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Abstract

With the technological advancements in medical imaging, it is nowadays
possible to capture in-vivo information related to different human physio-
logical systems. Such data extends the more traditional anatomical scans,
but add size, complexity and heterogeneity. In addition, while anatomy
data is deàned in three-dimensional space, and 3Dgraphics techniques can
be used to represent it on the screen, physiology information is often more
abstract, and require tailored solutions to be represented in combination
with their anatomical context.

This thesis presents solutions for visualizing selected aspects in three
domains of physiology: blood áow, perfusion and aging. With respect to
blood áow, it includes a technique to enhance the side-by-side visualiza-
tion of the tubular áow in vessels. This result is achieved with a method
that generates straightened visualizations of the áow in its context, which
can be easily aligned and then related to each other. With respect to per-
fusion, this thesis includes an interactive visual analysis solution that ease
and improve the exploration, segmentation and analysis of perfusion data
acquired using contrast-enhanced ultrasound. This result is achieved by
using a statistical framework to extract enhancement information, and an
interactive, correlation-based approach to classify the tissue based on sim-
ilarity. Finally, with respect to aging, two solutions to help exploring large
data collections of repeated examinations are presented. In one, interactive
visual analysismethods are employed to explore and analyze cohort study
data, while the other focuses on the guided exploration of repeated ultra-
sound examinations. Demonstration case studies are include to exemplify
the utility of the presented work.
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CHAPTER 1
Introduction

Physiology can be deàned as the science of life processes. Its goal is to ex-
plain the physical and chemical factors that are responsible for the origin
and progression of life. Since even a small malfunction in one of the many
processes in the human body can cause illness or even death, then it be-
comes clear what importance the study of physiology and the detection of
malfunctioning in physiological processes has in medicine. This involves
the study of mechanical, physical, and biochemical functions of human or-
gans, and the cells of which they are composed, as well as the interaction
between organs and cells [56]. This study operates on two different levels:
molecular (or cell) and organ level. While cell level physiology is mainly
subject of study in biology, the principal level of focus of physiology in
medicine is mostly at the level of organs, and this is also the domain focus
of the work presented in this thesis.

The visualization of organ level (ormacro scale) physiological processes,
or functions, is, in fact, a special subàeld of computerized medical data vi-
sualization. This research àeld is often referred to, by researchers in the
àeld, simply as medical visualization. However, in other domains, such
as medicine, this term is sometimes used to address a broader set of medi-
cal imaging related àelds, includingmedical imaging itself, medical image
processing, medical image analysis, as well as computerized medical data
visualization.

This broader set of medical imaging related àelds was initiated at the
end of the 19th century, not at the least with the invention of X-ray imag-
ing [155]. Until the early seventies of the 20th century, it mostly amounted
to radiological imaging. However, with the advent of computers, radio-
logical data began to be processed, analyzed and visualized with the aid
of computers [122]. In today’s medical visualization, here considered as
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1. Introduction

the superset of medical imaging related àeldsmentioned above, computer
aid has become essential and unavoidable, and this àeld could therefore
be also named “computational medicine” đ [72]. The work presented in
this thesis does not attempt to address the physiological aspects in com-
putational medicine as a whole. It is instead focused on the computerized
visualization of physiological data, even if it touches upon other medical
imaging related àelds as well, such as data processing and analysis.

In the early years of computational medicine a lot of effort has been put
on medical imaging for the acquisition of three-dimensional image data,
by developing new imaging modalities such as Computed Tomography
(CT), Magnetic Resonance Imaging (MRI) and also Ultrasound, among the
others [81]. From a computerized visualization perspective, it was primar-
ily the rendering of the three-dimensional data [65, 173] that was central to
visualization research. The developed rendering solutions have been suc-
cessfully employed in different medical applications, such as treatment
and intervention planning, intra-operative support, diagnosis, education
and training, and others [146].

However, with all the immense technological innovation in medical
imaging, it became possible to acquire a much broader spectrum of medi-
cal data for the patients. New characteristics of such data include, for ex-
ample, time-dependency, since the technology for several imaging modal-
ities became fast enough to perform repeated acquisitions in small time
frames. This led to medical images, which not only capture an instanta-
neous picture of the patient’s anatomy, but a time-varying capture of some
aspect of the patient’s physiology. In addition, thanks to the introduction
of newelements in the examinations, such asmeasures of blood tracers and
new imaging protocols, medical imaging became able to capture a richer
set of physiological parameters, such as measures of blood concentration,
blood áow, neuronal activation, water diffusivity, etc. [42]. With the ca-
pability of acquiring time-varying sequences of anatomical snapshots, in
combination with blood tracers and new additions to the imaging proto-
cols, it is now possible to image a broader spectrum of physiological pro-
cesses.

1.1 Challenges in visualization of physiology image data

Since physiological processes can be observed only in-vivo, the importance
of medical imaging for capturing human physiology analysis in diagnosis,
treatment planning and research became crucial. Physiological processes
have, of course, a strong reference to the organs they involve, and, in this

đIn the following, this is the term that will be used to address such a superset of disci-
plines, whereas the term “visualization”will only stand for the “computerized visualization”
part.
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1.1. Challenges in visualization of physiology image data

sense, anatomy visualization can be considered as a part of physiology vi-
sualization. Still, physiology data comprise other information, in addition
to anatomy, encoded in form of additional data dimensions and features,
which are usually not immediately visible. For this reason, andwhen com-
paring to the visualization of anatomy data, more advanced solutions are
required to convey a more complete picture as provided by physiology
data. The additional informationwould otherwise be difàcult to represent
by, e.g., using classical visualization approaches, common for anatomy in-
spections, such as, for example, slice-based visualization.

In the simplest case, physiological datasets have “just” an additional
temporal dimension, but theymay also become as complex as time-varying
vector or tensor àelds, for example. Physiology data can be also multi-
modal: an example is the combination of functional MRI (fMRI) with trac-
tography data extracted from diffusion tensor imaging (DTI) MRI data, in
order to understand functional connections between brain regions [197].
Acquisitions can also be heterogeneous: an example is, again, fMRI brain
activation data, which is anatomically located, acquired togetherwith EEG
data, which has a different anatomical reference. Such type of acquisitions
can be performed during cognition tests, where the results of the tests are
also combined, consisting of additional abstract data with no anatomical
reference [197].

When developing new solutions for visualizing physiology data, these
additional data features have to be treated properly. The time dimension,
for example, must be communicated to the user, either by, e.g., encoding
it in a cine-loop or by representing it in other ways. Multiple modalities
must be combined or linked in order to relate the different measures they
provide with each other. This task becomes even more complex when
the data is heterogeneous, and spatial and non-spatial information need
to be linked. Moreover, when investigating physiological processes, ana-
lyzing the acquired functional data in order to extract different functional
parameters becomes even more central than for anatomy data [110, 132].
Finally, physiological data normally contain much more information than
data representing only the anatomy, and technologies for smart access to
the information of interest in such data sets are needed, in order to effec-
tively inspect them.

The work presented in this thesis is an attempt to address some of the
challenges encountered while visualizing and visually analyzing imaging
data of physiological processes, for the speciàc domain areas of blood áow,
perfusion and aging. This work is part of a new movement in the àeld as
such, amounting to a few selected pioneering steps into the direction of
advanced physiology visualization. Even though some work has been al-
ready done in this direction (see Chapter 2, for an overview on the related
work in physiology visualization), the problem of visualizing physiology
is still far from being adequately covered. In this respect, the work pre-
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1. Introduction

sented in this thesis extends the state of the art in the visualization of hu-
man physiology.

1.2 Contributions and thesis structure

The main contributions, as presented in this thesis, are as follows:

1. A two-level approach for the analysis of Contrast-Enhanced Ultra-
sound (CEUS) perfusion data. It consists of a perfusion metrics ex-
traction method for CEUS imaging, based on small neighborhood
statistics, to address the signal instability of this modality. This me-
thod can be seen as the back-end of a new approach to a supervised
classiàcation of CEUS perfusion scans, based on temporal correla-
tion of the enhancement metrics.

2. A new, two-staged pipeline enabling the visual side-by-side compar-
ison of blood áow data. It consists of a method to perform a curve-
centric reformation of tubular áow, in the form of raw vector àeld
or already integrated geometry. A solution to juxtapose (and com-
pare) straightened views of blood áow data is introduced, in order
to convey spatial orientation as well as qualitative and quantitative
information of the áow.

3. A data-cube based model for enabling the visual analysis and inte-
gration of heterogeneous data collected in cohort studies, and the
linking of structural (anatomical) and abstract data.

4. A navigation method to explore (multiple) tracked Ultrasound cine-
loops, and identify the parts in the cine-loops containing the regions
of interest. In this way, the data containing the regions of interest can
be easily extracted and compared also across multiple examinations,
in order to also study physiological changes over time.

This thesis is organized as follows: In chapter 2, the related state of the
art with respect to the visualization and the visual analysis of physiology
data is discussed, as well as the related visualization technology. In chap-
ter 3 the different contributions of this work are then described in more
detail. In chapter 4 the presented approaches are exempliàed in different
application cases, in order to demonstrate their effectiveness. Chapter 5
concludes the àrst part of this thesis. The second part of this thesis then
includes the four main papers that resulted from this work up to now.

6



CHAPTER 2
RelatedWork

Even though the àeld of physiology visualization is relatively new inmed-
ical visualization, during the last years a number of solutions have been
developed for representing and analyzing certain physiological processes.
These methods often incorporate techniques to visualize the anatomy, to
depict these function in their anatomical context, providing a spatial ref-
erence for the functions, and this is also done in the work presented in
this thesis. This chapter presents, in the next section, the related work in
the àeld of medical visualization. Afterward, the technological solutions
related to those adopted in the work presented in this thesis will be dis-
cussed.

2.1 Medical visualization

The àeld of Medical Visualization started in the early ’70s, when the com-
puters became able to generate pictures on screen [55, 159]. Nevertheless,
this àeld grew tremendously already in the following years [64]. In this
section, the work related to medical visualization is classiàed in two parts:
anatomy visualization and physiology visualization. The latter part dis-
cusses solutions addressing problems similar to those that are addressed
by the work presented in this thesis. The former part brieáy discusses so-
lutions to the visualization of anatomical images, which is a problem often
embedded in the visualization of physiology.

2.1.1 Visualization of anatomy

Before the introduction of tomographic imaging, it was impossible to ob-
tain both 3D pictures of the human body and density information, as con-
ventional X-ray imaging only provide a superimposition of objects along
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2. Related Work

each ray path. But tomographic imagingmade possible to obtain informa-
tion about internal densities on cross sections of the patient. Starting in the
early seventies, medical visualization has therefore strongly focused on re-
constructing and rendering 3D surfaces from medical 3D scans [64, 76]. In
Section 3.1, 3.2 and 3.4, volume visualization solutions have been used
to render the organs involved in the physiological processes under inves-
tigation. Section 2.2.1 discusses methods for the rendering of 3D volu-
metric data. In Section 3.3, the surfaces of the brain and brain segments
have been extracted and visualized, instead of utilizing direct volume ren-
dering solutions. The advantages and disadvantages of surface extrac-
tion and techniques, as comparedwith direct volume rendering techniques
have been long discussed, and Udupa et al. [178] presented an overview
on the subject already in the nineties. In Section 3.3, a streamline visual-
ization technique [50] has also been employed, to represent white matter
àber tracts and communicate àber integrity information directly within
its anatomical context. The problem of visualizing white matter àbers has
also been addressed by others, for example by enhancing the perception
of the àbers using line illumination and shadowing typical of hair ren-
dering [136], by adding depth-dependent halos to generate an illustrative
rendering of dense line data [39], or by fusing the àber tracts line data
with fMRI information, and structural MRI information, in order to inter-
actively assesswhich functional areaswould be involved, in case of a brain
tumor resection [14].

These anatomyvisualization solutions, aswell as others, have been em-
ployed in different domain-speciàc application àelds, such as intervention
and treatment planning, diagnosis, as well as education and others. What
is given above is only a short wrap-up of this àeld, but extensive cover-
age of the visualization solutions for anatomical images, and their appli-
cations, is provided by Bartz and Preim in the book entitled “Visualization
in Medicine” [146].

2.1.2 Visualization of physiology

Humanphysiology information can come from twodifferent sources: imag-
ing data or modeling and simulation data.

Even though the focus of this thesis work is on the visualization of phy-
siology information from imaging data, extensive work has been done to
also model and simulate physiological processes, and to visualize the re-
sults of the simulations.

Comprehensive projects have also been initiated for a systematic mod-
eling of the whole human functional behavior, also called human physiome.
For example, the aim of the IUPS Physiome project [69], the most known
of the physiome projects, was to develop integrative models at all levels of
biological organization, from genes to the whole organism. The outcome

8



2.1. Medical visualization

of this project was a modeling framework for understanding biological
structures and functions, from proteins to whole organisms. For this pur-
pose, a set of modeling languages, including CellML, TissueML, AnatML
andOrganSystemML, were developed tomodel physiology at its different
scales. The usage of a standard declarative language to deàne, for exam-
ple, anatomy allowed the creation of compliant viewers able to visualize all
the different models. Other physiome projects having similar intents have
also been initiated: among the others, the EuroPhysiome Initiative [43],
the NSR Physiome Project [9], and the Japanese Physiome Initiative (phys-
iome.jp). Most of these projects are now connected, worldwide, under the
initiative known as the Virtual Physiological Human.

However, despite the big effort that is being put on modeling physio-
logy, with the goal of becoming able to create patient-speciàc models [7],
this is still not generally possible. For this reason, at the present, it ismostly
image data that is analyzed and visualized directly, in order to diagnose
malfunctioning in the physiological functions of patients. Now, the related
work on visualization of physiology from image data is discussed, specià-
cally for the three domains that are addressed by the presented work, and
also for other domains that have received attention in the medical visual-
ization àeld.

Perfusion

Perfusion imaging techniques measure the amount of blood in tissue over
time, thanks to the use of speciàc blood tracers. These data are acquired to
support essential diagnostic tasks, such as ischemic stroke diagnosis, in-
áamation assessment, detection of coronary heart diseases and different
types of tumors [147]. The amount of blood in tissue is, in fact, related to
the level and type of tissue vascularization [116]. For this reason, the per-
fusion kinetic of the blood over time is analyzed, and expressive perfusion
parameters are determined, in order to come up with a diagnosis [147].

To analyze and effectively communicate this information, a number of
work have been proposed in the recent years. Mlejnek et al. [117] pre-
sented in 2005 the proàle áags, a technique to interactively probe 3D per-
fusion data, and pin, in space, relevant regions, showing their perfusion in
a contextual banner. Coto et al. [29], in the same year, presented the àrst
Interactive Visual Analysis (IVA, see section 2.2.3) approach for perfusion
data. In MammoExplorer, the authors interactively classiàed the tissue
by brushing scatterplots opposing MRI T2 intensity values and perfusion
enhancement values. More recently, Oeltze et al. [130] performed IVA on
MRI perfusion data and added principal component analysis on differ-
ent derived perfusion parameters, showing how some of these parameters
contain redundant information. Oeltze et al. [132] also presented a com-
prehensive visualization solution for myocardial perfusion data. In this
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2. Related Work

work, the authors combined a mapping on the cardiac wall of contractility
and viability information with carefully designed glyphs that communi-
cate the perfusion in the different sectors of the left ventricle, following
the Bull’s Eye Plot segmentation [21]. Finally, Glaßer et al. [53] proposed
a new type of a 2-dimensional glyph, used to encode two different perfu-
sion parameters over a single parametricmap. This technique, in combina-
tion with change diagrams, has been used to study the perfusion of breast
perfusion acquired using MRI. An overview of the proposed methods for
visualizing perfusion data acquired with CT or MRI is also provided by
Preim et al. [148].

With respect to speciàc analysis andvisualization challenges introduced
byCEUSperfusiondata, the available solutions aremostly limited to added
rigid or also deformable registration capabilities to applications showing
basic perfusion analysis functionalities (Qontrast [3], QontraXt [68], Sono-
Liver [153, 154], SonoProstate [46]).

The work presented in this thesis addresses some of the speciàc chal-
lenges of this modality (noisy enhancement and residual motion artifacts),
as well as introducing a method for supervised classiàcation of the tissue
based on perfusion similarity. This method allows fast and precise seg-
mentation of the different regions in the data, which can be challenging
otherwise, especially with complex structures.

Blood øow

The imaging and analysis of cardiovascular morphology, functions and
hemodynamics has a strong impact on the diagnosis of cardiovascular dis-
eases [16, 168], as well as on the understanding of atherogenesis and arte-
rial remodeling processes [52, 94]. For this reason, blood áow in its context
has been investigated in different ways during the last years. Blood áow
information is imaged in medicine using mainly two different modalities:
power and color Doppler Ultrasound, and Phase-Contrast MRI (PC-MRI).
Doppler US is a real time imaging modality, that can capture a whole im-
age (or volume, in 4D Doppler US) several times per second. These data,
however, contains only information about the velocity of the áow along
the US beam direction [114]. They are, therefore, acquisition dependent,
and the information change if the probe orientation change. PC-MRI, in-
stead, produces full three-dimensional vector àelds of the blood áow at
high frame rate. However, these volumes are assembled by imaging only
a little part of the volume at each heart cycle [137]. These parts are syn-
cronized using Electrocardiography (ECG) information, and therefore this
modality works best for patients without cardiac dysrhythmia. Concern-
ing the visualization of color Doppler data, classical methods superimpose
color Doppler information (red for áow shifting toward the US beam, and
blue shifting away from it) over the b-mode images. Themulti-component
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nature of the problem introduces challenges for conveying both the rel-
evant contextual anatomical structures, and the color Doppler informa-
tion. Petersch and Hönigmann [140] presented a new method to visualize
3D color Doppler information in its context, combining photorealistic and
nonphotorealistic renderingmethods such as gradient shading and silhou-
ette rendering.

