sion kinetics with respect to the selected region, and also de-
lineate other homogeneous areas. Our approach allows to ex-
tract automatically selection masks from similarity maps using
a degree-of-interest function, and to combine such masks eas-
ily and quickly. Finally, we make use of different visualizations
to enable effective analysis and comparison of selected masks
(elected as ROI), and assess the tissue condition.

Figure 1: Illustration of an approach to compute descriptive perfusion parame-
ters from a time-intensity curve.

2. Related work

Applications for the analysis of CEUS data have mainly been
developed by ultrasound scanner manufacturers1 (e.g., GE,
Philips, Siemens, Toshiba), and are generally integrated into
their workstations. Some of them are also available as stand-
alone software solutions, such as Philips Q-Lab [8], Toshiba
CHI-Q [9], VRI [10], and a custom application developed by
Toshiba for the Tokyo General Hospital [11]. All of these ap-
plications offer a relatively basic quantification and character-
ization; They allow the user to manually define one or mul-
tiple ROIs, and extract perfusion parameters for these regions.
Some of the manufacturers, e.g., Siemens and Toshiba, recently
added rigid registration capabilities to correct for breathing ar-
tifacts. More advanced stand-alone applications have beende-
veloped by Bracco Imaging, an US contrast-agent producer.
Bracco has developed several applications for CEUS data an-
alysis and quantification, ranging from general purpose CEUS
analysis (Qontrast [12], QontraXt [13]) to applications address-
ing specific diagnostic questions (SonoLiver [14, 15], Sono-
Prostate [5]). In contrast to the software packages integrated
into the scanners, the solutions from Bracco are capable of de-
formable registration of the image stack. This is useful when
dealing with issues more complex than only breathing move-
ments.

Regarding the techniques as adopted in the approach pre-
sented in this paper, visualization techniques that exploit small
voxel neighborhoods have been proposed for building trans-
fer functions by considering local histograms [16] or corre-
lation [17]. Local neighborhoods have often been consid-
ered in the field of image processing, e.g., for extracting non-
parametric statistics to de-noise MRI data [18].

In the domain of visualization approaches for perfusion data,
a number of techniques have been proposed in the last decade.
Automatic or semi-automatic segmentation techniques have
been proposed for DCE-MRI, PET and SPECT data, using clus-
tering [19, 20], principal component analysis [21], or region-

1All brand names and trademarks mentioned in this paper are properties of
their respective owners
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Figure 2: (a) Example of 2D CEUS data of the intestinal wall ofa patient
suffering from Crohn’s disease: B-Mode data. (c) The related contrast data
showing a typical (noisy) CEUS enhancement pattern. (d) Time-intensity-curve
relative to the pixel highlighted in red in (a,b), after the contrast administration,
showing the characteristical unstable enhancement.

growing [22] to identify abnormal areas. Enhancement scat-
terplots have also been proposed to select the voxels of inter-
est [23]. Fang et al. [24] propose the use of the Euclidean
distance and the maximum cross-correlation as similarity met-
ric between TICs to segment volumetric, time-varying medi-
cal data, according to a user-specified template. The technique
is applied to MRI and PET phantom datasets, and a SPECT
dataset of a patient with kidney problems. Kohle et al. [25]
presented a new approach for volume visualization of these
datasets introducing the closest vessel projection to add depth
information to maximum intensity projection. In this work a
HSV colormap is used to better convey abnormal tissue. Hauth
et al. [26] adopt a three-timepoints TIC analysis for automatic
classification of the tissues. Rognin et al. [14] propose an
analogous approach, which also requires the identificationof
a healthy region of reference.

For the visual exploration of time-dependent medical data,
Behrens et al. [27] proposed some basic visualization tech-
niques. A more intuitive concept to probe and annotate the data
was presented with the Profile Flags [28]. Interactive visual an-
alysis techniques have also been proposed for the exploration
and characterization of time-varying perfusion data [6]. They
have been specifically applied to the analysis of cerebral perfu-
sion data [29]. Recently, Glaßer et al. [22] proposed a visual
analytics approach to characterize malignant tissues. Preim et
al. [30] provide a comprehensive survey on the visual explo-
ration and analysis of perfusion data.

