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Fig. 1. (a) A timestep of an aortic flow dataset in its anatomical context, rendered using a conventional streamline visualization. (b)
Side-by-side visualization of the straightened vector field, showing all the timesteps juxtaposed. The streamlines traced from the first
seeding plane are rendered in focus, and the others in grey as context.

Abstract —Flows through tubular structures are common in many fields, including blood flow in medicine and tubular fluid flows in
engineering. The analysis of such flows is often done with a strong reference to the main flow direction along the tubular boundary.
In this paper we present an approach for straightening the visualization of tubular flow. By aligning the main reference direction of the
flow, i.e., the center line of the bounding tubular structure, with one axis of the screen, we are able to natively juxtapose (1.) different
visualizations of the same flow, either utilizing different flow visualization techniques, or by varying parameters of a chosen approach
such as the choice of seeding locations for integration-based flow visualization, (2.) the different time steps of a time-dependent flow,
(3.) different projections around the center line , and (4.) quantitative flow visualizations in immediate spatial relation to the more
qualitative classical flow visualization. We describe how to utilize this approach for an informative interactive visual analysis. We
demonstrate the potential of our approach by visualizing two datasets from different fields: an arterial blood flow measurement and a
tubular gas flow simulation from the automotive industry.

Index Terms —Flow Visualization, Data Reformation, Comparative Visualization.

1 INTRODUCTION

Tubular flows are studied in many fields, such as in medicine and engi-
neering. The visual exploration and analysis of such flow data can be
challenging, due to the often varied geometry and topology of the flow,
and due to a larger number of aspects of the data that are of interest,
in particular in time-dependent flow. These aspects include various
scalar attributes, such as flow velocity, pressure and vorticity (see Sec-
tion 2 for a collection of surveys on this topic), as well as derived at-
tributes. On the visualization side, the variation of seeding structures,
integration length and the type of primitive for an integration-based vi-
sualization, different time steps of the flow, and the variation of other
visualization parameters are also aspects of interest.

To enable an analysis that is based on several such aspects, it be-
comes interesting to consider different views on the data as well as
the relation between these views. Different strategies for integrating
different visualizations have been proposed: interactive tools for the
visual exploration with multiple, coordinated views [6, 20], the fusion
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of different visualizations in the same view [8, 11, 22], and placing
different views side-by-side [32]. Image fusion techniques are power-
ful tools, as they can visualize multiple aspects of the data in the same
reference frame, thus allowing to easily and effectively relate them
to each other. On the downside, there are rather limiting restrictions
on how much can be fused in a single image. Side-by-side visual-
izations, instead, can integrate more views of the data, only limited
by the overall available space. Moreover, being thess visualization
simpler when compared to others, they are generally easier to read
and interpret. Additionally, they can also be used to show the same
attribute over multiple time-steps or visualized with different parame-
ters, thus enabling alternative types of visual comparison. Last, they
can also be combined with image-fusion techniques, leading to side-
by-side visualizations of fused views. In terms of limitations, it takes
additional space to juxtapose views, so the number of views that can be
placed side-by-side is also limited. Second, relating separated views
is not a straightforward process, as they are not specified in a common
reference frame anymore. Previous work [32] suggests that the ques-
tion of whether or not to use side-by-side visualization also depends
on the application at hand and on which advantages/disadvantages to
prioritize. Our contribution addresses the cases where a side-by-side
visualization is preferred.

We propose a new solution to the side-by-side visualization of tubu-
lar flow datasets. In order to effectively juxtapose views of tubular
flows, we introduce the concept of straightening the flow visualization



(e.g., streamlines or pathlines) along the center line of the bounding
tubular structure, often being the main reference direction of the flow.
Using this approach multiple views can be aligned with one axis of
the visualization and made parallel to each other along the straight-
ened center line. With such a side-by-side layout it becomes possible
to relate different views in the visualization in a straightforward way,
as well as making the visualization more compact, allowing to have
more views at the same time.

In this paper we first describe how to realize such a straightened vi-
sualization. Then, we show how the presented approach has been used,
in Section 4, to visualize two tubular flow datasets: a Phase-Contrast
Magnetic Resonance Imaging (PC-MRI) scan of a human aorta, con-
taining time-dependent measurements of the blood flow, and a CFD
simulation of the exhaust system of a racing engine. Conclusions and
future work are presented in Section 5. A discussion of related work
is presented in the next Section.

2 RELATED WORK

Flow visualization is an active research topic for over two decades. An
extensive body of related literature exists, and many useful surveys ex-
ist as well. Post et al. [25, 26], as well as Laramee et al. [13, 14], Peng
and Laramee [23], McLoughlin et al. [19], Salzbrunn et al. [30] and
Pobitzer et al. [24] have published extensive and informative surveys
on different aspects of flow visualization.