Moving to vector àeld data, work has been done to both visualize the
blood áow itself, as well as other scalar hemodynamic parameters, such as
the wall shear stress (WSS), caused by the áow on the arterial walls. Re-
garding blood áow visualization, van Pelt et al. [180] used different illus-
trative techniques to enhance the classical visualization of aortic áow. In
their work, the authors included cell shading and silhouette rendering for
the anatomical context, as well as áow arrows and exploded views show-
ing a Doppler-alike visualization of the áow. In a following work, van Pelt
et al. [181] also introduced additional illustrative techniques to visualize
blood áow, where illustrative particles where “injected” in the blood, and
depicted using contours and speed lines. Exploded views have been also
proposed by Mark et al. [110], and used to present analytical information
about the áow for each user-speciàed cross section of the aorta, in a com-
prehensive solution for the visualization of aortic áow. A more analytical
approach to the visualization of blood áow has been presented by Friman
et al. [45]. In thiswork, the trajectories of the áowhave been computed tak-
ing into consideration the noise generated by the PC-MRI imaging modal-
ity. Therefore, for each integration step, a probabilistic scheme has been
used to determine the most probable trajectory, as well as the set of possi-
ble trajectories. An extension of thiswork has been presented by Schwenke
et al.[164], using anisotropic fast marching to compute the minimal path
trajectory from tensors combining blood áow directions as well as the esti-
mated uncertainty. Neugebauer et al. [121] presented an anatomy guided
solution to explore blood áow in complex anatomical structures, such as
cerebral aneurysms, including appropriate anatomy based placement of
the seeding body, to àt the typical áow dynamics in aneurysms. Gasteiger
et al. [51] proposed to use a combination of illustrative techniques (simple
contours) with other rendering styles to enhance the perception of the áow
in cerebral aneurysms. Gasteiger et al. [50] also proposed the “Flow Lens”,
a focus+context approach to enhance the investigation of different blood
áow parameters (includingWSS) in the context of cerebral aneurysm áow
analysis.

Concerning wall shear stress visualization, Frydrychowicz et al. [47]
has mapped WSS estimated using CFD methods from PC-MRI data on a
visualization of the aortic arch, by using discs that encode the WSS for
each sector of the aortic sections. Neugebauer et al. [120] also visualize
the WSS in cerebral aneurysms by mapping this áow aspect on the sur-
face of the aneurysm. However, they also add a 2D projection map to also
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visualize, with a single image, the sides of the aneurysm that are not vis-
ible, including the backside. Borkin et al.[17] presented a method to cre-
ate comprehensive visualizations of the WSS in the whole coronary artery
tree, by straightening the vessels walls, and representing them in an illus-
trative tree structure. TheWSSwas then colormapped on the straightened
vessels, also depicting the vessels diameters. In this way an overview is
provided, as well as easing the comparison of the different branches of the
coronary artery tree.

The work presented in this thesis addresses the related problem of pro-
viding an overview of the unsteady blood áow through blood vessels.
By enabling the generation of straightened áow visualizations, it becomes
easier to relate different views of the áow in the same context, as they can
be effectively aligned to each other. This method could be also combined
with the one proposed by Borkin et al., to provide a comprehensive visu-
alization of the blood áow in the whole coronary artery tree.

Aging

As compared to perfusion andbloodáow,which are relatively short-termed
aspects, the pysiological effects of aging on the human body and functions
appear in longer time frames. Therefore, for this purpose, studies carrying
out repeated acquisitions over longer time frames have been performed.
Such studies are normally performed on a larger sample of individuals,
in order to obtain statistically signiàcant results [197, 198]. The resulting
data are therefore quite large, comprising heterogeneous multimodal in-
formation about many subjects, examined multiple times. The analysis
and visualization of such large data is normally performed by manually
extracting the subset of the data needed to conàrm or discard speciàc hy-
poteses under investigation. These data are then statistically processed,
and the results are normally displayed with static images [198]. In the
master thesis work of Eikeland [37], IVA techniques are used to perform
an exploratory analysis of such type of datasets (the OASIS database on
Alzheimer’s diseases [109]). In this work, a parallel coordinate plot was
used to identify interesting groups of patients, and different fused views
were used to compare the subjects in these groups. Steenwijk et al. [169]
also proposed an interactive visual analysis solution for exploring and an-
alyzing cohort study data, having a similar goal to the one in section 3.3.
Their solution consists of a back-end system constructed on top of a re-
lational database, that is queried by a front-end comprising coordinated
multiple views and brushing capabilities. Compared to the solution pre-
sented here, their approach is based on amore classical relational database
for the data storage and retrieval, instead of OLAP technologies. These
technologies are known to be more efàcient for the processing and aggre-
gation of large amount of data. Less heterogeneous data, in the form of
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personal health history records data have been also visualized, for exam-
ple using Lifelines [141], PatternFinder [40], or other methods for categor-
ical searching and group comparison [191].

Other functions

Advanced visualization solutions have also been presented for other types
of physiological functions. Cardiac functions, for example, have been cov-
ered in different aspects. Termeer presented, in 2009, a phd thesis [174]
containing a comprehensive set of visualization solutions for cardiac MRI
data, to enable the assessment of coronary artery disease. These solutions
include the volumetric bull’s eye plot, several techniques to relate func-
tional information to heart anatomy, and amethod to simulate myocardial
perfusion, given structural data of the heart. Meyer-Spradow et al. [115]
proposed to use supertoroidal glyphs to combine heart functional infor-
mation with perfusion information of the ventricular wall. These glyphs
are placed on the surface of the ventricle, and their shape is designed to
minimize the occlusion of the ventricular wall, and thus the information
mapped onto it. Kondratieva et al. [88] visualized the anisotropic water
diffusion properties of the cardiac muscle by applying GPU based particle
tracing. Another method to visualize this physiological aspect, not only in
the cardiac muscle but in other type tissue as well, and normally deàned
on tensor àelds, consist of using glyphs. These have been proposed in dif-
ferent shapes, such as ellipsoids [92], superquadrics [82], or Q-Balls [31].

Different solutions for the visualization of functional brain data have
also been proposed. Anderson et al. [4] examine working memory by
means of S-transformed representations of eegdata, and topographicmaps,
to provide a spatial indication of brain activity. Crippa et al. [30] visualize
the connectivity information between functional brain regions, acquired
using resting state fMRI examinations. To do so, a parcellation of the gray
matter into functionally distinct areas is performed, and visualized in a
topographic map, where these areas are also subdivided in Voroni cells,
representing EEG electrodes. Van Dixoorn et al. [179] presented an IVA so-
lution to explore fMRI data. In their work, the authors make use of linked
views providing an anatomical rendering of the involved functional areas,
a 3D graph representation of the resting state network, a radial graph rep-
resentation of the connectivity between functional areas, and a scatterplot
to perform selections.

Other physiological functions have been also addressed from a visu-
alization perspective. These, among the others, include respiration [98],
motion [77, 89, 90] and metabolism [156].
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2.2 Visualization technology

Thework presented in this thesis involves different visualization technolo-
gies to reach the intended goals. The most relevant areas of visualization
from which technologies have been incorporated in the presented work,
and in certain cases extended, are volume visualization, illustrative ren-
dering, interactive visual analysis and space warping. In the next section,
the work related in each of these areas is discussed.

2.2.1 Volume rendering

Three-dimensional data visualization has been a central area of research
ever since the early seventies. Herman [65] reports the work of Green-
leaf et al. [55] as the àrst example of 3D data visualization. However,
more general techniques for volume rendering began to appear only in
the late seventies, with the Cuberille being one of the àrst [22, 66]. The
images generated by the cuberille algorithm were not smooth, being the
algorithm able only to approximate a surface with a boundary surface, bi-
narily including or excluding entire voxels, and to obtain a smooth sur-
face, a low-pass àltering procedure was employed. Other algorithms to
extract surfaces were also presented (Keppel et al. [79]), but the àrst high
quality surface extraction algorithm was the marching cubes, presented
by Lorensen et al. [105], and still widely employed for computing isosur-
faces from volume data. Isosurface extraction techniques are widely used,
but are based on precomputation, and to display multiple surfaces semi-
transparently, order-independent alpha blending techniques must be em-
ployed. In addition, the ànal image is contributed only by the extracted
surfaces, thus discarding all the rest of the data. Drebin et al. [35], as
well as Levoy [102], presented the àrst algorithms to display surfaces from
volume data directly, by casting rays from each screen pixel. For this rea-
son, this family of algorithms are called direct volume rendering algorithms.
These graphics algorithms are normally slower than rendering extracted
isosurfaces, but all the data can contribute to the ànal image, potentially
generating more accurate images. Kaufman [76] as well as Kaufman et
al. [24] extensively covered these early achievements on volume graphics.
In more recent years, direct volume rendering techniques have been ac-
celerated using the modern GPU based graphics hardware, making them
able to perform interactively. Hadwiger et al. [57] published a compre-
hensive work on the acceleration of volume graphics using the computa-
tional power provided by GPUs. Finally, with modern GPUs, it became
also possible to approximate global illumination in volume rendering at
interactive frame rates. Methods to achieve this include dynamic ambi-
ent occlusion [157], multi-directional occlusion shading [166], or even ray
tracing solutions [91]. Lindemann and Ropinski published a study on the
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effect of various advanced global illumination models for volume render-
ing on image comprehension [104].

2.2.2 Illustrative visualization

Illustrative visualization is the branch of visualization that makes use of
non-photorealistic rendering techniques [54] to abstract and simplify the
data representation, conveying only selected aspects of it. These tech-
niques are often an attempt to mimic the work of illustrators, who em-
phasize certain features while suppressing others by using different levels
of abstraction for different data aspects [186]. Illustrations are especially
used in medicine, being their main purpose to communicate information
and not necessarily to look photo-realistic. In physiology, in particular,
medical illustrations are widely used, and they abstract the context (ana-
tomy), representing only the relevant features that enable to convey the
pysiological process that is the focus [56]. Different attempts to mimic the
work of medical illustrators have been done in medical visualization too,
and Viola et al. [188] presented, in 2006, a comprehensive tutorial on this
topic.

2.2.3 Interactive visual analysis

In the work presented in this thesis there is a various degree of Interactive
Visual Analysis (IVA) technologies included. This ranges from pieces of
work where IVA is integral part of the solution (see section 3.1 and 3.3) to
other pieces of work where IVA is less prominent (section 3.2 and 3.4).

IVA has its roots in the seminal work on exploratory data analysis by
Tukey [176]. Up to that point, much of the statistical visualization con-
sisted of static images of the results. Tukey suggested to connect the visu-
alizations directly to the data, also using interaction. The basic idea of
IVA is to combine multiple views on the data, and coordinate them so
that the user can visually correlate their content. This technique is also
known as Coordinated Multiple Views (CMV), and Roberts provides an
overview on their use in exploratory visualization [152]. Then, on such
coordinated multiple view (sometimes also referred to as linked views),
interaction methods such as brushing [10] are employed, in order to deàne
a data selection (a tagged subset of the data). The results of brushing are
then propagated to linked views, which show the selected data items in
other ways. This selection mechanism is often complemented by so-called
focus+context methods, as illustrated by Hauser [60], that are used to to
emphasize the tagged subset of the data (the focus), while maintaining an
overview on the rest of the data (the context).

IVA is very close, in its goals and methods, to another àeld, called Vi-
sual Analytics (VA), deàned by Wong and Thomas [195] as the science of
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analytical reasoning facilitated by interactive visual interfaces. For both
IVA and VA, the way of proceeding in the visual exploration follows the
steps given by Schneiderman [165] in the so-called visual information seek-
ing mantra: “Overview àrst, zoom and àlter, then details-on-demand”.
Keim et al. [78] found that, in certain cases, with large amounts of data,
it might not be possible to get an overview on the data. He therefore
extended Shneidermans mantra to “Analyze First, Show the Important,
Zoom, Filter and Analyze Further – Details-on-Demand”. Finally, differ-
ent applications and frameworks include the IVA technologies discussed
above, like the SimVis framework [32], ComVis [111], or XmdvTool [192].

2.2.4 Space warping

The contribution presented in section 3.2 introduces a method that is used
to create straightened visualizations of tubular blood áow. This method
can be considered as a space warping technique. In this area of research,
Daae Lampe et al. [93] presented a new technique to perform curve-centric
reformation of scalar volumes (CCVR), straightening the original 3D scalar
data into a new volume, centered around a 3D curve. Chen et al. [25],
and Correa et al. [28], proposed more general space warping methods,
based on spatial transfer functions and generalized displacement map-
ping. Birkeland et al. [13] extended these methods to interactively gen-
erate view-dependent peel-aways of medical scans. Finally, Ropinski et
al. [156] applied áattening techniques to volumetric scans of mice aortas,
to provide a navigational view that links 2D and 3D visualizations of their
multimodal datasets.
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CHAPTER 3
VisualExplorationandAnalysis

of Human Physiology Data

This chapter discusses the contributions as resulting from the researchproject
that is covered in this thesis. While this chapter focuses primarily on the
contributions of this work, a number of related demonstration cases are
presented in Chapter 4.

3.1 Visual exploration and semi-automatic supervised
classiöcation of CEUS perfusion data

Contrast-enhanced imaging (CE) is an increasingly used approach inmedicine
to analyze the physiology of blood perfusion in tissue, which correlates
with the level and type of tissue vascularization [116]. This non-invasive
imaging modality is used for different purposes, such as ischemic stroke
assessment, ináamations assessment, and oncologic diagnosis [85, 149, 194].
To perform the diagnosis, the imaged data can be analyzed and quantiàed
after the examination. So-called time-intensity curves (TIC) are computed
from the time series for each pixel (2D+time data), or voxel (3D+time data).
A TIC represents the enhancement in the corresponding region as a func-
tion of time, and correlates with the perfusion kinetics of the blood in the
location after the injection of the contrast agent. Parameters describing the
kinetics of blood perfusion are extracted from the TICs, then analyzed and
compared in different regions to diagnose lesions characterized by abnor-
mal perfusion. Examples of such parameters are time-of-arrival (TOA) of
the contrast, time-to-peak (TTP) enhancement, or the peak enhancement (PE)
itself, and others.
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Figure 3.1: Illustration of the presented pipelind solution. In the örst stage enhancement
metrics are extracted (a) and parametric maps are computed (b). In the IVA stage, data are
explored interactively using correlation analysis (c), and selection masks can be automatically
extracted (d). Masks canbeautomatically combinedor reöned (e) and selectedasROI (f ). Finally,
the ROIs can be analyzed and compared to assess the tissue condition

CE imaging is also interesting in conjunction with ultrasonography
(US). This modality, however, introduces additional challenges to the per-
fusion data analysis: àrst, US has a lower signal-to-noise ratio, when com-
pared to MR and CT. Second, the data exhibit a non-linear enhancement
behavior caused by the nature of the contrast agent, especially in combi-
nation with high resolution transducers, that can be seen as a noisy en-
hancement signal. Third, CEUS data are difàcult to register, as the acqui-
sition is performed freehand. It is almost impossible to keep the probe
perfectly still, and deformations and off-plane movements add up to the
effects of breathing and pulse. In such a scenario, even deformable reg-
istration methods cannot provide maximum accuracy. In addition, the
typical analysis workáow consists of three stages: First, the examiner at-
tempts to delineate regions of interest (ROI) according to their echogenic-
ity in B-mode US (for brightness modulation: pixel intensities represent
the strength of the echo) and to their perfusion enhancement, by looking
at the cine-loop (animated image sequence) of the acquired CE data. This
can be aided by additional parametric images. Then, ROIs showing abnor-
mal enhancement patterns are selected, and the perfusion in these regions
is characterized. The ànal stage normally consists of comparing the per-
fusion parameters of the selected regions with each other or with healthy
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tissue (when possible), eventually leading to a diagnosis. A fourth chal-
lenge, within this workáow, is the procedure of delineating the ROIs, that
has to be done manually. In certain cases, with large and irregular regions,
like an organparenchyma fromwhich vessels should be excluded, this task
can become tedious and time consuming.

The here presented interactive (and iterative) visual analysis approach
for CE data exploration, analysis, and tissue classiàcation is speciàcally
tailored for the analysis of CEUS data, and addresses the four challenges
described above in order to improve the CEUS perfusion exploration and
analysis process.

This is achieved by introducing a data processing framework that ex-
tracts accurate enhancement parameters, which are more stable, in pres-
ence of noise and movements. It also offers a visual exploration mech-
anism to discover relationships in the anatomy with respect to perfusion,
by using interactive similaritymaps. Suchmaps are constructed using cor-
relation information between each pixel pair with respect to the perfusion
course, and can visualize clearly and precisely areas with perfusion pat-
terns similar to the perfusion in a selected region, and also delineate other
homogeneous areas. This method also allows to convert these similarity
maps into selectionmasks, by thresholding themusing a degree-of-interest
function, and to easily combine such masks. Finally, different visualiza-
tions are used to enable an effective analysis and comparison of selected
masks (elected as ROI), and assess the tissue condition.

The presented visualization pipeline consists of two main stages, plus
one iterative stage, which are intended to gradually extract and visualize
the perfusion trends. This pipeline is depicted in àgure 3.1), where the
perfusion metrics extraction part includes the àrst stage, while the visual
analysis includes the last two stages.

To overcome the noise-related challenges (noisy enhancement and resid-
ual motion), the àrst stage extracts statistical enhancement information for
each voxel (pixel/timestep) from its local spatio-temporal neighborhood.
In particular, three enhancement metrics are derived: the mean enhance-
ment value, the àrst and third quartiles of the values, and the percentage
of enhanced values (values above a threshold divided by the total number
of voxels in the neighborhood). As a result of this àrst stage, more robust
enhancement curves are derived, as well as parametric maps of the perfu-
sion parameters as described in the introduction, computed using the just
mentioned enhancement curves (see àgure 3.1(a,b)).

The second stage consists of an interactive visual analysis solution to
identify and segment the regions of interest. To do so, the examiner starts
getting an overview of the perfusion enhancement of the anatomy by look-
ing at parametricmaps, for example showing the area-under-the-curve pa-
rameter, the peak enhancement, or other expressive parameters. Each of
these parameters only represents a selected aspect of the perfusion, and
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parametric maps, singularly, appear not to outline the boundaries of sus-
picious regions with sufàcient precision. Therefore, an interactive simi-
larity map derivation is introduced. By selecting a pixel, a region, or a
template curve shape, this method allows the classiàcation of the entire
dataset according to how similar the perfusion patterns are with respect to
the selection (see àgure 3.1(c)). To do so, Pearson’s product-moment cor-
relation coefàcient (Pearson’s r) is computed from the TICs as a similar-
ity function. This computation is performed in real-time using the GPU,
therefore, by simply hoovering the pointer on the image, the similarity
map gets updated interactively. Once the examiner has outlined an area
of interest with the similarity map, the region can be saved immediately
as a mask for later reànement. This procedure can be repeated to quickly
obtain more masks, which then can be easily combined using set andmor-
phological operators (see àgure 3.1(f,e)).