With respect to automatic classification and characterization
of tissues in CE imaging, neural networks [31] and the self-
organizing map [32] have been employed to automatically dis-
criminate benign and malignant breast lesions in DCE-MRI.
Recently, Napel et al. [33] developed a system for automated
retrieval of similar lesions from a database of CE-CT datasets

Figure 3: Screenshot of the perfusion analysis software present in the GE Logiq
9 workstation. The region of interest must be manually outlined, and an average
TIC is displayed on the right, together with a function that is computed to best-
fit the data. On the bottom various perfusion parameter are extracted and shown.

(non time-varying).
Compared with these approaches, we do not attempt to au-

tomatically segment or characterize the tissues. The reason for
this is that even the best algorithms fail under certain circum-
stances, such as imperfectly aligned data or data containing a
noisy signal, which is especially common in CEUS. We also do
not want to replace the expertise of well-trained physicians, but
rather to involve them in the process to achieve a more accu-
rate result. We aim to provide fast and interactive exploration,
and visually convey the segmentation of the data into regions
of analogous perfusion behavior. We then offer a fast and in-
teractive approach to segment these regions, combine them if
necessary, and extract meaningful parameters to analyze and
compare them. With this approach we want to help the physi-
cians speeding up the diagnosis, by using the knowledge they
have in the best possible way. To obtain the performance that
we need in the interaction, we make use of the latest GPGPU
technologies such as OpenCL.

3. Requirement analysis

Before we present our CEUS exploration and analysis solu-
tion, we discuss the related application questions from a med-
ical perspective (gastroenterology and cardiology). Several as-
pects of the data analysis process are covered, and can be sum-
marized as follows:

• What limitations of the available tools cause the physicians
the greatest discomfort, and should be improved?

• What visualizations solutions would the physicians benefit
most from?

At the present, the specification of the ROIs is considered a
lengthy and cumbersome process, as the area of interest is not
always clearly delineated in the image. The placement of the
ROIs is a critical task in the process, as the ultimate goal ofthe
analysis is to assess the extent, shape and composition of le-
sions. The physician has to examine different parametric maps
before being able to distinguish regions and then decide where
to place the ROIs. Another emerged problem with the available
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Figure 4: Illustration of the proposed pipeline. In the firststage enhancement metrics are extracted (a) and parametricmaps are computed (b). In the IVA stage, data
are explored interactively using correlation analysis (c), and selection masks can be automatically extracted (d). Masks can be automatically combined or refined
(e) and selected as ROI (f). Finally, the ROIs can be analyzedand compared to assess the tissue condition.

quantification software is how the perfusion curves are approx-
imated and the parameters extracted. Figure 2(d) illustrates the
typical enhancement in CEUS data, that exhibits high instabil-
ity. Available software solutions perform little to no prepro-
cessing of the data, partly due to the high computational cost
of the operation. Since the unprocessed data are almost unus-
able due to their extreme instability in the enhancement, the
currently most followed approach consists of fitting a statistical
distribution to the samples, with characteristics similarto the
blood perfusion kinetics in the tissue (e.g., a lognormal distri-
bution function [5]). Unfortunately, in some real-life situations,
the approximation provided by this approach might be not not
very accurate (see figure 3, the fitting do not match the sam-
ples well). Finally, the performances of the available tools are
also seen as a limiting factor, and a faster and more interactive
solution for exploring the data is needed.

We also had interdisciplinary discussions about the use of vi-
sualization techniques that have been previously proposedfor
perfusion visualization in the scientific community. Whilea
(color) map of a single parameter does usually not suffice alone,
from our discussions it emerged that clinicians are generally
skeptical towards visualization techniques that combine mul-
tiple parameters, such as in a glyph visualization. Parametric

maps are probably close to the maximum complexity that clin-
icians are willing to use for visualization – visualizations for
clinical practice have been requested to beas simple and easy
to understand as possible(and also contain quantitative infor-
mation where possible). It is however likely that physicians
more oriented towards research are more willing to undertake
a learning process and to use more compact but complex visu-
alization metaphors. From the discussion it also emerged that
physicians would benefit from an application capable to clearly
convey where the boundaries of homogeneously perfused re-
gions are, so that the selection of these regions would be easier,
quicker and more precise. Therefore it seemed promising to in-
vest into the interactive nature of the visual analysis approach,
while keeping the visualization techniques easy to read andas
plain and unambiguous as possible.