Considering specifically the visualization of tubular flow, Nobrega
et al. [21] simulated tubular flow in its context, relying on the center-
line of the boundary structure for which they propose a novel extrac-
tion algorithm. Lěz et al. [17] propose an interactive visual analysis
approach for studying pathlines, using projections of the dataset for the
selection process and to cope with the complex topology of the flow
and its tubular context. More domain-specific work has been done,
in particular in the field of medical visualization. Van Pelt et al. [31]
incorporated illustrative visualization techniques in an application for
visualizing blood flow in the aorta and other large vessels, introducing
flow-rate arrow trails. Markl et al. [18] presented a comprehensive4D
visualization of the blood flow in the heart and great vessels by us-
ing glyphs, streamlines and pathlines, as well as exploded views with
information visualization techniques.

One of our main goals was to enable an efficient comparison of
the different aspects of the tubular flow data. Previously, Verma and
Pang [32] presented a tool for comparing flow data. An important
contribution of their work is the distinction of three possible levels of
comparison in flow visualization: image-level, data-level and feature-
level. They describe the major drawback of image-level comparison
as “it leaves the burden on the users to identify regions of difference
and to quantify the differences themselves”. Our approach eases the
comparison by using the main direction of the flow to align multiple
visualizations, paralleling each other, so that it becomes straightfor-
ward to relate the side-by-side views. Jones and Ma [9] have also
adopted a similar concept to ease image-level comparison, by project-
ing integrated lines onto the three Cartesian planes.

Relevant work has also been done for reforming tubular structures
into a plane, also here in particular in the field of medical visualiza-
tion. Vilanova et al. [34] perform a 2D reformation of 3D human colon
data. They extract the colon centerline, and use it for performing non-
linear radial raycasting, producing a flattened view of the internal wall
of the colon. Kanitsar et al. [10] presented curved-planar reforma-
tion (CPR) approaches for entire vascular trees. Borkin et al. [2] also
created projections of the coronary artery tree, mapping it to a 2D
tree chart, where each vessel is straightened and depicts its endothe-
lial shear stress. Ropinski et al. [27] applied flattening techniques to
volumetric scans of mice aortas, to provide a navigational tool that
links 2D and 3D visualizations of their multimodal dataset. Curved-
planar reformations has also been applied to other anatomical organs.
Vrtovec et al. [35] applied CPR to human spine datasets: this work
enabled the comparison of all the vertebrae in a single visualization,
without the need of slicing through the volumetric scan. Daae Lampe
et al. [12] presented a new technique to perform curve-centric volume
reformation (CCVR), straightening the original 3D scalar data into a

Fig. 2. Illustrative overview of the proposed approach to realize a side-
by-side visualization of tubular flow based on straightening the flow do-
main. In the side-by-side visualization the seeding structure has been
varied in order to study different seeding locations.

new volume, centered around a 3D curve. This can be considered as
warping the space, and previously Chen et al. [3], as well as Correa et
al. [5], proposed generalized space warping methods, based on spatial
transfer functions and generalized displacement mapping.

The method presented in our paper pursues the same purpose, how-
ever targeted not only to scalar data, but especially to vector field data.
In the following we first describe how to realize straightened side-by-
side visualizations of tubular flows before we then demonstrate our
approach in the context of two application examples.

3 METHOD

In the following we present our method for creating straightened side-
by-side visualizations of tubular flows, as illustrated in Figure 2. The
method can be used to complement regular visualizations of tubular
flows, in order to statically visualize multiple aspects of the data at
once, including the time dependency. We describe the method in two
parts: first, two techniques for generating straightened visualizations
of tubular flows, defined as vector fields on a Cartesian grid; then, a set
of techniques to assemble these straightened views in order to create
efficient side-by-side visualizations. The first part is described in the
next Section, while the second part is described in Section 3.2.

3.1 Centerline-centric tubular flow straightening

Conceptually, visualizations of straightened tubular flow can be gen-
erated using two different approaches (see Figure 3):

Straightening the flow domain: this approach performs a curve-
centric vector field reformation (CCVFR), to generate a de-
formed vector field, straightened along the centerline of the tubu-
lar structure. In the second step, any flow visualization technique
can be used directly to visualize this reformed vector field, pro-
ducing straightened views of the flow. To perform the CCVFR,
we introduce a method that extends the algorithm proposed by
Daae Lampe et al. [12], such that it can be used to reform vector
fields. This method is described in Section 3.1.4.

Straightening the flow visualization: this approach generates the
primitives used for visualizing the flow, such as streamlines,
pathlines, or more complex visualization cues, in the original
flow domain. These generated visualization elements are sub-
sequently deformed into the straightened domain using the cen-
terline as reference. We describe an algorithm to performs this
operation on line primitives in Section 3.1.3.