In the third stage, the examiner elects the result of the processing op-
erations on masks as ROIs, and, for each ROI, perfusion parameters are
automatically computed. In this stage these ROIs can be analyzed and
compared, with the system presenting the information about tissue perfu-
sion for the selected ROIs, to eventually lead to the characterization of the
regions.

This pipeline was designed to avoid a fully automatic but ináexible
and error prone tissue classiàcation solution. Instead, it keeps the do-
main expert involved in a semi-automatic, supervised classiàcation pro-
cess, aiding the characterization of the tissue, so that the result would ben-
eàts also from her or his knowledge. In too many situations, in fact, single
approaches alone would lead to the wrong diagnosis (such as only TIC
comparison in our case), while an expert can usually combine the infor-
mation extracted from the data to achieve a more accurate diagnosis. A
case study, demonstrating the usefulness of this solution is presented in
section 4.1.

Further details on this contribution are given in Paper A.

Motion Correction. The presented approach does not include any mo-
tion correction stage, being based on the assumption that the image stack
under investigation is already aligned. To achieve this, based on the data
as coming from theUS scanner, ImageJ [1] was used to register the datasets
before the analysis. It uses the scale invariant feature transform (SIFT) [106]
for feature extraction and, depending on the dataset characteristics, rigid
registration or deformable registrationusing vector-spline regularization [5].
The prototype application is therefore not dependent on the motion cor-
rection approach adopted, and simply requires already aligned datasets.
However, this work led to further work (Schäfer et al. [163]), speciàcally
on the alignment of the CEUS image stacks. In this work, bymaking use of
temporal regions, it has been possible to determine which frames could be
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safely registered, and which instead should be discarded, thus improving
the overall alignment of the stack.

3.2 Reformation and visual analysis of blood øow data

Tubular áows are studied in many àelds, and in medicine the analysis of
blood áow is crucial to detect possible patologies such as aneurysms [50].
The visual exploration and analysis of such áow data can be challeng-
ing, due to the often varied geometry and topology of the áow, and due
to a larger number of aspects of the data that are of interest, in particu-
lar in time-dependent áows like blood áow. These aspects include vari-
ous scalar attributes, such as áow velocity, pressure,and vorticity, as well
as derived attributes. On the visualization side, the variation of seeding
structures, integration length, and the choice of a primitive type for an
integration-based visualization, different time steps of the áow, and the
variation of other visualization parameters are also aspects of interest. To
enable an analysis that is based on several of such aspects, it becomes in-
teresting to consider different views on the data as well as the relation be-
tween these views. Side-by-side visualizations [182] are one option to inte-
grate different views of the data in one visualization, and are only limited
by the overall available screen space. Moreover, being these visualizations
simpler when compared to others, such as image fusion techniques [48] or
coordinate multiple views [33], they are generally easier to read and in-
terpret. Additionally, they can also be used to show the same attribute
over multiple time-steps or visualized with different parameters, thus en-
abling alternative types of visual comparison. Last, they can also be com-
binedwith image-fusion techniques, leading to side-by-side visualizations
of fused views. However, in terms of limitations, it takes signiàcant addi-
tional space to juxtapose views, so the number of views that can be placed
side-by-side is also limited. Second, relating separated views is not always
a straightforward process, as they are not speciàed in a common reference
frame anymore.

To solve this problem, a space warping solution to the side-by-side vi-
sualization of tubular blood áow datasets is presented here. In order to
effectively juxtapose views of tubular áows, the concept of straightening
the áow visualization (e.g., streamlines or pathlines) along the center line
of the bounding tubular structure is introduced, as the centerline generally
represents the main reference direction of the áow. Using this approach,
multiple views can be aligned with one axis of the visualization and made
parallel to each other along the straightened center line. With such a side-
by-side layout it becomes possible to relate different views in the visual-
ization in a straightforward way, having a common axis for the alignment
and co-registration of different views of the data. In addition, this layout
makes the visualizationmore compact, allowing to havemore views at the
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Figure 3.2: Overview of the proposed approach for realizing a side-by-side visualization
of tubular øow (here aortic øow) based on straightening the øow domain. In the side-by-side
visualization, the seeding structure has been varied in order to study different seeding locations

same time. This method can also be used to complement regular visual-
izations of tubular áows, in order to statically visualize multiple aspects of
the data at once, including the time dependency. Last, it helps comparing
different aspects of a dataset (such as different time points, or different de-
scriptors), or even different datasets (as in population studies). Previous
work [182] suggests that the question of whether or not to use side-by-
side visualization also depends on the application at hand and on which
advantages/disadvantages to prioritize, and our contribution addresses
the cases where a side-by-side visualization is preferred.

The proposed method consists of two main parts: àrst, a combined
technique for generating straightened visualizations of tubular áows, de-
àned as vector àelds on a Cartesian grid; then, a set of techniques to as-
semble these straightened views in order to create effective side-by-side
visualizations.
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Figure 3.3: Design options for a side-by-side visualization of straightened tubular øow:
straightened views should be aligned to one of the screen axes, and juxtaposed along the other.
Informative visualizations, such as a line graph or a histogramof the øowmagnitude can also be
placed along the centerline, to provide quantitative information in addition. Orientation cues
are useful: here a volume rendering of the physical context, with contours, is used to convey the
physical space. Glyphs are also added to convey from which perspective the data is shown. In-
teractionwith the visualization is constrained to allowonlymeaningful camera transformations:
only rotations around the two axes used for the alignment are allowed
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Conceptually, the àrst part can be realized in two different ways: by
straightening the áowdomain, and thenperforming the visualizationmap-
ping, or àrst performing the visualization mapping, and then straighten-
ing the geometry representing the visualization itself. The advantage of
the àrst approach is the simplicity of producing áow visualizations: once
the vector àeld is reformed, any existing áow visualization technique can
be used without modiàcation. This also avoids performance penalties
when compared to visualizing the original data. On the downside, the
vector àeld reformation process sometimes introduces numerical inaccu-
racies. Reforming visualization cues, on the other side, produces an exact
straightening of the visualization primitives, at the cost of a higher com-
putational complexity. Moreover, this approach requires a tailored algo-
rithm for each áow visualization technique to be realized. In order to com-
bine the best of both approaches and to avoid the mentioned drawbacks,
a hybrid scheme was developed, that renders the straightened vector àeld
data during user interaction, to keep the system interactive. The second
approach is then used to produce an as accurate as possible straightened
visualization on demand.

The second part of the method consists of techniques to assemble the
ànal side-by-side visualization, paying attention to how to combine the
views. Here, àrst, the straightening axis in the views is aligned to one of
the screen axes, in order to facilitate the juxtaposition and the alignment
of several views. Having the reformed centerline aligned to one of the
screen axes has the additional advantage that it minimizes the space be-
tween the different views. This alignment also allows to combine visual-
ization of the actual data (such as standard áow visualization techniques)
with more abstract visualization techniques, such as line graphs, plotting
selected quantities along the centerline (see àgure 3.2 Right (a,b)). With
such setup, it becomes also possible to use the centerline axis as naviga-
tional tool: it can be used for operations such as cross-section placement
andmovement, and lengthmeasurement (see àgure 3.2 Right (a)). Second,
special attention must be paid also to conveying the shape of the reforma-
tion, in order to let the viewer easily relate positions and directions in the
reformed view to positions and directions in the original space. The pre-
sented method uses two kinds of orientation cues. The primary cue is the
rendering of the reformed tubular structure around the áow as its spa-
tial context. To do this, volume ray casting of the straightened context is
performed, instead of rendering the extracted isosurface. This allows to
perform fast and correct depth-buffer based alpha blending with the inte-
grated geometric primitives, such as streamlines, in a single (modiàed) ray
casting pass, without the need of performing expensivemulti-pass render-
ing techniques, such as depth-peeling. In addition, a number of “i-shaped”
glyphs are placed along the projection of the normal and of the binormal
onto the áow bounding structure (see àgure 3.2 Right (c)). The body color
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3.3. Aggregated visual analysis of aging data

of these glyphs encodes the distance from the beginning of the centerline,
while the dot color encodes the projection axis (greendot = glyph above the
normal, blue dot = glyph above the binormal). This helps the user to ori-
ent and understand fromwhich viewpoint he or she is looking at the áow.
These glyphs, in combination with a speciàed number of isocontours of
the tubular structure, also help the user relating a region along the center-
line “axis” between the conventional view and the reformed side-by-side
visualization.

The proposed side-by-side layout also introduces some challenges in
the interaction process with the visualization. Rotating the visualization
with the classical joystick or trackball paradigms, in particular, might be-
come unfeasible. For this reason only 2 rotationmethods are enabled: per-
view rotation around the centerline axis, and global rotation around the
other screen axis (see àgure 7). This method proved to allow thorough ex-
ploration of the straightened data, while, at the same time, being intuitive
and error-proof, preventing the user to “get lost” while interacting with
the visualization. A case study, demonstrating the usefulness of this so-
lution is presented in section 4.2. Further details on this contribution are
also given in Paper B.

3.3 Aggregated visual analysis of aging data

Cohort studies in medicine [169, 198] are becoming increasingly common,
partly due to the availability and recent improvements inmedical imaging
technologies. Such studies are used to evaluate medical hypotheses in a
sample, either healthy or presenting a common pathology, in order to gain
a better understanding of healthy aging and of the development of patho-
logical changes. Cohort study datasets are often acquired over longer time
periods and follow strictly deàned protocols. Normally, they are designed
to deliver data which, later, can be the basis for evaluating further sets of
hypotheses. However, while there are means to evaluate speciàc hypothe-
ses, based on such cohort studydata, often involving accordingly designed
data extraction, transformation, and fusion approaches, there is a lack of
technology that would support the áexible and open-ended exploration
of such data, mostly because of its high heterogeneity. For certain aspects,
in addition, there are both quantitative abstract measures, and physical
(anatomical) data. While the analysis is often performed on the quantita-
tive measures, it also occasionally becomes necessary to fetch and inspect
the related anatomical data, which can, for example, explain data outliers,
or to map measures to their anatomical context.

Integrating all the available data within one visualization tool that al-
lows to seamlessly combine them on demand is expected to help the ex-
perts to explore heterogeneous cohort study data more easily, to allow for
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3. Visual Exploration and Analysis of Human Physiology Data

Figure 3.4: Screen-shots of the prototype of the proposedmodel. TheMeasure Browser lets
the user drag desiredmeasures into a view, the SelectionManager allows to addnew selections,
activate them, enable one of them for editing, and drag them into views, to be used as ölters.
The Dimension Brusher (leftmost) enables to slice the data cubes in the data collection, while
the other views can be seen as projections of the data, and allow amore advanced deönition of
the selections, by means of brushing ranges of measures. Finally, the öber model view (bottom
right) represents a selection in the anatomical context using a brain model

an improved hypothesis generation, and, not at the least, to speed up their
current research workáow.

When designing a solution for a visualization of such data, there is a
dual goal: on one side, it is important to enhance the data exploration pro-
cess, in particular in those aspects not yet investigated, and possibly pro-
vide enough information to generate new hypotheses and subsequently
verify them. On the other side, it is also important to enhance the process
of hypotheses veriàcation by easing the extraction of the aspects of interest
from the dataset, and to investigate the relation between them.

Storing, accessing and manipulating the data acquired with such stud-
ies in a fast and áexibleway is the àrst and perhaps the biggest challenge in
designing an interactive visualization system targeted at this problem. Or-
ganizing the data in a relational database, similarly to Steenwijk et al. [169],
is probably the most straightforward solution at hand, and probably also
the easiest to design. However, the database schema is bound to the par-
ticular structure of a speciàc study, and has to be redeàned for different
studies, as well as the logic for data access, thus showing lack of áexibil-
ity. Moreover, a relational database might not provide the required perfor-
mance to enable an interactive exploration, depending on the dimension
of such (generally large) data.

With Polaris, Stolte et al. [170] showed how data can also be orga-
nized for visualization as an n-dimensional data cube, in data warehous-
ing called OLAP cubes (for On-Line Analytical Processing) [58]. In OLAP
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3.3. Aggregated visual analysis of aging data

data analysis this strategy is used in order to enable fast processing of large
amount of data.

OLAP cubes are constructedusing categorical attributes as dimensions,
while quantitative numerical values are stored as measures. The dimen-
sions and measures can be thought as independent and dependent vari-
ables, where dimension coordinates are used to access the measures. In
practice, after assigning an order to the dimensions, a data cube can be
implemented as an in-memory n-dimensional array. This allows, for ex-
ample, a faster data access, as compared to keeping the data in a relational
database.

The proposed solution builds on a model that organizes the cohort
study data in a collection of data-cubes. This model includes associated
operations to aggregate these partially overlapping data-cubes, link them
together, and perform àltering and selections of them. With this model it
is possible to automatically compute the common dimensions of two or
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Figure 3.5: Projecting two three-dimensional measure cubes (e.g., thickness of cortical re-
gions and volume of subcortical regions) on the common dimensions. The dimensions which
are not common (in red) are processed using a statistical estimator (e.g., average)
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3. Visual Exploration and Analysis of Human Physiology Data

more measures by simply intersecting the dimensions set of the measures,
without having any prior knowledge of the relations between measures
(as necessary when using a relational database model for the data, when
the systemwould need to know about the database schema, together with
complex logic for performing the operations). In the presented model,
when multiple measures are combined in a visualization (e.g., in a scat-
terplot, or a parallel coordinate view), each measure is automatically ag-
gregated (or projected [170]) along those dimensions not belonging to the
intersection (as illustrated in àgure 3.5). Alongwith themodel, a prototype
system has been developed, where a drag-and-drop interaction model has
been included, so that it is sufàcient to drag the desired measures into a
view to obtain the aggregation (if necessary) and the visualization. The
system lets the user also toggle which of the common dimensions should
be kept during the aggregation, and which not, thus performing a sort of
roll-up operation, to change the level of detail. The difference to a classical
roll-up operation is that there is no hierarchy in the dimension structure.
Therefore it would be possible to roll-up independently any dimension in
the set. In addition, brushing is used to perform selections on the data. In
order to deal with the additional challenge of having only partially over-
lapping data cubes, in the presented model, a brush on one cube is propa-
gated to all the other cubes in the collection that share dimensions with the
brushed one, by àrst computing a projection of the brushed entity using
the common dimensions with the other ones. This projection of the brush
is performed using the max operator, which eventually tags the items in
these projections that have been created out of at least one tagged item.
However, it is also possible to compute the percentage of items that have
been tagged using the speciàc common coordinates (instead of the max),
resulting in a non-binary tag. Finally, in the presented model, selections
can be used also for a second purpose: since most of the views are built
upon aggregated data-cubes, this aggregation can be steered, or àltered,
using a selection. By setting a selection as aggregation àlter, the aggrega-
tion is performed only using the items that are selected in the àlter. A case
study, demonstrating the visual analysis of a cohort study dataset on brain
aging is presented in section 4.3. Further details on this contribution are
also given in Paper C.

3.4 Guided exploration of follow-up ultrasound examinations

Ultrasonography (US) is a powerful and inexpensivemedical imagingmodal-
ity, and one of the most used worldwide in clinical practice. When there
is the need to communicate the examination further, for example from
the radiologist to the surgeon, the acquired data can be saved for later
reviewing. Data exported by 2D US scanners consists of annotated, and
often printed, still images, as well as video sequences containing all the
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3.4. Guided exploration of follow-up ultrasound examinations

acquired US images, captured at a certain frame rate during the exam-
inations. During certain kinds of US examinations, the physician scans
several different anatomical structures, without focusing exclusively on
one part of the anatomy. In such situations, as, for example, during ab-
dominal examinations, simple snapshots of US slices may lack contextual
information. They may also miss some important information that the ex-
aminer may have scanned, but not recognized and thus stored, in the àrst
place. Stored video sequences contain all the imaged data, and, to a cer-
tain extent, prevent the loss of important information about structures of
interest or their context. Unfortunately, such video data lacks higher se-
mantic information, present during the live examination, such as the 3D
position and orientation of the US planes, knowledge of which anatom-
ical structures are imaged, neighboring anatomical structures and scan-
ning direction. Therefore it is challenging and time-consuming to review
entire ultrasonographic sequences after the examination, especially if the
review is performed by another physician, without àrst hand knowledge
of the examination. Moreover, videos of US data, lacking semantic annota-
tions such as the imaged anatomical structures, require the examiner to go
through all the video sequences, during the reviewing process, to ànd the
images with the structures of interest, taking (potentially) long time. This
becomes even more evident when not only one, but several examinations
of the same patient have been performed. In this situation, many video
sequences, containing 2D images of the patient at different points in time,
would require extensive inspection in order to identify the frames imaging
the region of interest in every cine-loop and detect changes or progression
of diseases.

To solve these problems, the goal of the the pipelined approach pre-
sented here is to enrich the US data with semantic information about the
content of each image in the video sequences. Being able to input to a visu-
alization system the data and the information about what the data contain,
the examiner could be guided, by the system, during the data exploration
and reviewing tasks.