4. Visual CEUS Data Exploration and Analysis

The visualization pipeline presented in this paper consists
of three stages, intended to gradually extract and visualize the
perfusion trends (see figure 4). To overcome the noise-related
challenges and the on-off signaling aspect of the contrast agent,
the first stage extracts enhancement information for each voxel
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(pixel/timestep) from its local spatio-temporal neighborhood.
We propose to derive three enhancement metrics: the mean en-
hancement valuedavg, the firstdq1 and thirddq3 quartiles of
the values in the neighborhood, and the percentage of enhanced
voxelsenhk. We also experimented with a number of other, re-
lated, measures, but these these three metrics proved to produce
stable and accurate profiles of the local enhancement, well rep-
resenting the evolution of the contrast agent over time. Details
on this stage with an explanation and more motivation are given
in section 4.1.

As a result of the first stage, useful enhancement curves are
available, as well as parametric maps of the perfusion parame-
ters described in the introduction, derived using the computed
enhancement curves (see figure 4(b)). The second stage con-
sists of an interactive visual analysis approach to identify and
segment the regions of interest. To do so, the examiner would
start getting an overview of the perfusion enhancement of the
anatomy by looking at parametric maps, for example of the
AUC, PE, or another expressive parameter. Each of these pa-
rameters only represents a selected aspect of the perfusion, and
we found that parametric maps, singularly, do not precisely
outline the boundaries of suspicious regions . Therefore we
included an interactive similarity map derivation, that, by se-
lecting a pixel, a region, or a template curve shape, allows the
classification of the data according to how similar the perfu-
sion pattern is with respect to the selection (see figure 4(c)).
Our method uses the Pearson product-moment correlation co-
efficient applied to the TICs as similarity function (details in
section 4.2). Once the examiner has outlined an area of interest
with the similarity map, the region can be saved as a mask for
later refinements. This procedure can be repeated to save more
masks, which then can be combined using set and morphologi-
cal operators (see figure 4(f,e)). In the third stage, the examiner
elects the result of the processing operations on masks as ROIs,
and, for each ROI, perfusion parameters are automatically com-
puted. In this stage these ROIs can be analyzed and compared,
with the system presenting the information about tissue perfu-
sion for the selected ROIs, to eventually lead to the characteri-
zation of the regions. In the design of this pipeline we avoidto
solely automatically characterize the tissues. Instead, we keep
the physician involved and aid the characterization process, so
that the result benefits also from her or his knowledge. In too
many situations, in fact, single approaches alone would lead to
the wrong diagnosis (such as only TIC comparison in our case),
while an expert can usually combine the information extracted
from the data to achieve a more accurate diagnosis.

Motion Correction. The presented approach does not include
any motion correction stage per se, and we assume that the im-
age stack loaded in the application is already aligned. However,
as this is usually not the case when the data come from the US
scanner, we have used ImageJ [34] to register the datasets be-
fore the analysis. It uses the scale invariant feature transform
(SIFT) [35] for feature extraction and, depending on the dataset
characteristics, rigid registration or deformable registration us-
ing vector-spline regularization [36]. Our application ishow-
ever not dependent on the motion correction approach adopted,

and simply requires already aligned datasets.

4.1. Perfusion metrics extraction

As mentioned above, CEUS generates a signal that is not sta-
ble and may contain large oscillations. To better extract the
enhancement value for each voxel location in space and time
(x, t) along a TIC, we propose to extract three simple statistical
measures from the local spatio-temporal neighborhoodN(x, t)
of the voxel (Figure 5(a)). We refer to the enhancement val-
ues of each voxel (x, t) asd(x, t). We computed the mean value
davg(x, t), as the average of the enhancement values inN(x, t) :

davg(x, t) =

∑

p∈N(x,t) d(p)

|N(x, t) |
(1)

This measure is needed to obtain a much stabler TIC shape for
the computation of the similarity factor between TICs. Using
the raw intensity data, the similarity derivator strugglesfinding
enough correlation between any pair of TICs, while stabilizing
and improving the shape of the curves proved to produce more
meaningful results. Together with the mean, we also compute
the quartilesdq1(x, t) anddq3(x, t) of the values in the neighbor-
hood, defined as:

dq1(x, t) = min
f

|{d ∈ N(x, t) | d ≥ f }|
|N(x, t) |

≤
3
4

(2)

dq3(x, t) = min
f

|{d ∈ N(x, t) | d ≥ f }|
|N(x, t) |

≤
1
4

(3)