Fig. 3. Two paths to realize a straightened visualization of tubular flow
data: straightening flow visualization or visualizing straightened flow.

The advantage of the first approach is the simplicity of producing flow
visualizations: once the vector field is reformed, any existing flow
visualization technique can be used without modification. This also
avoids performance penalties when compared to visualizing the origi-
nal data. On the downside, the vector field reformation process may in-
troduce numerical inaccuracies. Reforming visualization cues, on the
other side, produces an exact straightening of the visualization primi-
tives, at the cost of a higher computational complexity. Moreover, this
approach requires a tailored algorithm for each flow visualization tech-
nique to be realized. In order to combine the best of both approaches
and to avoid the mentioned drawbacks, we realize a hybrid scheme,
that renders the straightened vector field data during user interaction,
to keep the system interactive. The second approach is then used on
demand, to produce an as accurate as possible straightened visualiza-
tion. Performance and error analysis are described in section 4.3.

3.1.1 Prerequisites

The straightening operation, that is integral to both of the approaches,
grounds on the definition of a curvilinear coordinate system that is con-
structed along and around the centerline through the flow tube. Con-
ceptually, we can consider amoving frame, similar to the Frenet frame
of a curve [7], following the centerline of the structure bounding the
flow, and thereby tracing the curved, centerline-centric, frame of ref-
erence for this tubular object. This moving frame is used to extract
oriented cross-planes orthogonal to the centerline, and eventually to
define a new grid for the data. Details on how to generate this grid
within the curved structure are given in Section 3.1.3. Before, how-
ever, we describe how to extract the centerline itself, and how to com-
pute the frame along it.

There exist several techniques for extracting centerlines, both from
geometric data [21] and from volumetric data [4, 15, 33]. To demon-
strate our method in Section 4, we use the approach proposed by
Cornea et al. [4], previously also used in other works [27]. This ap-
proach operates on volumetric data, and extracts the skeleton of an ob-
ject using a potential field. The skeleton consists of a set of segments,
which need to be connected in order to create the final centerline. For
the cases shown in this paper, we extracted the lumen of the tubular
objects automatically, by thresholding a scalar volume containing the
maximum magnitude of the vectors over all the time steps. For the
aorta dataset, this extracted structure has been semi-automatically re-
fined using the ITK-SNAP tool, to increase the accuracy and remove
other vessels. However, different automatic techniques for 3D vessel
lumen segmentation could also have been used, and Lesage et al. [16]
provide a comprehensive survey on the topic. Once we extracted the
object skeleton, we computed the final centerline using a tool based on
the Visualization Toolkit (VTK), helping to pick and connect together
the skeleton segments. This process could also be automatized [27],
but, for our purpose, it did not require further refinements.

Given a curve, such as the above-mentioned centerline, several
methods for computing moving frames are available, and Daae Lampe
et al. [12] provide a useful survey on this topic. In their paper, they
also propose a modified version of the Frenet-Serret formulas for com-
puting a moving frame [7], achieving a curve-centric (scalar) volume
reformation (CCVR). The Frenet frame is, in fact, limited to twice

Fig. 4. We consider three spaces: the data is given as a Cartesian
grid (space P). A curvilinear grid is constructed along and around the
centerline (space T ), and after the reformation, this grid becomes a
new Cartesian grid (in space S).

continuously differentiable curves. By using a constant, user specified
up vectorto compute the binormal in a curve point, the authors both
achieve a fixed frame orientation for the whole reformation, and a defi-
nition of the binormal (and subsequently of the normal) also where the
curve is straight, and the derivatives would be vanishing. They also
convolve the tangent and the normal with a smoothing kernel to pre-
vent an exceeding roughness of the curve. Interpolation, in their case,
is performed in spherical coordinates, to prevent abrupt sign changes
of the vectors. This technique has, however, the obvious limitation that
it is not applicable in those points of the centerline where the normal
is parallel to the user-specified up vector.

To overcome this limitation, we extend this method by using a user-
specified up vector (that also defines a fixed frame orientation around
the centerline) only in the initial point of the centerline. We observed
that the centerline is subdivided in segments by a number of evenly
spaced positions along the line, depending on the desired amount of
orthogonal cross-planes. For the binormal computation in the current
position, our method uses the normal in the previous position as the
“suggested” up vector. With a smoothly varying tangent and a suf-
ficient density of points, this approach does not incur the case when
the normal is parallel to the tangent. Therefore it becomes possible to
reform tubular structures without being limited to bends of less than
90 degrees along the normal direction. In our visualizations, we al-
ways visualize the flow in its context, e.g., the boundary surface of
the tubular structure, that we consider as the primary orientation cue.
Therefore, this enhanced computation of the moving frame is also used
in our prototype to implement a standard CCVR for the flow context.
The CCVR method makes use of quads of user specified side length
to bound the resampling of the original data on evenly spaced planes
along and around the centerline (not at the least to prevent the resam-
pling in regions where these planes intersect).