The key concept in the pipelined solution presented is to compute the
degree of interest (DOI) for each US image with respect to the anatomi-
cal structures the examiner is investigating. This is done by considering
a so called DOI volume, created out of volumetric representations of the
anatomical structures of interest, that describes howmuch a voxel belongs
to the structure(s) of interest. In a following step this annotation of the
space is combined with the US images. The output of this step is an aggre-
gated measure of the DOI for each image in the US sequences, telling how
many pixels in the image belong to the structures of interest. This measure
can be seen as a measure of the importance of each US images with re-
spect to a selected focus structure. Once this measure has been computed,
it can employed through appropriate visualization methods to guide the
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3. Visual Exploration and Analysis of Human Physiology Data

Figure 3.6: Schematic illustration of the presented pipelined solution, consisting of four
stages

examiner to the relevant images or video subsequences. The methods that
are employed in this work consist of an enhanced timeline bar, used for
navigation, that depicts the importance of the frames as a function, and
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contains clickable bookmarks to the points in the videos where the struc-
tures of interest are very visible. In this way, subsequences in multiple
acquisitions can be quickly accessed and easily compared. The ehnanced
timeline bar is then complemented by a fused view of each frame within
its context consisting of the volumetric structures of interest, to get a clear
idea fromwhich position/orientation the imagewas acquired. Further de-
tails on this contribution, including the data acquisition requirements, are
given in Paper D.
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CHAPTER 4
Demonstration Cases

4.1 Visual analysis of focal liver lesions in contrast-enhanced
ultrasound data

The method described in section 3.1 was implemented using the OpenCL
computing framework, to enable interactive perfusion measure extraction
and computation of the correlation. For this reason, the prototype was
run on a workstation with an nVIDIA GeForce GTX280 graphics card, for
which nVIDIA provides drivers supporting OpenCL. With this method,
six CEUSdatasets have been analyzed, imaging focal liver lesions. The res-
olution of the data containing the liver and the right kidney was 240×240
pixels, acquired at approximately 9 frames per second. These datasets are
representative for their respective diagnostic àeld, concerning spatial and
temporal resolution, and also concerning the observed enhancement be-
havior. From a performance point of view, this setup allowed interactive
exploration of the available data without problems using standard set-
tings. For such image resolution, it has been possible to notice, during the
analysis, that the neighborhood diameter of the perfusion metric extrac-
tion stage should not exceed the size of 7–9 pixels, to prevent information
loss. In the case of liver lesions, the parameters that have to be evaluated
in order to assess the type of the lesion [149] are:

• the enhancement dynamics, that allow to assess the type of vascu-
larization in the lesion

• the homogeneity of the enhancement in the lesion ( homogeneous
enhancemente versus areas with different perfusion dynamics)

• the shape of the lesion
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4. Demonstration Cases

Figure 4.1: Interactive visual analysis of a dataset with a liver lesion. One B-Mode image
showing the imaged anatomy (a). One contrast image from the dataset, showing diffuse en-
hancement, where only vessels are highlighted (b). Similarity map for a point speciöed on the
(presumably) healthy liver parenchyma, in green. The healthy tissue highlights, and also delin-
eates other structures in the liver, such as the vessels and the lesion on the left (c). Similarity
map for a point speciöed on the lesion. The lesion highlights entirely (d). Similarity map for the
kidney (e). ROIs deöned on the healthy tissue (green), lesion (red), lesion feeding vessel (blue)
and kidney (purple). In grey the uncertain area. (f ). TICs for the four ROIs. The lesion exhibits
a kinetic similar to the feeding vessel, much earlier (TOA and TTP) when compared with the
healthy tissue, similar peak enhancement, and almost iso-echoic behavior in themid phase (g).

In this case study, the patient suffered from áank pain and, from a àrst
Ultrasound examination, appeared to have several liver lesions. So each
one of them was separately imaged in a dedicated perfusion examination.
What follows is a description of the analysis of one of the scans, which is
also representative for the other cases studied. The sequence contains 257
timesteps, that, acquired at approximately 9 frames per second, amount
to a total duration of about 30 seconds. The sequence is cut, in time, be-
fore the contrast is completely washed out from the area, thus containing
only the arterial phase. This, however, provides enough data to assess the
vascular structure in the lesion, together with its shape, echogenicity, and
homogeneity. The results of the visual analysis are illustrated in àgure 4.1.

After the datawas loaded, the perfusionmetricswere automatically ex-
tracted using the default settings for the neighborhoods size (diameter of
5 pixels in the spatial dimensions and 3 timesteps in the temporal dimen-
sion). The system also provided an enhancement proàle for the whole
image, to automatically identify the global Time-Of-Arrival (TOA) of the
contrast (TOA in the regions enhanced àrst). The starting timestep for
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4.2. Visual analysis of aortic øow

the analysis was then set to the global TOA. Next, all the frames were in-
spected to identify those frames with alignment errors, so that they could
be excluded from the analysis, and the values interpolated using neighbor-
ing frames. In àgure 4.1(g), the red bands on the plot represent timesteps
with excluded frames and interpolated information. After this procedure
was completed, the different parametric maps provided by the system
were visually inspected, to identify the regions with the characteristic per-
fusion (àgure 3.1(b)). These maps highlighted the liver parenchyma, part
of the kidney parenchyma – that usually has a fast wash-out and thus a
small Area-Under-the-Curve (AUC) – and, most prominently, the vessels as
well as a spherical region in the liver parenchyma not consistently deàned
among themaps. So, a pixel on the (presumably) healthy liver parenchyma
was selected, in order to obtain a similarity map for the healthy tissue (àg-
ure 4.1(c)). This similarity map for the healthy area was converted into
selection, and used as reference (àgure 4.1(f,g) (green)). In the similarity
map of the healthy tissue, the non-consistently deàned region on the left
gained a much sharper contour, as it was very different in perfusion. So
this area was investigated by selecting a pixel, and obtaining the similarity
map forwhat turned out to be a lesion (see àgure 4.1(d)). By doing this, the
lesionwas precisely highlighted and immediately converted it into a selec-
tion. A rough lasso selection around it was deàned and intersected with
the similarity-based selection to exclude non-related areas (àgure 4.1(f)
(red)). At this point, a precise segmentation of the lesionwas obtained, and
its perfusion information, automatically computed by the system, could
be compared with the other regions segmented (healthy parenchyma and
artery).

In this way it was possible to assess the composition of the lesion (sin-
gle compound), the shape (regular) and the size (diameter of about 3cm).
Compared to the healthy parenchyma, the lesion enhanced earlier (Time-
Of-Arrival and Time-To-Peak), and in the late phase it was almost iso-echoic
(àgure 4.1(g)). But the peak enhancement was lower and in general the
wash-out began slightly earlier, already in a 30 seconds sequence, which
indicates the absence of the portal phase. These features should charac-
terize the lesion as a hepatocellular adenoma (bening) [49, 149]. After the
patient also underwent a liver biopsy, the diagnosis was eventually con-
àrmed.

4.2 Visual analysis of aortic øow

To demonstrate the utility of the method described in section 3.2, a proto-
type was developed, and different visualizations of aortic áow were cre-
ated. The data came from time-resolved 3D Phase-ContrastMRI (PC-MRI)
scans, which proved to be effective to image the blood áow in the human
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Figure 4.2: (a) A timestep of an aortic øow dataset in its anatomical context, rendered using
a conventional streamline visualization. (b) Side-by-side visualizationof the straightened vector
öeld, showing all the timesteps juxtaposed. The streamlines traced from the örst seeding plane
are rendered in focus, and the others in grey as context.

body [15]. These visualizations were kindly evaluated by the the Cardio-
vascular MRI Group at the University Medical Center Freiburg, Medical
Physics department, which provided feedback on the usefulness of the
method (reported below), in order to understand how possible end users
would beneàt from this technique. The dataset visualized is a vector àeld
of the blood áow in a human aorta, speciàed on aCartesian gridwith a res-
olution of 192 × 144 × 24 voxels in x, y and z respectively, and containing
13 time steps acquired at a time resolution of about 50 milliseconds. The
spatial resolution of the scan is [1.67mm, 1.67mm, 3.5mm] in x, y and z, for
an imaged volume of 32× 24× 8.5 cm. To simplify the handling of the sig-
niàcant anisotropy of this dataset, the dataset was upscaled to an isotropic
grid. The aorta was segmented in a similar manner as van Pelt et al. [180],
and the centerline of the arterial wall was extracted. The centerline was
subdivided in segments of voxel-length to minimize resampling artifacts,
and the straightening was performed using quads with a side length of
approximately 7.5 cm, with a transversal resampling resolution of 49 × 49
voxels (approximately the same resolution of the data).

In the prototype, streamline and pathline tracingwere implemented on
the GPU, using geometry shaders [180]. Abstract visualization techniques
such as line graphs and histograms (of averaged velocity)were also added,
showing also how simple it is, with this method, to combine classic áow
visualizations with other data visualization methods in an intuitive way.
Additional áow visualization methods could, however, be also used with
the prototype.

Examples of the visualization produced with the presented method
are shown in àgure 4.2, 4.3 and 3.2. Figure 4.2 shows all the timesteps in
the dataset, side by side, using streamlines with a àxed seeding grid and
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Figure 4.3: Timesteps from 0 to 6 of the aorta dataset, visualized with pathlines and glyphs
illustrating the vector öeld. Each pair of views shows the glyphs rendering of the vector öeld at
the last time point stated on top, and the pathline integration from time 0 to the last time point.

3 seeding planes, presenting them in a time-lapse manner. In àgure 3.2
(left) a single timestep is investigated, by separating the seeding body into
different views, thus preventing streamlines related to different seeding
planes from overlapping. Figure 4.3 shows the evolution of pathlines in-
tegration, from timestep 1 to 7, side by side with the vector àeld at each
timestep.

The evaluation from the Cardiovascular MRI Group at the University
Medical Center Freiburg,Medical Physics department, is composed of gen-
eral impressions and of answers to speciàc questions asked by the authors.
In general, the reformatting of the aorta has been seen as potentially use-
ful to compare some hemodynamic parameters (such as wall shear stress
or pressure differences), also across a population. However, in this case
one would need some kind of aortic atlas, and then map the dataset onto
this atlas. There was also some uncertainty about how the visualization
would look in presence of an aneurysm or a stenosis. The group also be-
lieved that medical personnel is more accustomed to seeing the blood áow
in its original context, and would, therefore, require a certain training in
order to proàt from the proposed method.

The speciàc questions thatwere asked to theCardiovascularMRIGroup
in Freiburg contemplated what kind of visual comparison are they inter-
ested in, whether this approach would ease the comparison of integrated
lines in the aorta, and what are other parameters typically investigated.
Then also whether they think that physicians would proàt from this tech-
nique as well, and what do physicians generally look at in such data. Ac-
cording to their answers, at the present they do not perform that much
comparison visually, but the presented approach could be useful to com-
pare hemodynamic parameters, while other typical parameters of inter-
est along the vessel are helicity and vorticity. The presented approach has
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been seen as deànitely easing the comparison of integrated lines from their
point of view, but, from a medical point of view, pysicians are currently
very accustomed to the original shape of the vessel. Last, visual features of
interest, from a medical perspective, are helices, vortices, and retrograde
áow at late timepoints. From this evaluation it is possible to conclude that
domain experts could proàt from this áow straightening techniques, but
some training is necessary. However, there have been other cases of ref-
ormation techniques which required a certain learning, before being em-
braced in the clinical routine, such as the curved-planar reformation of the
human vessel tree [75].

4.3 Visual Analysis of Heterogeneous Aging Data

One major goal of the work presented in section 3.3 was to have a solu-
tion for enabling the explorative visualization and analysis of data that
was acquired as part of a longitudinal study on cognitive aging. During
this study, more than 100 healthy individuals (mean age 60.8 (7.8), 65% fe-
males at inclusion) were recruited through advertisements in local news-
papers. All the participants were interviewed before inclusion, to exclude
those reporting previous or present neurological or psychiatric disorders,
a history of substance abuse, or other signiàcant medical conditions. The
neuropsychological evaluation conàrmed that the participants showed no
symptoms indicatingmild cognitive impairment (MCI) or dementia. Each
participantwas examined twice, àrst in year 2004/2005, and then in 2008 (a
third wave is at the moment being completed). The participants were sub-
jected to neuropsychological testing, multimodal MR imaging and genetic
analysis (not used in this study). The result of each examination consisted
of data on white matter àber integrity, as expressed by fractional aniso-
tropy computed from diffusion tensor imaging (DTI), cortical and subcor-
tical gray matter measures, automatically calculated from structural MR
images, and a number of neuropsychological tests, including the Califor-
nia Verbal Learning Test–Second Version (CVLT-II), the Color–Word Inter-
ference Test (CWIT), the Digit Symbol Substitution Task fromWAIS-R, and
the Mini Mental State Exam (MMSE). In addition, multiple quantitative
measures for the white matter àber bundles and the gray matter segments
were extracted: different anisotropy measures for the bundles, and vol-
ume, thickness and area measures for the brain regions. To summarize,
each examination (per subject and year) consists of:

• white matter àber bundles with anisotropy measures. Each indivi-
dual àber was divided into 100 segments of equal length.

• gray matter cortical and subcortical regions with quantitative mea-
sures for each region.
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Regression Coefficient

SSE 0.073.5

Pearson's r

P   > 0.05

P <= 0.05

Figure 4.4: (top) Visualizing the correlation coefficient between age and fractional aniso-
tropy of the öbers across all subjects,years. The FAmeasure is öltered by automatically iterating
over a chosen dimension, in this case öberbundle (thus iteratively slicing the measure). There-
fore, each bar in the bar chart represents the correlation referred to a speciöc coordinate in the
öberbundle dimension. (bottom) The same type of visualization representing the regression
coefficient instead. (right) Scatterplots related to the fornix, before and after excluding wrong
values.

• scores from different neuropsychological tests.

One speciàc challengewith respect to these data is that their domains over-
laps only partially. For example, how should one combine, in a scatterplot,
fractional anisotropy, speciàed for each segment of the àber bundles, with
thickness of the cortex, available for each cortical region? The model/pro-
totype presented in section 3.3 was developed to speciàcally address this
challenging partial incompatibility of the data domains.
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To demonstrate the utility of the presented solution, a case study on
these data was carried out to investigate which àber bundles show a de-
cline in fractional anisotropy with age, and which do not. Subsequently,
the prototype system was used to look for evidences of known hypothe-
ses of age related white matter changes in the sample under investigation.
The explorative investigation of the relation between anisotropy decline
and age started by looking at the correlation coefàcient of each àber bun-
dles fractional anisotropy with age, as well as the regression coefàcient.
The system estimates these statistics for the chosen measure by iterating
over a user speciàed dimension, in our case àberbundle. These estimates
are presented in two bar charts, shown in àgure 4.4. In these charts it
is easy to spot one àber (fornix) that goes against the general declining
trend, also showing a bad àtting (sum of squared residual, SSE). The data
related to this àber was brought up in a scatterplot (àgure 4.4, top right),
where showing several zero values, probably due to missing data. Since
these missing data should be removed, a brush on the scatterplot was per-
formed, in order to exclude the incorrect values. This led to opposite re-
sults for this bundle (àgure 4.4, bottom right), in line with the overall de-
clining trend (these results are sketched with a dashed line in the barchart
of àgure 4.4). Finally, it was possible to notice two specular àber tracts, left
and right occipitofrontal fasciculi, that show not homogeneous anisotropy
values, with the right one showing amore pronounced anisotropy decline.

The second part of this case study was an attempt to conàrm or re-
ject three hypotheses that were already statistically examined in previous
work [172, 189]:

• The increased anisotropy decline in the anterior callosal àber (CC-
Anterior) with aging, as compared to the posterior portion of the
corpus callosum, called splenium (CC-Splenium).

• The higher sensitivity of superior àbers (Superior-LF) to anisotropy
decline, as compared to inferior àbers (Inferior-LF).

• The resistance of the cortico-spinal tract to anisotropy decline.

To do so, the àbers under investigation were initially selected, and these
selections were used as àlters in scatterplots opposing the age of the sub-
jects to the fractional anisotropy (FA) of the àber segments in their brains.
In these scatterplots, shown in àgure 4.5, each point represents a single
subject examination, while the other dimensions are aggregated for each
of the measures. In the case of FA measure, this aggregation was àltered
using the selections above. The system automatically computed the Pear-
son’s r value of the two measures (one aggregated using the àlter), the
p-value, which, in this case, is below 0.05 except for the corticospinal tract
(that, therefore, does not show a correlation that is statistically signiàcant),
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Figure 4.5: Age opposed to Fractional Anisotropy (FA) for each examination (subject, year).
In each scatterplot, the FA value has been aggregated (across segments and bundles) using a
different ölter, as labeled in the views. Top left and top right show a stronger negative correla-
tion of the FA plotted against age, while top center and bottom center show a weaker negative
correlation. Bottom left shows almost no correlation of FA changewith age for the corticospinal
öber tracts, which conörms previously published studies, and can be used as control. In each
plot: R is the correlation coefficient, SSE is the sum of squared residuals of the regression anal-
ysis.

and the regression line. The regression analysis also provides the regres-
sion coefàcient and the sum of squared residuals (SSE) as a metric of the
goodness of àt.

From these plots, it is possible to conàrm that the spinal tract is indeed
relatively insensitive to the age effect. They also show that the posterior
portion of the corpus callosum is less prone to the age effect, compared to
the frontal portion. However, in contrast to the hypothesis, superior àbers
were less prone to age effect than inferior àbers, which could imply that
language function stays normal in the sample, but visual integrationmight
decline.
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CHAPTER 5
Conclusion and FutureWork

The technological advancements in medical imaging allow to capture an
increasing amount of patient-speciàc physiological information. Compared
to structural anatomy data, these physiological data add complexity to the
overall picture available for a patient. Due to this increased complexity,
and to added aspects that are not always directly mappable to screen im-
ages (as, for example, the time course of a process), there is the need for
solutions that are able to represent pysiological information in an under-
standable manner.

In order to improve the comprehension and analysis of data that image
selected aspects of physiology, namely perfusion, blood áow and aging,
the work presented in this thesis made use, and often extended, different
visualization technologies. From the case studies, and from the evaluation
that has been obtained, it is possible to conclude that IVA methodologies
are useful for bringing up these aspects in the data that are not directly
mappable to pictures. Furthermore, thesemethodologies proved to be also
suitable to analyze heterogeneous data. In this particular problem, differ-
ent statistical methods have also proven to be very effective in condensing
the information into meaningful quantities.

The evaluation gathered from domain experts also shows that, in cer-
tain cases, carefully designed alternative methods for data representation
can provide advantages to unveil relations in the data otherwise difàcult
to see. This was the case of straightening methods applied to blood áow
visualizations, that were used to bring different views in a common space
of reference. Together with additional illustrative techniques used to link
the new representation to the original one, this enabled a more effective
comparison of aspects otherwise harder to perceive, such as the time de-
pendency.
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In future work, there is a plan to combine more extensive statistical
solutions with IVA techniques, to fully reveal the relations in large and
complex heterogeneous dataset. In addition, exploring the applicability
of áow deformation and straightening methods for providing informative
overviews similar to those proposed by Borkin et al. [17] would be fruitful.