When compared withdavg, dq3 turns out to be a better approxi-
mation for the curve upper envelope in case of unstable signals.
Plotted together withd(x, t), dq1 anddq3 are used to convey the
degree of oscillation of the signal for single TICs, or the hetero-
geneity of a ROI. These measures are eventually used to build

Figure 5: Illustration of a 5x5x3 neighborhood considered to extract the perfu-
sion measures (a) from a noisy dataset. Comparison between the original TIC,
also shown in figure 2 (red), the TIC built using thedavg measure (black, b)
and the profile built with theenhk measure (red, c), showing the percentage of
voxels in each neighborhood greater than a valuek (here set to 25 over 255). In
case of highly unstable signal, theenhk profile proves to produce more accurate
results during the perfusion parameter extraction (e.g., MTT)
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up TICs, helping with the problem of voids in the perfusion
pattern, as the value is now an aggregated over the local neigh-
borhood.

However, to cope with the considerable ”on-off’ enhance-
ment behavior present in certain CEUS datasets, typically ac-
quired with high resolution transducers, we propose also a third
measure, calledpercentage of enhancement. We refer to it as
enhk(x, t), and it is computed for each neighborhoodN(x, t) as:

enhk(x, t) =
| {p ∈ N(x, t) | d(p) ≥ k} |

|N(x, t) |
(4)

By specifying an enhancement threshold valuek, ideally rep-
resenting the minimum intensity value in presence of con-
trast,enhk represents the percentage of enhanced voxels in each
neighborhood. The valuek is dependent on the dataset, as dif-
ferent scanners/setups produce signals with different intensity.
However we let the user interactively modify this threshold,
with the aid of a histogram of the dataset intensity values. We
discovered that this metric, used to buildenhancement profiles,
highlights better the perfusion trends in presence of highly un-
stable enhancement, as compared with the raw and the averaged
data. In such situations, profiles created with the other twopro-
posed metrics tend to move away from the TIC upper envelope.
So the enhancement profile, although not containing quantita-
tive information, is useful to extract time-dependent measures
(e.g., TOA, TTP, MTT) more precisely (see figure 5).

We have not been able, so far, to automatically compute the
ideal neighborhood size for a given dataset, as there are many
variables to take into consideration (e.g., scanner technology,
transducer wavelength, contrast agent type). Therefore wein-
clude the option to interactively modify the size of the neighbor-
hood, giving a visual feedback to let the examiner adjust thesize
to the data under analysis (in figure 2(a,b) the neighborhoodis
highlighted in green). This stage is computationally very ex-
pensive, and to enable the possibility of interactively changing
the neighborhood dimension and the threshold valuek, we de-
veloped a GPGPU implementation of the described statistic ex-
traction techniques.

4.2. Interactive visual analysis

In order to correctly understand the boundaries of the ROIs
and to outline them, at the present the examiner has to mentally
correlate different parametric images together with the contrast
data cine-loop. We instead propose a multi-stage interactive vi-
sual analysis (IVA) approach. In the first stage, a perfusionen-
hancement pattern is selected. The system automatically com-
putes asimilarity map, highlighting regions with a perfusion
behavior similar to the selection. This map can be automatically
converted into a selection, and can be also thresholded on the
similarity value. Finally, saved selections can be furtherpro-
cessed and combined with other selections via common mor-
phological or set operators to accurately define the ROI (See
section 4.2.2). In such maps, however, other homogeneous re-
gions also appear in uniform value and color, and can be easily
spotted. Therefore, this procedure can beiteratively repeated
to inspect other areas, and specify other ROIs using the related
similarity maps.

4.2.1. Similarity measure for TICs
The perfusion enhancement for a pixel is defined by its TIC.

To measure how similarly two pixels enhance, we use the Pear-
son product-moment correlation coefficient (PMCC [37]). The
PMCC between two variables (TICs)A andB is defined as the
covariance of the two variables, divided by the product of their
standard deviations:

PMCC(A, B) =

∑n
i=1(Ai − Ā)(Bi − B̄)

√

∑n
i=1(Ai − Ā)2

√

∑n
i=1(Bi − B̄)2

(5)

with Ā being the average of the samplesAi over the entire time
span. The PMCC is a measure of the linear dependence be-
tween two value sequences, giving a value between +1 and -1.
A value of 1 implies that a linear equation describes perfectly
the relationship between the two value sequences. A value of0
implies that there is no correlation, and a negative value implies
that the variables are inversely correlated. In other words, the
PMCC is a measure of shape similarity of two TICs. Therefore
we can visualize how similarly two anatomical areas perfuse
over time by showing PMCC values as parametric map.