3.1.2 Physical space, tubular space and the straightened
space

The centerline with its orthogonal cross-planes can be seen as a skele-
ton bounding the tubular flow. The main idea behind this work con-
sists of using this skeleton to “superimpose” a new curvilinear grid
on the data. This grid is used to perform a curve-centric reformation
of the vector field, by transforming the vectors with the inverted Ja-
cobian matrix of the grid in each sampling position [29]. This grid
is also used to compute “reference” intersection points between inte-
grated lines, such as streamlines, and the cross-planes, in order to map
each line to the straightened space.

Let us first formally introduce the three different spaces we are con-
sidering. The first space,P , is the original physical space, in which



Fig. 5. Intersections (in red) of the line traced from the point I0 (a) skele-
ton of the line using only the intersection points (b). Straightened skele-
ton in S space, by performing the mapping from P to S of the intersec-
tions (c).

the data, the centerline and the modified Frenet frame are defined. The
second space,T , is the tubular space defined by the moving frame.
Finally, the straightened space,S, is the space produced by the refor-
mation, and it is a Cartesian grid.

Normally, P is defined by the application, and in the cases pre-
sented here it is a Cartesian grid.T , instead, is “traced” by the moving
frame along the centerline, which generates a curvilinear grid. Assum-
ing a subdivision of the centerline inn segments of equal length (the
number of segments is controlled by the user), there aren+1 evenly
spaced pointspPi (0,0) along the centerline, given inP coordinates.
For eachi , 0 ≤ i ≤ n, theuvn basisBi of the moving frame in the
pointpP

i (0,0) is defined by

u = bi , v = ni , n = t i (1)

where, inpP
i (0,0), t i is the normalized tangent to the centerline,ni is

the unit normal andbi the unit binormal. The vectorst i , ni andbi are
also defined inP coordinates, and they are computed as described in
Section 3.1.1. In every pointpP

i (0,0), the planePi , orthogonal to the
centerline, is implicitly defined bypP

i (0,0) andt i (the normal vector
of the plane). Furthermore, letsectori be the region enclosed between
the two planesPi andPi+1 .

To generate the tubular grid of radiusr and resolutions using this
moving frame, which createsT , we define the grid points around each
pP

i (0,0), lying in the planePi , as

∀x,y∈ Z : −s≤ x,y≤ s , pP
i (x,y) = pP

i (0,0)+
r
s

xbi +
r
s

yni (2)

The edges of the curvilinear grid are then defined between points
pP

i (x,y) andpP
i±1(x,y), and betweenpP

i (x,y) andpP
i (x± 1,y±1),

forming hexahedral cells (see Figure 4 for an example in 2D). Equa-
tion 2 defines a mapping fromS to P ; the inverse mapping fromP
toS of a point[x,y,z]Pi lying on the planePi is defined by

[x,y, i]S = B−1
i ([x,y,z]Pi −pPi (0,0))+ [0,0, i] (3)

Finally, S is defined by the grid points ofT expressed with respect
to their basisBi , forming a new Cartesian grid, that is the straightened
grid T . It should be noted that the spaceT is given inP coordi-
nates, while it is parametrized inS coordinates. In the following it is
sufficient to only consider the two spacesP andS.

3.1.3 Centerline centric line straightening

With this approach the computation, e.g., by integration, of line primi-
tives, such as streamlines, is performed in the original vector spaceP .
To straighten them, we use an algorithm that creates a parametrization
of the points using the local bases from the moving frame. This algo-
rithm performs a piecewise reformation of a line by using the planes
Pi , defined by the tangent of the moving frame, as reference (see Fig-
ure 5). These planes are defined in a discrete number of equidistant
points along the centerline (see Figure 4). From Section 3.1.2 we
know how to straighten points that lie in planesPi , using equation 3.
To create a straightenedskeletonof a line, integrated from a seed point
pP

i (r,s) lying in planePi , we could compute all the intersection points

Fig. 6. Example in 2D of a point p to be reformed, lying in sectori (a).
Elements of the reformation, needed to compute q i and q i+1 (b). Re-
formed p′ in S space, computed through the points q′

i and q′
i+1.

of the line with the planes it intersects during the integration, and then
transform these intersections fromP intoS.

The following description of the tracing algorithm assumes that the
first integration step goes in the direction oft i , the opposite case is
symmetric and we omit a detailed description here. First, letlk be the
position of the integration front inP coordinates afterk integration
steps. In the algorithm, we perform, at each integration stepk, an
intersection check against the next planePi+1, and, if it fails, against
the current planePi , if the sign of the dot-product[lk− lk−1] · t i is
negative or it is 0. If the dot product is positive we check solely against
Pi+1. Intersection points are then reformed intoS using equation 3.
During the integration, we keep track of the current sectori, containing
the integration front, and, at each intersection, we generate a reformed
point using the formula described above, and we update the current
sector.