However, despite the advancements in the àeld produced by the work
presented in this thesis, the visualization of physiology data remains a
wide, and partly unexplored àeld. In future, we can expect that aspects
that are currently not addressed by visualization, also due to lack of de-
tailed enough data, will be considered. Examples are the multi scale as-
pect of physiological processes, and the integration of physiological mod-
els with patient speciàc information acquired, for example, through imag-
ing. These goals were also seen by Ayache et al. [7], when deàning the Vir-
tual Physiological Human project, in order to reach the creation of patient-
speciàc physiological models. To achieve this we should also expect that
physiology visualization will leave the corner of scientiàc visualization, to
include technologies from other àelds, such as information visualization,
illustration, and visual analytics. A step in this direction can be found in
the work presented in this thesis, where the visualization of physiology
has been addressed using also methods coming from outside the classical
scientiàc visualization. Finally, we should also expect the visualization of
physiology data to advance arm-in-arm with medical imaging. In the fu-
ture, it will become possible to capture new extraordinary aspects of phy-
siology, and visualization will be essential to communicate these aspects
to humans.
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Abstract

Contrast-enhanced ultrasound (CEUS) has recently become an
important technology for lesion detection and characterization
in cancer diagnosis. CEUS is used to investigate the perfusion
kinetics in tissue over time, which relates to tissue vasculariza-
tion. In this paper we present a pipeline that enables interac-
tive visual exploration and semi-automatic segmentation and
classiàcation of CEUS data.

For the visual analysis of this challenging data, with character-
istic noise patterns and residual movements, we propose a ro-
bust method to derive expressive enhancement measures from
small spatio-temporal neighborhoods. We use this informa-
tion in a staged visual analysis pipeline that leads from a more

This article was published in Computers & Graphics, 35(2):218–226
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local investigation to global results such as the delineation of
anatomic regions according to their perfusion properties. To
make the visual exploration interactive, we have developed an
accelerated framework based on the OpenCL library, that ex-
ploits modern many-cores hardware. Using our application,
we were able to analyze datasets from CEUS liver examina-
tions, being able to identify several focal liver lesions, segment
and analyze them quickly and precisely, and eventually char-
acterize them.

A.1 Introduction

Contrast-enhanced imaging (CE) is an increasingly used approach inmedicine.
A contrast agent tracer is injected in the blood stream of the patient be-
fore the imaging process. The contrast agent increases the enhancement in
the images, which makes it easily detectable. It can be used to determine
the blood concentration in the imaged tissue at speciàc time steps. This
makes it possible to analyze the perfusion kinetics of blood in tissue, which
correlates with the level and type of tissue vascularization [116]. This non-
invasive imaging modality is increasingly used in ischemic stroke assess-
ment and oncologic diagnosis; In oncology, for instance, the presence of
abnormal vascularization can be an indicator of amalignant lesion. Changes
in blood perfusion kinetics can therefore be used for the identiàcation and
diagnosis of possibly malignant tissue in parenchymatous organs, such as
the liver [149], breast [194], and pancreas [85].

To perform the diagnosis, the imaged data can be analyzed after the ex-
aminationusingdedicated quantiàcation software. So-called time-intensity
curves (TIC) are computed from the time series for each pixel (2D+time
data), or voxel (3D+time data). A TIC represents the enhancement in the
corresponding region as a function of time, and correlates with the per-
fusion kinetics of the blood in the location after the injection of the con-
trast agent. Parameters describing the kinetics of blood perfusion are ex-
tracted from the TICs, then analyzed and compared in different regions
to diagnose lesions characterized by abnormal perfusion. Typical descrip-
tive perfusion parameters (see àgure 1) include Time-of-Arrival of the con-
trast (TOA), Time-to-Peak (TTP) enhancement, Peak Enhancement (PE),
Rise Time (RT), Area-Under-the-Curve (AUC), Mean Transit Time (MTT),
Wash-in Rate (Slope/WiR) and Wash-out Rate (WoR) [46, 130].

The typical analysis workáow consists of three stages: First, the ex-
aminer attempts to delineate regions of interest (ROI) according to their
echogenicity (in B-mode, or brightness modulation: pixel intensities rep-
resent the strength of the echo) and perfusion enhancement, by looking at
the cine-loop (animated image sequence) of the CE data. This can be aided
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by additional parametric images. Secondly, ROIs showing abnormal en-
hancement patterns are selected, and the perfusion in these regions is char-
acterized. The ànal stage consists of comparing the perfusion parameters
of the selected regions with each other or with healthy tissue (when possi-
ble), eventually leading to a diagnosis.

CE imaging became interesting also in conjunction with ultrasonogra-
phy (US): recently, safe contrast agents have been developed, consisting
of gas-àlled microbubbles. They can be administered intravenously into
the systemic circulation, and excreted through respiration and breakdown
in the liver. The microbubbles have a high degree of echogenicity, and
behave like signal-emitting micro particles, áowing with the blood. More-
over, the CEUS contrast agents are so-called blood pool agents, meaning
that, contrary to X-ray contrast media, they do not leave the blood ves-
sels [145]. This provides the clinicians with an excellent tool for following
the dynamic phases of contrast enhancement in both large vessels and the
microcirculation, delineating the vascular structure in the tissues.

CEUS examinations are generally performed freehand by the opera-
tor, who keeps the US probe as still as possible, focusing on the region
of interest for a certain period of time after a contrast agent bolus is in-
jected intravenously. The recorded time-dependent dataset consists of a
sequence of staggered images (2D + time), acquired alternately in B-mode
and a speciàc contrast mode, that uses low power and speciàc acoustic set-
tings to àlter out the tissue signal from the bubble signal. This way each
contrast image, containing the contrast enhancement for a speciàc time-
step, has a corresponding B-mode image, showing the anatomy clearly.
Compared to contrast-enhanced computed tomography (CT) or dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI) data, CEUS
data show analogous perfusion patterns. Therefore the analysis process
can follow a workáow comparable to the other CE modalities. However,
there are certain unique characteristics that CEUS data exhibit, which pose
serious challenges for the data analysis.

First, US has a lower signal-to-noise ratio, when compared with MR
and CT. Secondly, the data exhibit a non-linear enhancement behavior,
caused by the nature of the contrast agent. The gas-àlled microbubbles
have a discrete dimension (∼ 10µm), and do not fuse with the plasma but
rather áow together with the blood stream. The enhancement is gener-
ated by the presence of bubbles under the US probe, and we observed that
it is not continuous, but, to a certain extent, has an ”on-off” type of be-
havior. We also observed that this behavior is more prominent with high
resolution transducers, probably due to supersampling of the àxed-sized
microbubbles and also of the voids between them. Thirdly, CEUS data
are difàcult to register, as the acquisition is performed freehand. It is al-
most impossible to keep the probe perfectly still, and deformations and
off-plane movements add up to the effects of breathing and pulse. In such
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Figure 1: Illustration of an approach to compute descriptive perfusion parameters from a
time-intensity curve.

a scenario, even deformable registration methods cannot provide maxi-
mum accuracy.

In this paper we present an interactive and iterative visual analysis ap-
proach for CE data exploration, analysis, and tissue classiàcation. It is
speciàcally tailored for the analysis of CEUS data, incorporating an in-
novative data processing framework that extracts accurate enhancement
parameters, stabler in presence of noise and movements. It offers a visual
exploration metaphor to discover relationships in the anatomy with re-
spect to perfusion by using interactive similarity maps. Such maps visual-
ize clearly and precisely areas with similar perfusion patterns with respect
to the selected region, and also delineate other homogeneous areas. Our
approach allows to extract automatically selection masks from similarity
maps using a degree-of-interest function, and to combine such masks eas-
ily and quickly. Finally, we make use of different visualizations to enable
effective analysis and comparison of selected masks (elected as ROI), and
assess the tissue condition.

A.2 Related work

Applications for the analysis of CEUSdata havemainly been developed by
ultrasound scanner manufacturersđ (e.g., GE, Philips, Siemens, Toshiba),

đAll brand names and trademarks mentioned in this paper are properties of their respec-
tive owners

50



A.2. Related work

Figure 2: (a) Example of 2DCEUSdata of the intestinalwall of a patient suffering fromCrohn’s
disease: B-Mode data. (c) The related contrast data showing a typical (noisy) CEUS enhance-
ment pattern. (d) Time-intensity-curve relative to the pixel highlighted in red in (a,b), after the
contrast administration, showing the characteristical unstable enhancement.

and are generally integrated into their workstations. Some of them are
also available as stand-alone software solutions, such as PhilipsQ-Lab [71],
ToshibaCHI-Q [38], VRI [97], and a customapplicationdeveloped byToshiba
for the Tokyo General Hospital [171]. All of these applications offer a rel-
atively basic quantiàcation and characterization; They allow the user to
manually deàne one or multiple ROIs, and extract perfusion parameters
for these regions. Some of the manufacturers, e.g., Siemens and Toshiba,
recently added rigid registration capabilities to correct for breathing arti-
facts. More advanced stand-alone applications have been developed by
Bracco Imaging, an US contrast-agent producer. Bracco has developed
several applications for CEUS data analysis and quantiàcation, ranging
from general purpose CEUS analysis (Qontrast [3], QontraXt [68]) to ap-
plications addressing speciàc diagnostic questions (SonoLiver [153, 154],
SonoProstate [46]). In contrast to the software packages integrated into the
scanners, the solutions from Bracco are capable of deformable registration
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of the image stack. This is useful when dealing with issues more complex
than only breathing movements.

Regarding the techniques as adopted in the approach presented in this
paper, visualization techniques that exploit small voxel neighborhoods
have been proposed for building transfer functions by considering local
histograms [107] or correlation [135]. Local neighborhoods have often been
considered in the àeld of image processing, e.g., to de-noise MRI data by
extracting non-parametric statistics [6], or by using fourth-order partial
differential equations [108].

In the domain of visualization approaches for perfusion data, a num-
ber of techniques have been proposed in the last decade. Automatic or
semi-automatic segmentation techniques have been proposed for DCE-
MRI, Positron Emission Tomography (PET) and Single-Photon Emission
Tomography (SPECT) data, using clustering [2, 26], principal component
analysis [175], or region-growing [53] to identify abnormal areas. Enhance-
ment scatterplots have also been proposed to select the voxels of inter-
est [29]. Fang et al. [41] propose the use of the Euclidean distance and
the maximum cross-correlation as similarity metric between TICs to seg-
ment volumetric, time-varying medical data, according to a user-speciàed
template. The technique is applied to MRI and PET phantom datasets,
and a SPECT dataset of a patient with kidney problems. Kohle et al. [87]
presented a new approach for volume visualization of these datasets intro-
ducing the closest vessel projection to add depth information tomaximum
intensity projection. In this work a HSV colormap is used to better convey
abnormal tissue. Hauth et al. [63] adopt a three-timepoints TIC analysis for
automatic classiàcation of the tissues. Rognin et al. [153] propose an anal-
ogous approach, which also requires the identiàcation of a healthy region
of reference.

For the visual exploration of time-dependent medical data, Behrens
et al. [11] proposed some basic visualization techniques. A more intu-
itive concept to probe and annotate the data was presented with the Pro-
àle Flags [117]. Interactive visual analysis techniques have also been pro-
posed for the exploration and characterization of time-varying perfusion
data [130]. They have been speciàcally applied to the analysis of cerebral
perfusion data [131]. Recently, Glaßer et al. [53] proposed a visual analyt-
ics approach to characterize malignant tissues. Preim et al. [148] provide
a comprehensive survey on the visual exploration and analysis of perfu-
sion data. With respect to automatic classiàcation and characterization
of tissues in CE imaging, neural networks [177] and the self-organizing
map [119] have been employed to automatically discriminate benign and
malignant breast lesions in DCE-MRI. Recently, Napel et al. [118] devel-
oped a system for automated retrieval of similar lesions from a database
of CE-CT datasets (non time-varying).
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Figure 3: Screenshot of the perfusion analysis software present in the GE Logiq 9 worksta-
tion. The region of interest must be manually outlined, and an average TIC is displayed on the
right, together with a function that is computed to best-öt the data. On the bottom various
perfusion parameter are extracted and shown.

Compared with these approaches, we do not attempt to automatically
segment or characterize the tissues. The reason for this is that even the best
algorithms fail under certain circumstances, such as imperfectly aligned
data or data containing a noisy signal, which is especially common inCEUS.
We also do not want to replace the expertise of well-trained physicians,
but rather to involve them in the process to achieve a more accurate re-
sult. We aim at providing fast and interactive exploration, and visually
convey the segmentation of the data into regions with homogeneous per-
fusion patterns. We then offer a fast and interactive approach to segment
these regions, combine them if necessary, and extract meaningful parame-
ters to analyze and compare them. With this approachwewant to help the
physicians speeding up the diagnosis, by using the knowledge they have
in the best possible way.

A.3 Requirement analysis

Before we present our CEUS exploration and analysis solution, we discuss
the related application questions from a medical perspective (gastroen-
terology and cardiology). Several aspects of the data analysis process are
covered, and can be summarized as follows:

• What limitations of the available tools cause the physicians the great-
est discomfort, and should be improved?

• What visualizations solutionswould the physicians beneàtmost from?
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Figure 4: Illustration of the proposed pipeline. In the örst stage enhancement metrics are
extracted (a) and parametric maps are computed (b). In the IVA stage, data are explored inter-
actively using correlation analysis (c), and selection masks can be automatically extracted (d).
Masks can be automatically combined or reöned (e) and selected as ROI (f ). Finally, the ROIs can
be analyzed and compared to assess the tissue condition.

At the present, the speciàcation of the ROIs is considered a lengthy and
cumbersome process, as the area of interest is not always clearly delin-
eated in the US image, and it sometimes consists of heterogeneous tis-
sue. The placement of the ROIs is a critical task in the process, as the ul-
timate goal of the analysis is to assess the extent, shape and composition
of lesions. The physician has to examine different parametric maps be-
fore being able to distinguish regions and then decide where to place the
ROIs. Another emerged problem with the available quantiàcation soft-
ware is how the perfusion curves are approximated and the parameters
extracted. Figure 2(d) illustrates the typical enhancement in CEUS data,
that exhibits high instability. Available software solutions perform little
to no preprocessing of the data, partly due to the high computational cost
of the operation. Since the unprocessed data are almost unusable due to
their extreme instability in the enhancement, the currently most followed
approach consists of àtting a statistical distribution to the samples, with
characteristics similar to the blood perfusion kinetics in the tissue (e.g., a
lognormal distribution function [46]). Unfortunately, in some real-life situ-
ations, the approximation provided by this approachmight be not very ac-
curate (see àgure 3, the àtting do not match the samples well). Finally, the
performances of the available tools in handling the whole analysis process
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are also seen as a limiting factor, and an interactive and more integrated
solution for exploring the data is needed.

We also had interdisciplinary discussionswith physicians from the gas-
troenterology department at the Haukeland university hospital in Bergen,
about the use of visualization techniques that have been previously pro-
posed for perfusion visualization in the scientiàc community. While a
(color) map of a single parameter does usually not sufàce alone, from our
discussions it emerged that clinicians are generally skeptical towards visu-
alization techniques that combine multiple parameters, such as in a glyph
visualization. Parametric maps are probably not far from the maximum
complexity that clinicians are willing to use for visualization – visualiza-
tions for clinical practice have been requested to be as simple and easy to un-
derstand as possible (and also contain quantitative information where pos-
sible). It is however likely that physicians more oriented towards research
are more willing to undertake a learning process and to use more compact
but complex visualizationmetaphors. From the discussion it also emerged
that physicians would beneàt from an application capable to clearly con-
vey where the boundaries of homogeneously perfused regions are, so that
the selection of these regions would be easier, quicker and more precise.
Therefore it seemed promising to invest into the interactive nature of the
visual analysis approach, while keeping the visualization techniques easy
to read and as plain and unambiguous as possible.

A.4 Visual CEUS Data Exploration and Analysis

The visualization pipeline presented in this paper consists of three stages,
intended to gradually extract and visualize the perfusion trends (see àg-
ure 4). To overcome the noise-related challenges and the on-off signaling
aspect of the contrast agent, the àrst stage extracts enhancement informa-
tion for each voxel (pixel/timestep) from its local spatio-temporal neigh-
borhood. We propose to derive three enhancement metrics: the mean en-
hancement value davg, the àrst dq1 and third dq3 quartiles of the values in
the neighborhood, and the percentage of enhanced voxels enhk. We also
experimented with a number of other, related, measures, but these three
metrics proved to produce stable and accurate proàles of the local enhance-
ment, well representing the evolution of the contrast agent over time. De-
tails on this stage with an explanation and more motivation are given in
section A.4.1.

As a result of the àrst stage, useful enhancement curves are available,
as well as parametric maps of the perfusion parameters described in the
introduction, derived using the computed enhancement curves (see àg-
ure 4(b)). The second stage consists of an interactive visual analysis ap-
proach to identify and segment the regions of interest. To do so, the exam-
iner would start getting an overview of the perfusion enhancement of the
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anatomy by looking at parametric maps, for example of the AUC, PE, or
another expressive parameter. Each of these parameters only represents
a selected aspect of the perfusion, and we found that parametric maps,
singularly, do not precisely outline the boundaries of suspicious regions .
Thereforewe included an interactive similaritymapderivation, that, by se-
lecting a pixel, a region, or a template curve shape, allows the classiàcation
of the data according to how similar the perfusion pattern is with respect
to the selection (see àgure 4(c)). Our method uses the Pearson product-
moment correlation coefàcient applied to the TICs as similarity function
(details in sectionA.4.2). Once the examiner has outlined an area of interest
with the similarity map, the region can be saved as a mask for later reàne-
ments. This procedure can be repeated to savemoremasks, which then can
be combined using set and morphological operators (see àgure 4(f,e)). In
the third stage, the examiner elects the result of the processing operations
on masks as ROIs, and, for each ROI, perfusion parameters are automati-
cally computed. In this stage these ROIs can be analyzed and compared,
with the system presenting the information about tissue perfusion for the
selected ROIs, to eventually lead to the characterization of the regions. In
the design of this pipeline we avoid to solely automatically characterize
the tissues. Instead, we keep the physician involved and aid the charac-
terization process, so that the result beneàts also from her or his knowl-
edge. In too many situations, in fact, single approaches alone would lead
to the wrong diagnosis (such as only TIC comparison in our case), while
an expert can usually combine the information extracted from the data to
achieve a more accurate diagnosis.