4.2.2. Similarity-based exploration and segmentation
To obtain a similarity map for an area, understand perfusion

relationships and specify ROIs, the examiner must be able to
provide a target enhancement pattern. Once a similarity map
has been obtained, it is superimposed semi-transparently over
the cine-loop visualization. As the final goal of the IVA pro-
cess is to characterize suspicious tissue, similarity mapscan be
converted into selections, processed and finally used as ROIs.
In the application, a degree-of-interest (DOI) ramp function is
used as soft threshold for the conversion. In our application
enhancement patterns can be provided in different ways:

By pixel selection using the cursor, it is possible to interac-
tively select a pixel in the image. The system computes
and displays the similarity map using the TIC of this pixel
(Figure 8(e,f,g)).

By template TIC using a special widget, it is possible to
sketch a perfusion enhancement pattern. The system uses
this pattern to compute a similarity map highlighting re-
gions perfusing similarly to the sketched pattern (Fig-
ure 6).

By area selection using an already stored selection, the sys-
tem can compute the similarity map from the TIC averaged
over the selection. In combination with the proposed map-
to-selection conversion approach, this allows iteration over
a selection to obtain a similarity map built upon a more
representative TIC of the tissue under inspection.

Arbitrarily shaped selections can also be created, by usinga
brush or a lasso tool, and once a selection has been stored, it
is displayed in a selection list, from where it can be specified
to perform further operations. The operations on selections we
included are:
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Figure 6: ROIs created using curve templates to investigatethe variation in
perfusion characteristics. Three templates (continued enhancement, stabilizing
enhancement, measurable wash-out; depicted as dashed lines in a) and their
corresponding similarity maps (b, c, and d). The template with higher wash-
out profile highlights the boundaries of the lesion showing apossible perfusion
from the surrounding healthy tissue (d) , while the one with lower wash-out
highlights the core of the lesion (b). The differences between the TICs of the
ROIs, shown in (a) (solid curves), are however, minimal, meaning that the le-
sion is fairly homogeneous.

• extraction of an averaged TIC, used for similarity map
generation. Using smooth selections, we perform the TIC
averaging taking into consideration the amount of DOI for
each TIC.

• modification of the selection using morphological opera-
tors (dilation/erosion)

• combination with other selections using set operators
(union/intersection/subtraction/inversion)

As a result of these operations, new selections are produced
and inserted into the selection list, from where they can be used.
Once the output selection is satisfactory, is ready to be ana-
lyzed, and it can be promoted to ROI (see figure 7(a)).

4.2.3. ROIs comparison and characterization
In the first IVA stage, ROIs have been defined. In this last

stage, these regions can be analyzed individually, or compared
with each other. Our application extracts and visualizes the
TICs and the enhancement profiles of the ROIs. TICs are visu-
alized as an average curve, upper and lower bounded by the first
and third quartile, to visually convey the degree of homogene-
ity of the ROI (see figure 4(g)). Each ROI is also accompanied
by its perfusion parameters and a histogram matrix showing the
distribution of their values over the range. This way the shape,
dimension and perfusion behavior can be analyzed to charac-
terize the region. These parameters can also be compared to

Figure 7: Selection-based generation of the ROIs: the selections are kept in a
list, and can be processed with set/morphological operations. When a selection
is suitable, it can be promoted to ROI, and is shown on the bottom (a). ROIs
can be analyzed singularly (b) or together (c). When multiple ROIs are ana-
lyzed, the regions where two or more ROI overlap is treated considering the
uncertainty in that area, and if the uncertainty is too high,the area is removed
from all the ROIs, and shown in grey.

the healthy tissue (if available) or between different region, to
refine the diagnosis, as we show in section 5.1.