Reforming also the points between two consecutive intersection
points requires a mean to warp the space between two consecutive
planes. Therefore we created a parametrization for points known to
lie in asectori based on the enclosing planes (illustrated in 2D in Fig-
ure 6). Let us assume, for now, that the two planesPi andPi+1 are
not parallel. Then, assuming that we want to reform the pointp, the
algorithm can be described as follows:

1. Compute the lineL of the intersection between the two planesPi
andPi+1.

2. Compute the vectorslv i and lv i+1, orthogonal toL , and going
from L to the center pointspP

i (0,0) andpP
i+1(0,0) of the quads

lying on the two planes. Letlvn i and lvn i+1 be the normalized
versions oflv i andlv i+1.

3. Compute the vectorlvp, orthogonal toL , going fromL to the
pointp. Compute also the pointlp as the intersection betweenL
andlvp. Let lvnp be the normalized version oflvp.

4. Compute the pointqi = lp+
lvn i | lv p |

lvn p·lvn i
. Similarly, computeqi+1.

5. Compute the vectorvqi = [qi −pP
i (0,0)]. Similarly, compute

vqi+1.

6. Transform the vectorvqi to S, by computingvq′
i = B−1

i vqi .
Similarly, transformvqi+1.

7. Compute the pointq’ i = [0,0, i]S + vq′
i . Similarly, compute

q’ i+1.

8. Compute the reformed pointp′ = q′
i +[q′i+1−q′i ]

| [p−qi ] |
| [qi+1−qi ] |

.

If the planes are parallel, it is sufficient to computeqi and qi+1 as
the intersection of the linep+st i with the planesPi andPi+1 respec-
tively, and then start from point 5. Note that steps 1 and 2 are the same
for each point in asectori , and can, in fact, be precomputed. This ap-
proach produces accurate line reformations, meaning that the positions
along the reformed line inS are the reformed positions along the line
in the original spaceP .

3.1.4 Centerline centric vector field reformation

Obtaining a local, and smoothly varying, coordinate frame for every
point on a curve allows to perform a straightforward curve centric re-



sampling for scalar volume straightening. However, to reform vector
data, it is necessary to transform not only the vectors’ magnitude, but
in particular their direction. Transforming a vectoru, defined in the
original spaceP , into the vectorv, defined inS, requires to compute
the Jacobian matrixJ for the grid point of the spaceS whereu is sam-
pled. J contains the partial derivatives of the grid (inP coordinates)
with respect toS in the same point. LetpP

i (x,y) be a point inT
expressed inP coordinates. Then, the JacobianJ(x,y, i) is defined as

(

∂pP
i (x,y)
∂x

∂pP
i (x,y)
∂y

∂pP
i (x,y)
∂ i

)

As the grid in the spaceT is actually defined by our moving frame
along the centerline, we know the grid vertices in the neighborhood
of pP

i (x,y), as they are connected by the edges as defined in Sec-

tion 3.1.2. In any point of the grid inT , the components∂pP
i (x,y)
∂x and

∂pP
i (x,y)
∂y are given by the vectorsbi andni . Thus, the only component

that has to be estimated to build the matrixJ(x,y, i) is ∂pP
i (x,y)
∂ i . This

term can be approximated, for example, by using one of three differ-
ential operators: central differences, forward differences or backward
differences, as described also by Sadarjoen et al. [29]. For our pur-
poses, we use a mixed forward and backward difference operator,de-
pending on the sign of the dot product of the vectorvPi (x,y), sampled
in the pointpP

i (x,y), with the normalni . This way we introduce less
smoothing, compared to using central differences.

We therefore modify the CCVR method [12] to handle vector data,
using the following equation

vecSi (x,y) = J−1(x,y, i)vecPi (x,y) (4)

If pP
i (x,y) is not a grid point of the data spaceP , vecPi (x,y) has to

be reconstructed using an interpolation scheme. In case of vector data
this operation can be done in different ways. The simplest approach is
to perform a per-component trilinear interpolation. However, in case
of a vector field, this might not be the best solution, as it linearly in-
terpolates only the direction of the vectors, not the length. A different
approach, that we adopt in our prototype, consists of using spherical
linear interpolation (slerp) using quaternions, in order to interpolate
also vector lengths.