Motion Correction The presented approach does not include any mo-
tion correction stage per se, and we assume that the image stack loaded
in the application is already aligned. However, as this is usually not the
case when the data come from the US scanner, we have used ImageJ [1] to
register the datasets before the analysis. It uses the scale invariant feature
transform (SIFT) [106] for feature extraction and, depending on the dataset
characteristics, rigid registration or deformable registration using vector-
spline regularization [5]. Our application is however not dependent on the
motion correction approach adopted, and simply requires already aligned
datasets.

A.4.1 Perfusion metrics extraction

As mentioned above, CEUS generates a signal that is not stable and may
contain large oscillations. To better extract the enhancement value for each
voxel location in space and time (x, t) along a TIC, we propose to extract
three simple statistical measures from the local spatio-temporal neighbor-
hoodN (x, t) of the voxel (Figure 5(a)). We refer to the enhancement values
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Figure 5: Illustration of a 5x5x3 neighborhood considered to extract the perfusionmeasures
(a) from a noisy dataset. Here, the Z dimension represents time. Comparison between the orig-
inal TIC, also shown in ögure 2 (red), the TIC built using the davg measure (black, b) and the
proöle built with the enhk measure (red, c), showing the percentage of voxels in each neigh-
borhood greater than a value k (here set to 25 over 255). In case of highly unstable signal, the
enhk proöle proves to produce more accurate results during the perfusion parameter extrac-
tion (e.g., MTT)

of each voxel (x, t) as d(x, t). We computed themean value davg(x, t), as the
average of the enhancement values in N (x, t) :

davg(x, t) =

∑
p∈N (x,t) d(p)

| N (x, t) |
(1)

This measure is needed to obtain a much stabler TIC shape for the compu-
tation of the similarity factor between TICs. Using the raw intensity data,
the similarity derivator struggles ànding enough correlation between any
pair of TICs, while stabilizing and improving the shape of the curves proved
to producemoremeaningful results. Togetherwith themean, we also com-
pute the quartiles dq1(x, t) and dq3(x, t) of the values in the neighborhood,
deàned as:

dq1(x, t) = min
f

|{d ∈ N (x, t) | d ≥ f}|
|N (x, t) |

≤ 3

4
(2)
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dq3(x, t) = min
f

|{d ∈ N (x, t) | d ≥ f}|
|N (x, t) |

≤ 1

4
(3)

When compared with davg, dq3 turns out to be a better approximation for
the curve upper envelope in case of unstable signals. Plotted together with
d(x, t), dq1 and dq3 are used to convey the degree of oscillation of the signal
for single TICs, or the heterogeneity of a ROI. These measures are even-
tually used to build up TICs, helping with the problem of voids in the
perfusion pattern, as the value is now an aggregated over the local neigh-
borhood.

However, to cope with the considerable ”on-off’ enhancement behav-
ior present in certain CEUS datasets, typically acquired with high reso-
lution transducers, we propose also a third measure, called percentage of
enhancement. We refer to it as enhk(x, t), and it is computed for each neigh-
borhood N (x, t) as:

enhk(x, t) =
| {p ∈ N (x, t) | d(p) ≥ k} |

|N (x, t) |
(4)

By specifying an enhancement threshold value k, ideally representing the
minimum intensity value in presence of contrast, enhk represents the per-
centage of enhanced voxels in each neighborhood. The value k is depen-
dent on the dataset, as different scanners/setups produce signals with dif-
ferent intensity. However we let the user interactively modify this thresh-
old, with the aid of a histogram of the dataset intensity values. We discov-
ered that this metric, used to build enhancement proàles, highlights better
the perfusion trends in presence of highly unstable enhancement, as com-
pared with the raw and the averaged data. In such situations, proàles
created with the other two proposed metrics tend to move away from the
TIC upper envelope. So the enhancement proàle, although not contain-
ing quantitative information, is useful to extract time-dependentmeasures
(e.g., TOA, TTP, MTT) more precisely (see àgure 5).

We have not been able, so far, to automatically compute the ideal neigh-
borhood size for a given dataset, as there are many variables to take into
consideration (e.g., scanner technology, transducer wavelength, contrast
agent type). Therefore we include the option to interactively modify the
size of the neighborhood, giving a visual feedback to let the examiner ad-
just the size to the data under analysis (in àgure 2(a,b) the neighborhood is
highlighted in green). This stage is computationally very expensive, and to
enable the possibility of interactively changing the neighborhood dimen-
sion and the threshold value k, we developed a GPGPU implementation
of the described statistic extraction techniques, written in OpenCL. In our
implementation, each kernel independently performs the extraction of the
described measures for a single voxel (pixel/timepoint), thus achieving a
high level of parallelization, required for enabling fast interaction.
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A.4.2 Interactive visual analysis

In order to correctly understand the boundaries of the ROIs and to out-
line them, at the present the examiner has to mentally correlate different
parametric images together with the contrast data cine-loop. We instead
propose a multi-stage interactive visual analysis (IVA) approach. In the
àrst stage, a perfusion enhancement pattern is selected. The system auto-
matically computes a similaritymap, highlighting regions with a perfusion
pattern similar to the selection. This map can be automatically converted
into a selection, and can be also thresholded on the similarity value. Fi-
nally, saved selections can be further processed and combined with other
selections via commonmorphological or set operators to accurately deàne
the ROI (See section A.4.2). In such maps, however, other homogeneous
regions also appear in uniform value and color, and can be easily spotted.
Therefore, this procedure can be iteratively repeated to inspect other areas,
and specify other ROIs using the related similarity maps.

Similarity measure for TICs

The perfusion enhancement for a pixel is deàned by its TIC. To measure
how similarly two pixels enhance, we use the Pearson product-moment
correlation coefàcient (PMCC [84]). The PMCC between two variables
(TICs) A and B is deàned as the covariance of the two variables, divided
by the product of their standard deviations:

PMCC(A,B) =

∑n
i=1(Ai − Ā)(Bi − B̄)√∑n

i=1(Ai − Ā)2
√∑n

i=1(Bi − B̄)2
(5)

with Ā being the average of the samples Ai over the entire time span.
The PMCC is a measure of the linear dependence between two value se-
quences, giving a value between +1 and -1. A value of 1 implies that a
linear equation describes perfectly the relationship between the two value
sequences. A value of 0 implies that there is no correlation, and a negative
value implies that the variables are inversely correlated. In other words,
the PMCC is a measure of shape similarity of two TICs. Therefore we can
visualize how similarly two anatomical areas perfuse over time by show-
ing PMCC values as parametric map.

Similarity-based exploration and segmentation

To obtain a similarity map for an area, understand perfusion relationships
and specify ROIs, the examiner must be able to provide a target enhance-
ment pattern. Once a similaritymap has been obtained, it is superimposed
semi-transparently over the cine-loop visualization. As the ànal goal of
the IVA process is to characterize suspicious tissue, similarity maps can be
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Figure 6: ROIs created using curve templates to investigate the variation in perfusion char-
acteristics. Three templates (continued enhancement, stabilizing enhancement, measurable
wash-out; depicted as dashed lines in a) and their corresponding similarity maps (b, c, and d).
The templatewith higher wash-out proöle highlights the boundaries of the lesion (d), while the
one with lower wash-out highlights the core of the lesion (b). The TICs illustrated in (a) show
a certain variation, that requires to be investigated. By applying a segmentation mask around
the lesion to the maps in (b),(c) and (d) we obtain three new selections (respectively f, g and
h). Their TICs are shown in (e), highlighting a much more similar pattern. This reøects a fairly
homogeneous lesionion compound.

converted into selections, processed and ànally used as ROIs. In the ap-
plication, a degree-of-interest (DOI) ramp function is applied like a trans-
fer function as soft threshold for the conversion (as compared with a step
function). In our application enhancement patterns can be provided in
different ways:

By pixel selection using the cursor, it is possible to interactively select a
pixel in the image. The system computes and displays the similarity
map using the TIC of this pixel (Figure 8(e,f,g)).

By template TIC using a special widget, it is possible to sketch a perfu-
sion enhancement pattern. The system uses this pattern to compute
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and show a similarity map highlighting regions that perfuse simi-
larly to the sketched pattern, providing interactive feedback to the
user (Figure 6).

By area selection using an already stored selection, the system can com-
pute the similarity map from the TIC averaged over the selection.
In combination with the proposed map-to-selection conversion ap-
proach, this allows iteration over a selection to obtain a similarity
map built upon a more representative TIC of the tissue under in-
spection.

Arbitrarily shaped selections can also be created, by using a brush or a
lasso tool, and once a selection has been stored, it is displayed in a selec-
tion list, from where it can be speciàed to perform further operations. The
operations on selections we included are:

• extraction of an averaged TIC, used for similarity map generation.
With our smooth selections, we perform the TIC averaging using the
DOI value in each pixel to produce a weighted average for each TIC.

• modiàcation of the selection using morphological operators (dila-
tion/erosion).

• combination with other selections using set operators (union/inter-
section/subtraction/inversion).

As a result of these operations, new selections are produced and inserted
into the selection list, fromwhere they can be used. Once the output selec-
tion is satisfactory, is ready to be analyzed, and it can be promoted to ROI
(see àgure 7(a)).

ROIs comparison and characterization

In the àrst IVA stage, ROIs have been deàned. In this last stage, these
regions can be analyzed individually, or compared with each other. Our
application extracts and visualizes the TICs and the enhancement proàles
of the ROIs. TICs are visualized as an average curve, upper and lower
bounded by the àrst and third quartile, to visually convey the degree of
homogeneity of the ROI (see àgure 4(g)). Each ROI is also accompanied
by its perfusion parameters and a histogram matrix showing the distri-
bution of their values over the range. This way the shape, dimension and
perfusion pattern can be analyzed to characterize the region. These param-
eters can also be compared to the healthy tissue (if available) or between
different region, to reàne the diagnosis, as we show in section A.5.1.

The application lets the user select which of available ROIs to compare.
Selected ROIs are superimposed over the CEUS data, each one with a dif-
ferent color. Whenmore than one ROI is selected and displayed, theremay
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Figure 7: Selection-based generation of the ROIs: the selections are displayedwith the num-
ber shown on their lower left, and can be processed with set/morphological operations (for ex-
ample, here 12 was generated by inverting 3 into 10, intersecting 10 with 8 into 11, and then
eroding11) . Whena selection is suitable, it canbepromoted toROI, and is shownon thebottom
area(a). ROIs can be analyzed singularly (b) or together (c). When multiple ROIs are analyzed,
the regions where two or more ROI overlap can be treated considering the uncertainty in that
area, and if the uncertainty is too high, the area is removed from all the conøicting ROIs, and
shown in grey.

be a partial overlap. However selections are not binary: as mentioned,
they contain pixel values within the [0,1] range. Therefore we developed
a voting scheme approach, that uses a user-speciàed threshold, to assign
these overlapping areas to the ROI they most likely belong to. It can be
formalized as follow:

ROI(x, k) =


i | ∀j ̸= i,

ROIi(x) > ROIj(x), if | {j | ROIj(x) > k} | ≤ 1
−1, if | {j | ROIj(x) > k} | > 1
−2, if ∀j, ROIj(x) = 0

(6)

When two or more overlapping selection in a pixel have a value greater
than the threshold k, then we cannot precisely determine to which of the
ROI that pixel belong. Therefore the pixel is assigned to an ”uncertain”
grey region (-1 in equation 6). Otherwise, the pixel is assigned to the ROI
that has highest value in that location (see àgure 7(c)). Once this voting
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Figure 8: Interactive visual analysis of a dataset with a liver lesion. One B-Mode image show-
ing the imaged anatomy (a). One contrast image from the dataset, showing diffuse enhance-
ment, where only vessels are highlighted (b). Similarity map for a point speciöed on the (pre-
sumably) healthy liver parenchyma, in green. The healthy tissue highlights, and also delineates
other structures in the liver, such as the vessels and the lesion on the left (c). Similaritymap for a
point speciöed on the lesion. The lesion highlights entirely (d). Similaritymap for the kidney (e).
ROIs deöned on the healthy tissue (green), lesion (red), lesion feeding vessel (blue) and kidney
(purple). In grey the uncertain area. (f ). TICs for the four ROIs. The lesion exhibits a kinetic sim-
ilar to the feeding vessel, much earlier (TOA and TTP) when compared with the healthy tissue,
similar peak enhancement, and almost iso-echoic behavior in the mid phase (g).

scheme has been applied, we have two different set of parameters avail-
able: those related to the original ROIs and those related to the ROIs after
the voting scheme has been applied. The two set can be analyzed sepa-
rately, or overlapped to convey the changes.

A.5 Results

With our approach we have analyzed a six CEUS datasets imaging focal
liver lesions. These datasets are representative for their respective diag-
nostic àeld, concerning spatial and temporal resolution, and also concern-
ing the observed enhancement behavior. Our application makes use of
the OpenCL computing framework to perform real-time measures extrac-
tion and PMCC computation operations. To be run, it requires a computer
supporting it. We therefore ran the application on a workstation with an
Intel Core CPU 2.5GHz and an nVIDIA GeForce GTX280 graphics card,
for which nVIDIA provides drivers that support OpenCL. From a perfor-
mance point of view, this system allows interactive exploration without
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particular delays using typical settings. Increasing the neighborhoods di-
ameter over 10 pixels, however, begins to generate waiting times even us-
ing the gpu to perform the computations. However, too large neighbor-
hoods bring no beneàts to the analysis, and particularly they cause a loss
of detail on the edges of the regions. We experienced that, even for datasets
acquired with high resolution probes, the neighborhood diameter should
not exceed a size of 7–9 pixels to prevent information loss.

A.5.1 Liver Lesion diagnosis

In the case of a liver lesion, the parameters that have to be evaluated to
assess the type of the lesion [149] are:

• the enhancement dynamics, to assess the type of vascularization in
the lesion

• the consistence of the enhancement in the lesion, e.g., if there are
multiple layers with different perfusion patterns

• the shape of the lesion

Case Study The patient suffered from áank pain and appeared to have
several liver lesions. Each one of them was separately imaged in a dedi-
cated perfusion examination. Here we describe the analysis of one of the
scans, which is also representative for the other cases we studied. The se-
quence is cut short (in time), before the contrast is completely washed out
from the area, thus containing only the arterial phase. It is enough data,
however, to assess the vascular structure in the lesion, together with its
shape and echogenicity. The resolution of the data containing the liver
and the right kidney is 240×240 pixels, with 257 timesteps, acquired at ap-
proximately 9 frames per second, for a total duration of about 30 seconds.

Visual Analysis The results of the visual analysis are illustrated in àg-
ure 8. After the data was loaded, the perfusionmetrics were automatically
extracted using the default settings for the neighborhoods size (diameter of
5 pixels for the spatial dimensions and 3 timesteps for the temporal dimen-
sion). The system also provided an enhancement proàle computed over
the whole enhanced area (thus excluding areas that are never enhanced) to
automatically identify the global TOA (TOA in the regions enhanced àrst).
The computation of the other parameters discarded all the information
prior to the global TOA. We then ran the cine-loop to identify frames with
alignment errors, so that they could be excluded from the analysis, and the
values interpolated using neighboring frames (Figure 8(g), the red bands
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on the plot represent timestepswith interpolated frames). After this proce-
dure was completed, we visually examined the map of the various param-
eters to identify the regions with the highest perfusion (Figure 4(b)). This
map highlighted the liver parenchyma, part of the kidney parenchyma
(that usually has a fast wash-out and thus a small AUC), and most promi-
nently the vessels as well as a region on the left not consistently deàned
among the maps. So we selected a pixel on the (presumably) healthy liver
parenchyma, to obtain a similarity map for the healthy tissue (Figure 8(c)).
We converted the similarity map for the healthy area into selection, to use
as reference (Figure 8(f,g) (green)). In the similarity map of the healthy tis-
sue, the non-consistently deàned region on the left gained a much sharper
contour, as it was very different in perfusion. So we investigated that area
by selecting a pixel, and obtained the similarity map for what turned out
to be a lesion (see àgure 8(d)). The lesionwas precisely highlighted andwe
converted it into a selection, and then we speciàed a rough lasso selection
over it, that we used to intersect the similarity-based selection (Figure 8(f)
(red)). We also noticed how the lesion was surrounded by an area with
higher enhancement on the right, presumably the supplying vessel. We
segmented it, using the similarity map, to compare the arterial input to the
lesion (Figure 8(f) (blue)). At this point, thanks to the similarity map, we
had assessed the composition of the lesion (single compound), the shape
(regular) and the size (diameter of about 3cm). Then we entered the last
stage of the analysis, and compared the perfusion in the lesion with the
perfusion in the healthy parenchyma (Figure 8(g)). We found that the le-
sion enhanced earlier than the healthy tissue (TOA and TTP), and in the
late phase it was almost iso-echoic. But the peak enhancement was lower
and in general the wash-out began slightly earlier, which indicates the ab-
sence of the portal phase. These features should characterize the lesion
as a rare hepatocellular adenoma (benign) [49, 149]. After the patient also
underwent a liver biopsy, the diagnosis was eventually conàrmed.