The application lets the user select which of available ROIs
to compare. Selected ROIs are superimposed over the CEUS
data, each one with a different color. When more than one ROI
is selected and displayed, there may be a partial overlap. How-
ever selections are not binary: as mentioned, they contain pixel
values within the [0,1] range. Therefore we developed a voting
scheme approach, that uses a user-specified threshold, to assign
these overlapping areas to the ROI they most likely belong to.
It can be formalized as follow:

ROI(x, k) =































i | ∀ j , i,
ROIi(x) > ROIj(x), if

∣

∣

∣ { j | ROIj(x) > k}
∣

∣

∣ ≤ 1
−1, if

∣

∣

∣ { j | ROIj(x) > k}
∣

∣

∣ > 1
−2, if ∀ j, ROIj(x) = 0

(6)

When two or more overlapping selection in a pixel have a value
greater than the thresholdk, then we cannot precisely determine
to which of the ROI that pixel belong. Therefore the pixel is
assigned to an ”uncertain” grey region (-1 in equation 6). Oth-
erwise, the pixel is assigned to the ROI that has highest value
in that location (see figure 7(c)). Once this voting scheme has
been applied, we have two different set of parameters available:
those related to the original ROIs and those related to the ROIs
after the voting scheme has been applied. The two set can be
analyzed separately, or overlapped to convey the changes.

5. Results

With our approach we have analyzed a number of CEUS
datasets imaging focal liver lesions. These datasets are repre-
sentative for their respective diagnostic field, concerning spatial
and temporal resolution, and also concerning the observed en-
hancement behavior. Our application makes use of the OpenCL
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Figure 8: Interactive visual analysis of a dataset with a liver lesion. One B-Mode image showing the imaged anatomy (a). One contrast image from the dataset,
showing diffuse enhancement, where only vessels are highlighted (b). Similarity map for a point specified on the (presumably) healthy liver parenchyma, in green.
The healthy tissue highlights, and also delineates other structures in the liver, such as the vessels and the lesion on the left (c). Similarity map for a point specified
on the lesion. The lesion highlights entirely (d). Similarity map for the kidney (e). ROIs defined on the healthy tissue (green), lesion (red), lesion feeding vessel
(blue) and kidney (purple). In grey the uncertain area. (f).TICs for the four ROIs. The lesion exhibits a kinetic similarto the feeding vessel, much earlier (TOA and
TTP) when compared with the healthy tissue, similar peak enhancement, and almost iso-echoic behavior in the mid phase (g).

computing framework to perform real-time measures extraction
and PMCC computation operations. To be run, it requires a
computer supporting it. We therefore ran the application ona
workstation with an Intel Core CPU 2.5GHz and an nVIDIA
GeForce GTX280 graphics card, for which nVIDIA provides
drivers that support OpenCL. From a performance point of
view, this system allows interactive exploration without particu-
lar delays using typical settings. Increasing the neighborhoods
diameter over 10 pixels, however, begins to generate waiting
times even using the gpu to perform the computations. How-
ever, too large neighborhoods bring no benefits to the analysis,
and particularly they cause a loss of detail on the edges of the
regions. We experienced that, even for datasets acquired with
high resolution probes, the neighborhood diameter should not
exceed a size of 7–9 pixels for the best results.

5.1. Liver Lesion diagnosis
In the case of a liver lesion, the parameters that have to be

evaluated to assess the type of the lesion [2] are:

• the enhancement dynamics, to assess the type of vascular-
ization in the lesion

• the consistence of the enhancement in the lesion, e.g., if
there are multiple layers with different perfusion patterns

• the shape of the lesion

Case Study.The patient suffered from flank pain and appeared
to have several liver lesions. Each one of them was separately
imaged in a dedicated perfusion examination. Here we describe
the analysis of one of the scans, which is also representative
for the other cases we studied. The sequence is cut short (in
time), before the contrast is completely washed out from the
area, thus containing only the arterial phase. It is enough data,
however, to assess the vascular structure in the lesion, together
with its shape and echogenicity. The resolution of the data con-
taining the liver and the right kidney is 240×240 pixels, with
257 timesteps, acquired at approximately 9 frames per second,
for a total duration of about 30 seconds.