This method generates a straightened vector field, and primitive in-
tegration as well as other flow visualizations can be performed directly
in S, without the need of subsequent reformation. However, due to
numerical inaccuracies, this approach and the one presented in Sec-
tion 3.1.3 might not lead to identical results. We have compared this
approach with the one described in Section 3.1.3, and the results are
presented in Section 4.3

3.2 Side-by-side straightened flow visualizations
By complementingthe visualization of the original data with a juxta-
position of views of the straightened tubular flow, we aim to, first, pro-
vide a common axis for the alignment and co-registration of different
views of the data, to easily relate them to each other. This also allows
to create compact visualizations that give good overviews of the data,
even combining different visualization techniques. Third, we want to
statically convey the data variations over time, in case of unsteady flow
datasets. Last, we want to help comparing different aspects of a dataset
(such as different time points, or different descriptors), or even differ-
ent datasets (as in population studies). In the next Section we describe
a set of techniques to handle such straightened views properly, in order
to create side-by-side straightened visualizations that fully exploit the
possibilities that this method offers.

3.2.1 Visualization design and layout

When assembling the visualization, particular attention must be put in
the combination of the views. First, the straightening axis in the views
should be aligned to one of the screen axes, in order to facilitate the
juxtaposition and the alignment of several views. Having the reformed
centerline aligned to one of the screen axes also allows to minimize

the space in between different views. This alignment also allows to
combine visualization of the actual data (such as standard flow visual-
ization techniques) with more abstract visualization techniques, such
as a line graph plotting certain quantities along the centerline (see Fig-
ure 7(a,b)). In such setup, it becomes possible to use the centerline axis
as navigational tool: it can be used for operations such as cross-section
placement and movement, and length measurement (see Figure 2).

Second, special attention must be put in conveying the shape of the
reformation, in order to enable the viewer to easily relate positions
and directions in the reformed view to positions and directions in the
original space. We propose to use two kind of orientation cues. The
primary cue is the rendering of the reformed tubular structure around
the flow as its spatial context. To do this, we perform volume ray
casting of the straightened context, instead of rendering the extracted
isosurface. This allows us to perform fast and correct depth-buffer
based alpha blending with the integrated geometric primitives, such as
streamlines, in a single (modified) ray casting pass, without the need of
performing expensive multi-pass rendering techniques, such as depth-
peeling. In addition, we propose to use a number of “i-shaped” glyphs
along the projection of the normal and of the binormal onto the flow

Fig. 7. Design approaches to a side-by-side visualization of straight-
ened tubular flow: straightened views should be aligned to one of the
screen axes, and juxtaposed along the other. The first axis also serves
to place navigational widgets to interact with the visualization along the
centerline. The second axis is used to relate different views to each
other. Informative visualizations, such as a line graph or a histogram of
the flow magnitude can also be placed along the centerline, to provide
quantitative information (a,b). Orientation cues are needed for orienta-
tion: we use volume rendering of the physical context, with contours,
to convey the physical space. For additional orientation cues, we add
glyphs (c). Interaction with the visualization should be modified to allow
only meaningful camera transformations. We use only rotations around
the two axes used for the alignment (d,e).



Fig. 8. Timesteps from 0 to 6 of the aorta dataset, visualized with pathlines and glyphs illustrating the vector field. Each pair of views shows the
glyphs rendering of the vector field at the last time point stated on top, and the pathline integration from time 0 to the last time point.

bounding structure (see Figure 7). The body color of these glyphs
encodes the distance from the beginning of the centerline, while the
dot color encodes the projection axis (green dot = glyph above the
normal, blue dot = glyph above the binormal). In this way we help
the user to orient and understand from which viewpoint she is looking
at the flow. These glyphs, in combination with a specified number
of isocontours of the tubular structure, also help the user relating a
region along the centerline “axis” between the conventional view and
the reformed side-by-side visualization.

The proposed side-by-side layout also introduces some challenges
in the interaction process with the visualization. Rotating the visual-
ization with the classical joystick or trackball paradigms, in particular,
might become unfeasible. For this reason we enable only 2 rotation
methods: per-view rotation around the centerline axis, and global ro-
tation around the other screen axis (see Figure 7). This method proved
to allow thorough exploration of the straightened data, while, at the
same time, being intuitive and error-proof, preventing that the user
might “get lost” while interacting with the visualization.

3.2.2 Straightened side-by-side visualization

In this section we illustrates some of the visualization opportunities
offered by juxtaposing straightened flow views. The most obvious
opportunity is to visualize many timesteps of an unsteady flow at the
same time, aligned along the same axis, as shown in Figure 2. In
this way it is possible to convey the temporal evolution in one single,
compact visualization, that also allows to immediately relate the same
region (position along the centerline) of the flow in different timesteps.

Another possibility consists of generating a compact, thorough view
of the flow from different angles (see Figure 7(d,e)). This is particu-
larly useful when inspecting tubular structures in complex shapes, for
which few projections might still not make all the flow content visible.
With only few views of the straightened flow from equiangular view
points it becomes possible to inspect the flow from all possible sides.