A.6 Conclusion

In this paper we demonstrated how interactive visual analysis can lead to
an improved analysis of CEUS data. For this application, we make use
of an innovative data processing step that extracts robust enhancement
measures from small spatio-temporal voxel neighborhoods to overcome
the challenges arisen from the peculiar characteristics of CEUS data. With
this approach, we can extract meaningful and realistic perfusion param-
eters even from this challenging data. We introduce the possibility to in-
teractively explore the data using an interactively generated parametric
map of similarity that improve the visual comprehension of the extent of
suspicious tissues, and of the relationships between different tissues with
respect to the perfusion enhancement pattern. Such approach showed a
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good potential also when compared with automatic segmentation tech-
niques such as automatic clustering, using the same similarity function.
Here, the real-time interaction and feedback from the system provides the
userwith a better understanding of the data. By using such similaritymap,
it is also possible to automatically derive selections of homogeneously per-
fusing tissue highlighted in the map. Speciàed selections can be quickly
combined into ROIs, that can eventually be analyzed and compared to as-
sess the tissue condition. Compared to the available solutions, our sys-
tem provides a faster and more accurate method for identiàcation and
segmentation of the ROIs, which has the potential to lead to a more ac-
curate diagnosis. The solution presented here is the result of an interdis-
ciplinary cooperation – between a team of technologists (visualization re-
searchers with a background in computer science) and physicians (with
a background in gastroenterology). The cooperation extended over the
whole process from the initial assessment of limitations of current solu-
tions all the way to the iterative improvement of the presented technology
and to its initial informal evaluation studies. In the informal evaluation
we discussed the approachwith two experienced gastroenterologists, both
familiar with CEUS in the clinical routine. Both were positive toward the
interactivity of the application, and that the presented approach may be
useful for the extraction of ROIs and their analysis. The interaction re-
quired for the selection processing step has proved to be relatively easy to
understand and to use. As future work, we plan to perform a more thor-
ough comparison of our approachwith existing tools for CEUS analysis, to
investigate more thoroughly the impact on the analysis of the misaligned
frame removal strategy and to try to apply the presented technique to dif-
ferent kind of perfusion data, e.g., DCE-MRI.
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Figure 1: (a) A timestep of an aortic øow dataset in its anatomical context, rendered using a
conventional streamline visualization. (b) Side-by-side visualization of the straightened vector
öeld, showing all the timesteps juxtaposed. The streamlines traced from the örst seeding plane
are rendered in focus, and the others in grey as context.
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Abstract

Flows through tubular structures are common in many àelds,
including blood áow in medicine and tubular áuid áows in
engineering. The analysis of such áows is often done with a
strong reference to the main áow direction along the tubular
boundary. In this paper we present an approach for straighten-
ing the visualization of tubular áow. By aligning the main ref-
erence direction of the áow, i.e., the center line of the bounding
tubular structure, with one axis of the screen, we are able to na-
tively juxtapose (1.) different visualizations of the same áow,
either utilizing different áow visualization techniques, or by
varying parameters of a chosen approach such as the choice of
seeding locations for integration-based áow visualization, (2.)
the different time steps of a time-dependent áow, (3.) different
projections around the center line , and (4.) quantitative áow
visualizations in immediate spatial relation to the more quali-
tative classical áow visualization. We describe how to utilize
this approach for an informative interactive visual analysis. We
demonstrate the potential of our approach by visualizing two
datasets from different àelds: an arterial blood áow measure-
ment and a tubular gas áow simulation from the automotive
industry.

B.1 Introduction

Tubular áows are studied in many àelds, such as in medicine and engi-
neering. The visual exploration and analysis of such áow data can be
challenging, due to the often varied geometry and topology of the áow,
and due to a larger number of aspects of the data that are of interest, in
particular in time-dependent áow. These aspects include various scalar
attributes, such as áow velocity, pressure and vorticity (see Section B.2 for
a collection of surveys on this topic), as well as derived attributes. On the
visualization side, the variation of seeding structures, integration length
and the type of primitive for an integration-based visualization, different
time steps of the áow, and the variation of other visualization parameters
are also aspects of interest.

To enable an analysis that is based on several such aspects, it becomes
interesting to consider different views on the data as well as the relation
between these views. Different strategies for integrating different visual-
izations have been proposed: interactive tools for the visual exploration
with multiple, coordinated views [33, 113], the fusion of different visual-
izations in the same view [48, 83, 133], and placing different views side-
by-side [182]. Image fusion techniques are powerful tools, as they can
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visualize multiple aspects of the data in the same reference frame, thus
allowing to easily and effectively relate them to each other. On the down-
side, there are rather limiting restrictions on how much can be fused in
a single image. Side-by-side visualizations, instead, can integrate more
views of the data, only limited by the overall available space. Moreover,
being thess visualization simpler when compared to others, they are gen-
erally easier to read and interpret. Additionally, they can also be used to
show the same attribute over multiple time-steps or visualized with dif-
ferent parameters, thus enabling alternative types of visual comparison.
Last, they can also be combined with image-fusion techniques, leading to
side-by-side visualizations of fused views. In terms of limitations, it takes
additional space to juxtapose views, so the number of views that can be
placed side-by-side is also limited. Second, relating separated views is not
a straightforward process, as they are not speciàed in a common reference
frame anymore. Previouswork [182] suggests that the question ofwhether
or not to use side-by-side visualization also depends on the application at
hand and on which advantages/disadvantages to prioritize. Our contri-
bution addresses the cases where a side-by-side visualization is preferred.

We propose a new solution to the side-by-side visualization of tubular
áow datasets. In order to effectively juxtapose views of tubular áows, we
introduce the concept of straightening the áow visualization (e.g., stream-
lines or pathlines) along the center line of the bounding tubular structure,
often being the main reference direction of the áow. Using this approach
multiple views can be aligned with one axis of the visualization and made
parallel to each other along the straightened center line. With such a side-
by-side layout it becomes possible to relate different views in the visual-
ization in a straightforward way, as well as making the visualization more
compact, allowing to have more views at the same time.

In this paper we àrst describe how to realize such a straightened vi-
sualization. Then, we show how the presented approach has been used,
in Section B.4, to visualize two tubular áow datasets: a Phase-Contrast
Magnetic Resonance Imaging (PC-MRI) scan of a human aorta, containing
time-dependent measurements of the blood áow, and a CFD simulation
of the exhaust system of a racing engine. Conclusions and future work are
presented in Section B.5. A discussion of related work is presented in the
next Section.

B.2 RelatedWork

Flow visualization is an active research topic for over two decades. An
extensive body of related literature exists, and many useful surveys exist
as well. Post et al. [143, 144], as well as Laramee et al. [95, 96], Peng and
Laramee [138], McLoughlin et al. [112], Salzbrunn et al. [162] and Pobitzer
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et al. [142] have published extensive and informative surveys on different
aspects of áow visualization.

Considering speciàcally the visualization of tubular áow, Nobrega et
al. [125] simulated tubular áow in its context, relying on the centerline
of the boundary structure for which they propose a novel extraction al-
gorithm. Lež et al. [103] propose an interactive visual analysis approach
for studying pathlines, using projections of the dataset for the selection
process and to cope with the complex topology of the áow and its tubu-
lar context. More domain-speciàc work has been done, in particular in the
àeld of medical visualization. Van Pelt et al. [180] incorporated illustrative
visualization techniques in an application for visualizing blood áow in the
aorta and other large vessels, introducing áow-rate arrow trails. Markl et
al. [110] presented a comprehensive 4D visualization of the blood áow in
the heart and great vessels by using glyphs, streamlines and pathlines, as
well as exploded views with information visualization techniques.

One of our main goals was to enable an efàcient comparison of the dif-
ferent aspects of the tubular áow data. Previously, Verma and Pang [182]
presented a tool for comparing áow data. An important contribution of
their work is the distinction of three possible levels of comparison in áow
visualization: image-level, data-level and feature-level. They describe the
major drawback of image-level comparison as “it leaves the burden on
the users to identify regions of difference and to quantify the differences
themselves”. Our approach eases the comparison by using the main di-
rection of the áow to align multiple visualizations, paralleling each other,
so that it becomes straightforward to relate the side-by-side views. Jones
and Ma [73] have also adopted a similar concept to ease image-level com-
parison, by projecting integrated lines onto the three Cartesian planes.

Relevant work has also been done for reforming tubular structures into
a plane, also here in particular in the àeld of medical visualization. Vi-
lanova et al. [184] perform a 2D reformation of 3D human colon data.
They extract the colon centerline, and use it for performing nonlinear ra-
dial raycasting, producing a áattened viewof the internalwall of the colon.
Kanitsar et al. [75] presented curved-planar reformation (CPR) approaches
for entire vascular trees. Borkin et al. [18] also created projections of the
coronary artery tree, mapping it to a 2D tree chart, where each vessel is
straightened and depicts its endothelial shear stress. Ropinski et al. [156]
applied áattening techniques to volumetric scans of mice aortas, to pro-
vide a navigational tool that links 2D and 3D visualizations of their multi-
modal dataset. Curved-planar reformations has also been applied to other
anatomical organs. Vrtovec et al. [190] appliedCPR to human spine datasets:
this work enabled the comparison of all the vertebrae in a single visual-
ization, without the need of slicing through the volumetric scan. Daae
Lampe et al. [93] presented a new technique to perform curve-centric vol-
ume reformation (CCVR), straightening the original 3D scalar data into a
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Figure 2: Illustrative overview of the proposed approach to realize a side-by-side visualiza-
tion of tubular øow based on straightening the øow domain. In the side-by-side visualization
the seeding structure has been varied in order to study different seeding locations.

new volume, centered around a 3D curve. This can be considered as warp-
ing the space, and previously Chen et al. [25], as well as Correa et al. [28],
proposed generalized space warping methods, based on spatial transfer
functions and generalized displacement mapping.

The method presented in our paper pursues the same purpose, how-
ever targeted not only to scalar data, but especially to vector àeld data.
In the following we àrst describe how to realize straightened side-by-side
visualizations of tubular áows before we then demonstrate our approach
in the context of two application examples.

B.3 Method

In the following we present our method for creating straightened side-by-
side visualizations of tubular áows, as illustrated in Figure 2. The method
can be used to complement regular visualizations of tubular áows, in or-
der to statically visualize multiple aspects of the data at once, including
the time dependency. We describe themethod in two parts: àrst, two tech-
niques for generating straightened visualizations of tubular áows, deàned
as vector àelds on a Cartesian grid; then, a set of techniques to assemble
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Figure 3: Twopaths to realize a straightened visualization of tubular øowdata: straightening
øow visualization or visualizing straightened øow.

these straightened views in order to create efàcient side-by-side visualiza-
tions. The àrst part is described in the next Section, while the second part
is described in Section B.3.2.

B.3.1 Centerline-centric tubular øow straightening

Conceptually, visualizations of straightened tubular áow can be generated
using two different approaches (see Figure 3):

Straightening the áow domain: this approach performs a curve-centric
vector àeld reformation (CCVFR), to generate a deformedvector àeld,
straightened along the centerline of the tubular structure. In the sec-
ond step, any áow visualization technique can be used directly to
visualize this reformed vector àeld, producing straightened views
of the áow. To perform the CCVFR, we introduce a method that ex-
tends the algorithm proposed by Daae Lampe et al. [93], such that
it can be used to reform vector àelds. This method is described in
Section B.3.1.

Straightening the áow visualization: this approach generates the prim-
itives used for visualizing the áow, such as streamlines, pathlines,
or more complex visualization cues, in the original áow domain.
These generated visualization elements are subsequently deformed
into the straightened domain using the centerline as reference. We
describe an algorithm to performs this operation on line primitives
in Section B.3.1.

The advantage of the àrst approach is the simplicity of producing áow
visualizations: once the vector àeld is reformed, any existing áow visu-
alization technique can be used without modiàcation. This also avoids
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performance penalties when compared to visualizing the original data.
On the downside, the vector àeld reformation process may introduce nu-
merical inaccuracies. Reforming visualization cues, on the other side, pro-
duces an exact straightening of the visualization primitives, at the cost of
a higher computational complexity. Moreover, this approach requires a
tailored algorithm for each áow visualization technique to be realized. In
order to combine the best of both approaches and to avoid the mentioned
drawbacks, we realize a hybrid scheme, that renders the straightened vec-
tor àeld data during user interaction, to keep the system interactive. The
second approach is then used on demand, to produce an as accurate as
possible straightened visualization. Performance and error analysis are
described in section B.4.3.

Prerequisites

The straightening operation, that is integral to both of the approaches,
grounds on the deànition of a curvilinear coordinate system that is con-
structed along and around the centerline through the áow tube. Concep-
tually, we can consider a moving frame, similar to the Frenet frame of a
curve [44], following the centerline of the structure bounding the áow, and
thereby tracing the curved, centerline-centric, frame of reference for this
tubular object. This moving frame is used to extract oriented cross-planes
orthogonal to the centerline, and eventually to deàne a new grid for the
data. Details on how to generate this grid within the curved structure are
given in Section B.3.1. Before, however, we describe how to extract the
centerline itself, and how to compute the frame along it.

There exist several techniques for extracting centerlines, both from ge-
ometric data [125] and from volumetric data [27, 99, 183]. To demonstrate
our method in Section B.4, we use the approach proposed by Cornea et
al. [27], previously also used in other works [156]. This approach oper-
ates on volumetric data, and extracts the skeleton of an object using a po-
tential àeld. The skeleton consists of a set of segments, which need to be
connected in order to create the ànal centerline. For the cases shown in
this paper, we extracted the lumen of the tubular objects automatically,
by thresholding a scalar volume containing the maximum magnitude of
the vectors over all the time steps. For the aorta dataset, this extracted
structure has been semi-automatically reàned using the ITK-SNAP tool,
to increase the accuracy and remove other vessels. However, different au-
tomatic techniques for 3D vessel lumen segmentation could also have been
used, and Lesage et al. [101] provide a comprehensive survey on the topic.
Once we extracted the object skeleton, we computed the ànal centerline
using a tool based on the Visualization Toolkit (VTK), helping to pick and
connect together the skeleton segments. This process could also be autom-
atized [156], but, for our purpose, it did not require further reànements.
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Given a curve, such as the above-mentioned centerline, several meth-
ods for computingmoving frames are available, andDaae Lampe et al. [93]
provide a useful survey on this topic. In their paper, they also propose a
modiàed version of the Frenet-Serret formulas for computing a moving
frame [44], achieving a curve-centric (scalar) volume reformation (CCVR).
The Frenet frame is, in fact, limited to twice continuously differentiable
curves. By using a constant, user speciàed up vector to compute the binor-
mal in a curve point, the authors both achieve a àxed frame orientation
for the whole reformation, and a deànition of the binormal (and subse-
quently of the normal) also where the curve is straight, and the derivatives
would be vanishing. They also convolve the tangent and the normal with
a smoothing kernel to prevent an exceeding roughness of the curve. In-
terpolation, in their case, is performed in spherical coordinates, to prevent
abrupt sign changes of the vectors. This technique has, however, the ob-
vious limitation that it is not applicable in those points of the centerline
where the normal is parallel to the user-speciàed up vector.

To overcome this limitation, we extend this method by using a user-
speciàed up vector (that also deànes a àxed frame orientation around the
centerline) only in the initial point of the centerline. We observed that
the centerline is subdivided in segments by a number of evenly spaced
positions along the line, depending on the desired amount of orthogo-
nal cross-planes. For the binormal computation in the current position,
our method uses the normal in the previous position as the “suggested”
up vector. With a smoothly varying tangent and a sufàcient density of
points, this approach does not incur the case when the normal is parallel
to the tangent. Therefore it becomes possible to reform tubular structures
without being limited to bends of less than 90 degrees along the normal
direction. In our visualizations, we always visualize the áow in its con-
text, e.g., the boundary surface of the tubular structure, that we consider
as the primary orientation cue. Therefore, this enhanced computation of
the moving frame is also used in our prototype to implement a standard
CCVR for the áow context. The CCVR method makes use of quads of
user speciàed side length to bound the resampling of the original data on
evenly spaced planes along and around the centerline (not at the least to
prevent the resampling in regions where these planes intersect).

Physical space, tubular space and the straightened space

The centerline with its orthogonal cross-planes can be seen as a skeleton
bounding the tubular áow. The main idea behind this work consists of
using this skeleton to “superimpose” a new curvilinear grid on the data.
This grid is used to perform a curve-centric reformation of the vector àeld,
by transforming the vectorswith the inverted Jacobianmatrix of the grid in
each sampling position [160]. This grid is also used to compute “reference”
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Figure 4: We consider three spaces: the data is given as a Cartesian grid (spaceP ). A curvi-
linear grid is constructed along and around the centerline (space T ), and after the reformation,
this grid becomes a new Cartesian grid (in space S).

intersection points between integrated lines, such as streamlines, and the
cross-planes, in order to map each line to the straightened space.

Let us àrst formally introduce the three different spaces we are con-
sidering. The àrst space, P , is the original physical space, in which the
data, the centerline and the modiàed Frenet frame are deàned. The sec-
ond space, T , is the tubular space deàned by the moving frame. Finally,
the straightened space, S, is the space produced by the reformation, and it
is a Cartesian grid.

Normally, P is deàned by the application, and in the cases presented
here it is a Cartesian grid. T , instead, is “traced” by the moving frame
along the centerline, which generates a curvilinear grid. Assuming a sub-
division of the centerline in n segments of equal length (the number of
segments is controlled by the user), there are n + 1 evenly spaced points
pP
i (0, 0) along the centerline, given inP coordinates. For each i , 0 ≤ i ≤ n,

the uvn basis Bi of the moving frame in the point pP
i (0, 0) is deàned by

u = bi , v = ni , n = ti (1)

where, in pP
i (0, 0), ti is the normalized tangent to the centerline, ni is the

unit normal and bi the unit binormal. The vectors ti, ni and bi are also de-
àned inP coordinates, and they are computed as described in SectionB.3.1.
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Figure 5: Intersections (in red) of the line traced from thepoint I0 (a) skeletonof the lineusing
only the intersection points (b). Straightened skeleton in S space, by performing the mapping
fromP to S of the intersections (c).

In every point pP
i (0, 0), the plane Pi, orthogonal to the centerline, is implic-

itly deàned by pP
i (0, 0) and ti (the normal vector of the plane). Further-

more, let sectori be the region enclosed between the two planesPi andPi+1

.
To generate the tubular grid of radius r and resolution susing thismov-

ing frame, which creates T , we deàne the grid points around each pP
i (0, 0),

lying in the plane Pi, as

∀x, y ∈ Z : −s ≤ x, y ≤ s , pP
i (x, y) = pP

i (0, 0) +
r

s
xbi +

r

s
y ni (2)

The edges of the curvilinear grid are then deàned between points pP
i (x, y)

and pP
i±1(x, y), and between pP

i (x, y) and pP
i (x±1, y±1), forming hexahe-

dral cells (see Figure 4 for an example in 2D). Equation 2 deànes amapping
from S to P ; the inverse mapping from P to S of a point [x, y, z]Pi lying on
the plane Pi is deàned by

[x, y, i]S = B−1
i ([x, y, z]Pi − pP

i (0, 0)) + [0, 0, i] (3)

Finally, S is deàned by the grid points of T expressed with respect to their
basis Bi, forming a new Cartesian grid, that is the straightened grid T .
It should be noted that the space T is given in P coordinates, while it is
parametrized in S coordinates. In the following it is sufàcient to only con-
sider the two spaces P and S.