Visual Analysis.The results of the visual analysis are illus-
trated in figure 8. After the data was loaded, the perfusion
metrics were automatically extracted using the default settings
for the neighborhoods size (diameter of 5 pixels for the spatial
dimensions and 3 timesteps for the temporal dimension). The
system also provided an enhancement profile computed over the
whole enhanced area (thus excluding areas that are never en-
hanced) to automatically identify the global TOA (TOA in the
regions enhanced first). The computation of the other parame-
ters discarded all the information prior to the global TOA. We
then ran the cine-loop to identify frames with alignment errors,
so that they could be excluded from the analysis, and the val-
ues interpolated using neighboring frames (Figure 8(g), the red
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bands on the plot represent timesteps with interpolated frames).
After this procedure was completed, we visually examined the
map of the various parameters to identify the regions with the
highest perfusion (Figure 4(b)). This map highlighted the liver
parenchyma, part of the kidney parenchyma (that usually has
a fast wash-out and thus a small AUC), and most prominently
the vessels as well as a region on the left not consistently de-
fined among the maps. So we selected a pixel on the (presum-
ably) healthy liver parenchyma, to obtain a similarity map for
the healthy tissue (Figure 8(c)). We converted the similarity
map for the healthy area into selection, to use as reference (Fig-
ure 8(f,g) (green)). In the similarity map of the healthy tissue,
the non-consistently defined region on the left gained a much
sharper contour, as it was very different in perfusion. So wein-
vestigated that area by selecting a pixel, and obtained the sim-
ilarity map for what turned out to be a lesion (see figure 8(d)).
The lesion was precisely highlighted and we converted it into
a selection, and then we specified a rough lasso selection over
it, that we used to intersect the similarity-based selection (Fig-
ure 8(f) (red)). We also noticed how the lesion was surrounded
by an area with higher enhancement on the right, presumably
the supplying vessel. We segmented it, using the similarity
map, to compare the arterial input to the lesion (Figure 8(f)
(blue)). At this point, thanks to the similarity map, we had
assessed the composition of the lesion (single compound), the
shape (regular) and the size (diameter of about 3cm). Then we
entered the last stage of the analysis, and compared the perfu-
sion in the lesion with the perfusion in the healthy parenchyma
(Figure 8(g)). We found that the lesion enhanced earlier than
the healthy tissue (TOA and TTP), and in the late phase it was
almost iso-echoic. But the peak enhancement was lower and in
general the wash-out began slightly earlier, which indicates the
absence of the portal phase. These features should character-
ize the lesion as a rare hepatocellular adenoma (benign) [2,38].
After the patient also underwent a liver biopsy, the diagnosis
was eventually confirmed.

6. Conclusion

In this paper we demonstrated how interactive visual an-
alysis can lead to an improved analysis of CEUS data. For
this application, we make use of an innovative data process-
ing step that extracts robust enhancement measures from small
spatio-temporal voxel neighborhoods to overcome the chal-
lenges arisen from the peculiar characteristics of CEUS data.
With this approach, we can extract meaningful and realistic
perfusion parameters even from this challenging data. We are
also investigating the potential of such approach with other kind
of time-dependent data. We introduce the possibility to inter-
actively explore the data using a real-time parametric map of
similarity that improve the visual comprehension of the extent
of suspicious tissues, and of the relationships between differ-
ent tissues with respect to the perfusion enhancement behav-
ior. Such approach showed a good potential also when com-
pared with automatic segmentation techniques such as auto-
matic clustering, using the same similarity function. Here, the

real-time interaction may provide the user with a better under-
standing of the relationships in the data. By using such similar-
ity map, it is then possible to interactively specify selections on
homogeneously perfusing tissue highlighted in the map. The
specified selections can be quickly combined into ROIs, that
can eventually be analyzed and compared to assess the tissue
condition. Compared to the available solutions, our systempro-
vides a faster and more accurate method for identification and
segmentation of the ROIs, which has the potential to lead to
a more accurate diagnosis. The solution presented here is the
result of an interdisciplinary cooperation – between a teamof
technologists (visualization researchers with a background in
computer science) and physicians (with a background in gas-
troenterology). The cooperation extended over the whole pro-
cess from the initial assessment of limitations of current solu-
tions all the way to the iterative improvement of the presented
new technology and its initial informal evaluation studies. We
discussed our approach with two experienced gastroenterolo-
gists, both familiar with CEUS in the clinical routine. Both
were positive toward the interactivity of the application,and
confirmed that the presented approach was not seen before in
the available applications, and may be useful for the extraction
and analysis of the ROIs.
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