Finally, this technique permits the juxtaposition of different types
of visualizations side by side and relate them with each other. As an
example, in Figure 8 we show a composition of pairs of visualizations,
showing pathlines at each timestep next to the representation of the
vector field at the same timestep. The clear advantage is again the
simplicity of spatially relate the different aspects of the same data (the
timestep). In Figure 2(right) different aspects of the same timestep
(streamlines integration from different seeding planes) are also placed
side by side, highlighting the contribution of each seeding plane to the
result, on the left side.

4 REALIZATION AND EVALUATION

To use our technique, we developed a prototype, making partly use of
VTK. In the prototype we implemented streamline and pathline tracing
on the GPU, using geometry shaders [31]. We also implemented ab-
stract visualization techniques such as line graphs and histograms (of
averaged velocity), to demonstrate the simplicity of combining classic
flow visualizations with other data visualization methods in an intu-
itive way. The proposed approach can, however, be also used with
other types of flow visualization. We used our prototype to success-
fully visualize two datasets from different fields, which we describe in
the next sections.

4.1 Aortic flow visualization
Magnetic Resonance Imaging (MRI) is one of the fastest developing
imaging technologies in medicine. Recently, improved time-resolved
3D Phase-Contrast MRI (PC-MRI) has been successfully used to im-
age the blood flow in the human body. Bock et al. [1] provide an
overview of this imaging modality describing the characteristics of the
generated data. The dataset we visualize is a vector field of a hu-
man aorta, specified on a Cartesian grid with a resolution of 192×
144× 24 voxels in x, y and z respectively, containing 13 time steps
acquired at a time resolution of about 50 milliseconds. The spatial
resolution of the scan is [1.67mm, 1.67mm, 3.5mm] in x, y and z, for
an imaged volume of 32× 24 × 8.5 cm. To simplify the handling
of the significant anisotropy of this dataset, we decided to upscale the
dataset to an isotropic grid beforehand. The aorta was segmented as
described in Section 3, and the computed centerline of the arterial wall
measured about 30cm. The centerline was subdivided in segments of
voxel-length to minimize resampling artifacts, and the straightening
was performed using quads with a side length of approximately 7.5
cm, with a transversal resampling resolution of 49× 49 voxels (ap-
proximately the same resolution of the data). Figure 1 shows all the
timesteps side by side using streamlines with a fixed seeding grid and
3 seeding planes, presenting the whole time-lapse with static time de-
pendency. In Figure 2 we investigate a single timestep, by separating
the seeding body into different views, to prevent streamlines overlap-
ping. Finally, In Figure 8 we show the evolution of pathlines inte-
gration, from timestep 1 to 7, together with the vector field at each
timestep. In this way we effectively combine different methods in a
side-by-side visualization of the flow.

4.2 Exhaust system flow visualization
This dataset contains the simulation results of an exhaust system with
3 collectors from the cylinders and a common rail for the emission.
The dataset is a vector field specified on a Cartesian grid, with res-
olution of 133× 82 × 68 voxels in x, y and z respectively, over 30



Fig. 9. Synthetic dataset, a curved tube containing helical flow, with
four streamlines seeded at the beginning of the tube, along the radius
(a). The same dataset, straightened, with streamlines integrated in the
reformed flow (red) and in the original flow and then deformed (green)
(b). The average distance between the pairs of lines is 0.10 voxel, while
the maximum distance is 0.21 voxel.

time steps. We computed the centerline starting at the beginning of
the first collector to the end of the rail, thus analyzing the behavior
of this part of the system. The centerline was subdivided again in
segments of voxel-length, and the straightening was performed using
quads of radius 20 voxels. In Figure 10 we visualize a time lapse of the
flow, from timestep 0 to timestep 17, using streamlines, traced from 3
seed planes placed after each collector. The image clearly conveys the
valves opening sequence (ts 1 = 2, ts 6 = 1, ts 14 = 3), and the curve of
the decreasing velocity after the closure.

4.3 Performance and Error Analysis

We have compared the performance of standard streamline integration
performed on the reformed vector field with the approach presented in
Section 3.1.3, using a CPU implementation of both algorithms on an
Intel Core2 2.4ghz processor. We seeded 1000 streamlines on plane
P0, the beginning of the centerline, on both the aorta and the manifold
dataset, and used 1000 integration steps, with a step size of 0.25 voxel,
on 10 different timesteps of each dataset. After averaging of the re-
sults, the standard integration took 0.65 seconds to complete this task
seconds, while the line straightening method required 3.75 seconds.
The second algorithm also showed higher variance in the results. This
behavior can be explained considering that some timesteps contains
low velocities, and the integration crosses only few sectors along the
centerline, lowering the computational complexity. The conclusion is
that the accurate approach is about 6 times slower than the other one.

We then carried out an error analysis to compute the average and
maximum gap between lines traced with the two approaches, when
they are seeded at the exact same locations. We measured the error by
stepping along each pair of lines (the one integrated in the reformed
field and the one straightened), using a step size of 0.25 voxel. At
each step, we mesured the distance between the corresponding loca-
tions along the two lines. The table below reports the average and
maximum distance (expressed in voxel units) for the different datasets,
averaged over 1000 streamlines and traced on 10 different timesteps.
For this analysis we also added a synthetic dataset proposed by Roth
and Peikert [28] (see Figure 9), consisting of a helical flow inside a
bent pipe, for which the centerline is known. This analysis shows
that the measured PC-MRI dataset is the one where the vector field
reformation leads to the largest error. One of the reasons could be
that the extracted centerline is not 100% accurate, and therefore the
cross planes do not result perfectly orthogonal to the vessel. This may
lead to inaccurate Jacobian computation for the two transversal com-
ponents, that are taken directly from the moving frame. We can con-
clude that a crucial aspect of our technique is a robust and accurate
centerline extraction algorithm, to be able to accurately integrate the
reformed vector field.

Aorta Exhaust Manifold Bent pipe
Average Diameter 23 24 18
Average Error 1.17 0.39 0.33
Maximum Error 1.83 1.07 0.72

Table 1. Average and maximum distance between streamlines inte-
grated in the reformed vector field and streamlines straightened after
the integration in the original field. The values are expressed in voxels.

Fig. 10. The exhaust system, volume rendering (a) Static time lapse
visualization of the straightened flow in the exhaust system dataset,
timesteps from 0 to 17 (b).

4.4 Evaluation
The Cardiovascular MRI Group at the University Medical Center
Freiburg, Medical Physics department, very kindly provided us with
an informal evaluation of the presented technique, that we demanded
in order to understand how possible end users would benefit from it.
This evaluation is composed of general impressions and of answers
to specific questions we asked. In general, the reformatting of the
aorta has been seen as potentially useful to compare some hemody-
namic parameters (such as wall shear stress or pressure differences),
also across a population. However, in this case one would need some
kind of aortic atlas, and then map the dataset onto this atlas (a starting
point for this mapping could be actually found in the work of Ropinski
et al. [27]). There was also some uncertainty about how the visualiza-
tion would look in presence of an aneurysm or a stenosis. The group
also believe that medical personnel is more accustomed to seeing the
blood flow in its original context, and would, therefore, require a cer-
tain training in order to profit from the proposed method.

The specific questions we asked to the Cardiovascular MRI Group
in Freiburg were what kind of visual comparison are they interested in,
whether this approach would ease the comparison of integrated lines in
the aorta, and what are other parameters typically investigated. Then
we asked whether they think that physicians would profit from this
technique as well, and what do physicians generally look at, in such
data. According to their answers, at the present they do not perform
that much comparison visually, but the presented approach could be
useful to compare hemodynamic parameters, while other typical pa-
rameters of interest along the vessel are helicity and vorticity. The
presented approach has been seen as definitely easing the comparison
of integrated lines from their point of view, but, from a medical point
of view, pysicians are currently very accustomed to the original shape
of the vessel. Last, visual features of interest from the medical point
of views are helices, vortices, and retrograde flow at late timepoints.

From this evaluation we can conclude that domain experts could
profit from this flow straightening techniques, but some training is
necessary. However, there have been other cases of reformation tech-
niques which required a certain learning, before being embraced in the
clinical routine, such as the curved-planar reformation of the human
vessel tree [10].

5 SUMMARY AND CONCLUSIONS

In this paper we present a general solution for producing straightened
tubular flow views by applying standard flow visualization techniques
to a straightened vector field along the centerline of the tubular ob-
ject. In addition, we presented multiple techniques for composing such



views, in order to form straightened side-by-side visualizations. We
used our method to visualize two different tubular flow datasets, show-
ing that the technique is generally applicable for any dataset where
the flow under inspection streams within a tubular structure. With the
generated side-by-side visualizations we achieved improvements over
standard techniques, in terms of efficiency in the usage of the avail-
able visualization space, and in terms of ease in the comparison of
the different aspects of the data. We received a positive feedback by
domain experts, that let us conclude that it is worthwhile, in certain
cases, to choose an alternative way to look at the data over the con-
ventional ones, to exploit the power of visualization. Limitations of
our approach are, at the present, the handling of structures with unnat-
ural narrow bends, when cross planes intersects each other within the
lumen of the pipe, and the handling of structures with major bifurca-
tions. Both of these issues require further investigations. As a future
work, we also plan to investigate more thoroughly the perception of
flow straightening for longer, more complex structures and to obtain a
more formal evaluation.
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colon unfolding. Visualization and Computer Graphics, IEEE Transac-
tions on, pages 411–418, 2001.

[35] T. Vrtovec, B. Likar, and F. Pernuš. Automated curved planar reformation
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