Centerline centric line straightening

With this approach the computation, e.g., by integration, of line primi-
tives, such as streamlines, is performed in the original vector space P . To
straighten them, we use an algorithm that creates a parametrization of the
points using the local bases from the moving frame. This algorithm per-
forms a piecewise reformation of a line by using the planes Pi, deàned by
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Figure 6: Example in 2D of a point p to be reformed, lying in sectori (a). Elements of the
reformation, needed to compute qi and qi+1 (b). Reformed p′ in S space, computed through
the points q′

i and q
′
i+1.

the tangent of the moving frame, as reference (see Figure 5). These planes
are deàned in a discrete number of equidistant points along the centerline
(see Figure 4). From Section B.3.1 we know how to straighten points that
lie in planes Pi, using equation 3. To create a straightened skeleton of a line,
integrated from a seed point pP

i (r, s) lying in plane Pi, we could compute
all the intersection points of the line with the planes it intersects during the
integration, and then transform these intersections from P into S.

The following description of the tracing algorithm assumes that the
àrst integration step goes in the direction of ti, the opposite case is sym-
metric and we omit a detailed description here. First, let lk be the position
of the integration front in P coordinates after k integration steps. In the
algorithm, we perform, at each integration step k, an intersection check
against the next plane Pi+1, and, if it fails, against the current plane Pi, if
the sign of the dot-product [lk − lk−1] · ti is negative or it is 0. If the dot
product is positive we check solely against Pi+1. Intersection points are
then reformed into S using equation 3. During the integration, we keep
track of the current sector i, containing the integration front, and, at each
intersection, we generate a reformed point using the formula described
above, and we update the current sector.

Reforming also the points between two consecutive intersection points
requires amean towarp the space between two consecutive planes. There-
forewe created a parametrization for points known to lie in a sectori based
on the enclosing planes (illustrated in 2D in Figure 6). Let us assume, for
now, that the two planes Pi and Pi+1 are not parallel. Then, assuming that
we want to reform the point p, the algorithm can be described as follows:

1. Compute the line L of the intersection between the two planes Pi and
Pi+1.

2. Compute the vectors lvi and lvi+1, orthogonal to L, and going from
L to the center points pP

i (0, 0) and pP
i+1(0, 0) of the quads lying on
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the two planes. Let lvni and lvni+1 be the normalized versions of
lvi and lvi+1.

3. Compute the vector lvp, orthogonal to L, going from L to the point
p. Compute also the point lp as the intersection between L and lvp.
Let lvnp be the normalized version of lvp.

4. Compute the point qi = lp+
lvni | lvp |
lvnp·lvni

. Similarly, compute qi+1.

5. Compute the vector vqi = [qi − pP
i (0, 0)]. Similarly, compute vqi+1.

6. Transform the vector vqi to S, by computing vq′
i = B−1

i vqi. Simi-
larly, transform vqi+1.

7. Compute the point q’i = [0, 0, i]S + vq′
i. Similarly, compute q’i+1.

8. Compute the reformed point p′ = q′
i + [q′

i+1 − q′
i]

| [p−q
i
] |

| [q
i+1

−q
i
] | .

If the planes are parallel, it is sufàcient to compute qi and qi+1 as the in-
tersection of the line p+ s ti with the planes Pi and Pi+1 respectively, and
then start from point 5. Note that steps 1 and 2 are the same for each point
in a sectori, and can, in fact, be precomputed. This approach produces
accurate line reformations, meaning that the positions along the reformed
line in S are the reformed positions along the line in the original space P .

Centerline centric vector öeld reformation

Obtaining a local, and smoothly varying, coordinate frame for every point
on a curve allows to perform a straightforward curve centric resampling
for scalar volume straightening. However, to reform vector data, it is nec-
essary to transform not only the vectors’ magnitude, but in particular their
direction. Transforming a vector u, deàned in the original spaceP , into the
vector v, deàned in S, requires to compute the Jacobian matrix J for the
grid point of the space S where u is sampled. J contains the partial deriva-
tives of the grid (in P coordinates) with respect to S in the same point. Let
pP
i (x, y) be a point in T expressed in P coordinates. Then, the Jacobian

J(x, y, i) is deàned as(
∂pP

i
(x,y)

∂x

∂pP
i
(x,y)

∂y

∂pP
i
(x,y)

∂i

)
As the grid in the space T is actually deàned by our moving frame along
the centerline, we know the grid vertices in the neighborhood of pP

i (x, y),
as they are connected by the edges as deàned in Section B.3.1. In any point

of the grid in T , the components
∂pP

i
(x,y)

∂x and
∂pP

i
(x,y)

∂y are given by the
vectors bi and ni. Thus, the only component that has to be estimated to

build the matrix J(x, y, i) is
∂pP

i
(x,y)

∂i . This term can be approximated, for
example, by using one of three differential operators: central differences,
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forward differences or backward differences, as described also by Sadar-
joen et al. [160]. For our purposes, we use a mixed forward and backward
difference operator, depending on the sign of the dot product of the vector
vPi (x, y), sampled in the point pP

i (x, y), with the normal ni. This way we
introduce less smoothing, compared to using central differences.

We therefore modify the CCVR method [93] to handle vector data, us-
ing the following equation

vecSi (x, y) = J−1(x, y, i)vecPi (x, y) (4)

If pP
i (x, y) is not a grid point of the data space P , vecPi (x, y) has to be re-

constructed using an interpolation scheme. In case of vector data this op-
eration can be done in different ways. The simplest approach is to perform
a per-component trilinear interpolation. However, in case of a vector àeld,
this might not be the best solution, as it linearly interpolates only the direc-
tion of the vectors, not the length. A different approach, that we adopt in
our prototype, consists of using spherical linear interpolation (slerp) using
quaternions, in order to interpolate also vector lengths.

This method generates a straightened vector àeld, and primitive inte-
gration as well as other áow visualizations can be performed directly in S,
without the need of subsequent reformation. However, due to numerical
inaccuracies, this approach and the one presented in Section B.3.1 might
not lead to identical results. We have compared this approachwith the one
described in Section B.3.1, and the results are presented in Section B.4.3

B.3.2 Side-by-side straightened øow visualizations

By complementing the visualization of the original data with a juxtaposition
of views of the straightened tubular áow, we aim to, àrst, provide a com-
mon axis for the alignment and co-registration of different views of the
data, to easily relate them to each other. This also allows to create compact
visualizations that give good overviews of the data, even combining differ-
ent visualization techniques. Third, we want to statically convey the data
variations over time, in case of unsteady áow datasets. Last, we want to
help comparing different aspects of a dataset (such as different time points,
or different descriptors), or even different datasets (as in population stud-
ies). In the next Section we describe a set of techniques to handle such
straightened views properly, in order to create side-by-side straightened
visualizations that fully exploit the possibilities that this method offers.

Visualization design and layout

When assembling the visualization, particular attentionmust be put in the
combination of the views. First, the straightening axis in the views should
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Figure 7: Design approaches to a side-by-side visualization of straightened tubular øow:
straightened views should be aligned to one of the screen axes, and juxtaposed along the other.
The örst axis also serves to place navigational widgets to interact with the visualization along
the centerline. The second axis is used to relate different views to each other. Informative visu-
alizations, such as a line graph or a histogram of the øow magnitude can also be placed along
the centerline, to provide quantitative information (a,b). Orientation cues are needed for orien-
tation: we use volume rendering of the physical context, with contours, to convey the physical
space. For additional orientation cues, we add glyphs (c). Interaction with the visualization
should be modiöed to allow only meaningful camera transformations. We use only rotations
around the two axes used for the alignment (d,e).
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be aligned to one of the screen axes, in order to facilitate the juxtaposi-
tion and the alignment of several views. Having the reformed centerline
aligned to one of the screen axes also allows to minimize the space in be-
tween different views. This alignment also allows to combine visualiza-
tion of the actual data (such as standard áow visualization techniques)
with more abstract visualization techniques, such as a line graph plotting
certain quantities along the centerline (see Figure 7(a,b)). In such setup, it
becomes possible to use the centerline axis as navigational tool: it can be
used for operations such as cross-section placement and movement, and
length measurement (see Figure 2).

Second, special attention must be put in conveying the shape of the
reformation, in order to enable the viewer to easily relate positions and
directions in the reformed view to positions and directions in the original
space. We propose to use two kind of orientation cues. The primary cue
is the rendering of the reformed tubular structure around the áow as its
spatial context. To do this, we perform volume ray casting of the straight-
ened context, instead of rendering the extracted isosurface. This allows us
to perform fast and correct depth-buffer based alpha blending with the in-
tegrated geometric primitives, such as streamlines, in a single (modiàed)
ray casting pass, without the need of performing expensivemulti-pass ren-
dering techniques, such as depth-peeling. In addition, we propose to use a
number of “i-shaped” glyphs along the projection of the normal and of the
binormal onto the áow bounding structure (see Figure 7). The body color
of these glyphs encodes the distance from the beginning of the centerline,
while the dot color encodes the projection axis (green dot = glyph above
the normal, blue dot = glyph above the binormal). In this way we help
the user to orient and understand from which viewpoint she is looking at
the áow. These glyphs, in combination with a speciàed number of isocon-
tours of the tubular structure, also help the user relating a region along the
centerline “axis” between the conventional view and the reformed side-
by-side visualization.

The proposed side-by-side layout also introduces some challenges in
the interaction process with the visualization. Rotating the visualization
with the classical joystick or trackball paradigms, in particular, might be-
come unfeasible. For this reason we enable only 2 rotation methods: per-
view rotation around the centerline axis, and global rotation around the
other screen axis (see Figure 7). This method proved to allow thorough ex-
ploration of the straightened data, while, at the same time, being intuitive
and error-proof, preventing that the usermight “get lost”while interacting
with the visualization.

Straightened side-by-side visualization

In this section we illustrates some of the visualization opportunities of-
fered by juxtaposing straightened áow views. The most obvious opportu-
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nity is to visualize many timesteps of an unsteady áow at the same time,
aligned along the same axis, as shown in Figure 2. In this way it is possi-
ble to convey the temporal evolution in one single, compact visualization,
that also allows to immediately relate the same region (position along the
centerline) of the áow in different timesteps.

Another possibility consists of generating a compact, thorough view of
the áow from different angles (see Figure 7(d,e)). This is particularly use-
ful when inspecting tubular structures in complex shapes, for which few
projections might still not make all the áow content visible. With only few
views of the straightened áow from equiangular view points it becomes
possible to inspect the áow from all possible sides.

Finally, this technique permits the juxtaposition of different types of
visualizations side by side and relate them with each other. As an exam-
ple, in Figure 8 we show a composition of pairs of visualizations, show-
ing pathlines at each timestep next to the representation of the vector àeld
at the same timestep. The clear advantage is again the simplicity of spa-
tially relate the different aspects of the same data (the timestep). In Fig-
ure 2(right) different aspects of the same timestep (streamlines integration
from different seeding planes) are also placed side by side, highlighting
the contribution of each seeding plane to the result, on the left side.

B.4 Realization and evaluation

To use our technique, we developed a prototype, making partly use of
VTK. In the prototype we implemented streamline and pathline tracing
on the GPU, using geometry shaders [180]. We also implemented abstract
visualization techniques such as line graphs and histograms (of averaged
velocity), to demonstrate the simplicity of combining classic áow visual-
izations with other data visualization methods in an intuitive way. The
proposed approach can, however, be also used with other types of áow vi-
sualization. We used our prototype to successfully visualize two datasets
from different àelds, which we describe in the next sections.

B.4.1 Aortic øow visualization

Magnetic Resonance Imaging (MRI) is one of the fastest developing imag-
ing technologies inmedicine. Recently, improved time-resolved 3D Phase-
ContrastMRI (PC-MRI) has been successfully used to image the bloodáow
in the human body. Bock et al. [15] provide an overview of this imaging
modality describing the characteristics of the generated data. The dataset
we visualize is a vector àeld of a human aorta, speciàed on aCartesian grid
with a resolution of 192 × 144 × 24 voxels in x, y and z respectively, con-
taining 13 time steps acquired at a time resolution of about 50milliseconds.
The spatial resolution of the scan is [1.67mm, 1.67mm, 3.5mm] in x, y and z,
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Figure 8: Timesteps from 0 to 6 of the aorta dataset, visualized with pathlines and glyphs
illustrating the vector öeld. Each pair of views shows the glyphs rendering of the vector öeld at
the last time point stated on top, and the pathline integration from time 0 to the last time point.

for an imaged volume of 32× 24× 8.5 cm. To simplify the handling of the
signiàcant anisotropy of this dataset, we decided to upscale the dataset
to an isotropic grid beforehand. The aorta was segmented as described
in Section B.3, and the computed centerline of the arterial wall measured
about 30cm. The centerline was subdivided in segments of voxel-length to
minimize resampling artifacts, and the straighteningwas performed using
quads with a side length of approximately 7.5 cm, with a transversal re-
sampling resolution of 49 × 49 voxels (approximately the same resolution
of the data). Figure 1 shows all the timesteps side by side using stream-
lines with a àxed seeding grid and 3 seeding planes, presenting the whole
time-lapse with static time dependency. In Figure 2 we investigate a single
timestep, by separating the seeding body into different views, to prevent
streamlines overlapping. Finally, In Figure 8 we show the evolution of
pathlines integration, from timestep 1 to 7, together with the vector àeld
at each timestep. In this way we effectively combine different methods in
a side-by-side visualization of the áow.

B.4.2 Exhaust system øow visualization

This dataset contains the simulation results of an exhaust system with 3
collectors from the cylinders and a common rail for the emission. The
dataset is a vector àeld speciàed on a Cartesian grid, with resolution of
133 × 82 × 68 voxels in x, y and z respectively, over 30 time steps. We
computed the centerline starting at the beginning of the àrst collector to
the end of the rail, thus analyzing the behavior of this part of the system.
The centerline was subdivided again in segments of voxel-length, and the
straighteningwas performed using quads of radius 20 voxels. In Figure 10
we visualize a time lapse of the áow, from timestep 0 to timestep 17, us-
ing streamlines, traced from 3 seed planes placed after each collector. The
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Figure 9: Synthetic dataset, a curved tube containing helical øow, with four streamlines
seeded at the beginning of the tube, along the radius (a). The same dataset, straightened, with
streamlines integrated in the reformed øow (red) and in the original øow and then deformed
(green) (b). The average distance between the pairs of lines is 0.10 voxel, while the maximum
distance is 0.21 voxel.

image clearly conveys the valves opening sequence (ts 1 = 2, ts 6 = 1, ts 14
= 3), and the curve of the decreasing velocity after the closure.

B.4.3 Performance and Error Analysis

We have compared the performance of standard streamline integration
performed on the reformed vector àeld with the approach presented in
Section B.3.1, using a CPU implementation of both algorithms on an Intel
Core2 2.4ghz processor. We seeded 1000 streamlines on plane P0, the be-
ginning of the centerline, on both the aorta and the manifold dataset, and
used 1000 integration steps, with a step size of 0.25 voxel, on 10 different
timesteps of each dataset. After averaging of the results, the standard in-
tegration took 0.65 seconds to complete this task seconds, while the line
straightening method required 3.75 seconds. The second algorithm also
showed higher variance in the results. This behavior can be explained con-
sidering that some timesteps contains low velocities, and the integration
crosses only few sectors along the centerline, lowering the computational
complexity. The conclusion is that the accurate approach is about 6 times
slower than the other one.

We then carried out an error analysis to compute the average andmax-
imum gap between lines traced with the two approaches, when they are
seeded at the exact same locations. We measured the error by stepping
along each pair of lines (the one integrated in the reformed àeld and the
one straightened), using a step size of 0.25 voxel. At each step, wemesured
the distance between the corresponding locations along the two lines. The
table below reports the average andmaximumdistance (expressed in voxel
units) for the different datasets, averaged over 1000 streamlines and traced
on 10 different timesteps. For this analysis we also added a synthetic
dataset proposed by Roth and Peikert [158] (see Figure 9), consisting of
a helical áow inside a bent pipe, for which the centerline is known. This
analysis shows that themeasured PC-MRI dataset is the onewhere the vec-
tor àeld reformation leads to the largest error. One of the reasons could be
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Aorta Exhaust Manifold Bent pipe
Average Diameter 23 24 18
Average Error 1.17 0.39 0.33
Maximum Error 1.83 1.07 0.72

Table 1: Average and maximum distance between streamlines integrated in the reformed
vector öeld and streamlines straightened after the integration in the original öeld. The values
are expressed in voxels.

Figure 10: The exhaust system, volume rendering (a) Static time lapse visualization of the
straightened øow in the exhaust system dataset, timesteps from 0 to 17 (b).

that the extracted centerline is not 100% accurate, and therefore the cross
planes do not result perfectly orthogonal to the vessel. This may lead to
inaccurate Jacobian computation for the two transversal components, that
are taken directly from the moving frame. We can conclude that a cru-
cial aspect of our technique is a robust and accurate centerline extraction
algorithm, to be able to accurately integrate the reformed vector àeld.
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B.4.4 Evaluation

TheCardiovascularMRIGroup at theUniversityMedical Center Freiburg,
Medical Physics department, very kindly provided us with an informal
evaluation of the presented technique, that we demanded in order to un-
derstand how possible end users would beneàt from it. This evaluation
is composed of general impressions and of answers to speciàc questions
we asked. In general, the reformatting of the aorta has been seen as po-
tentially useful to compare some hemodynamic parameters (such as wall
shear stress or pressure differences), also across a population. However,
in this case one would need some kind of aortic atlas, and then map the
dataset onto this atlas (a starting point for this mapping could be actually
found in the work of Ropinski et al. [156]). There was also some uncer-
tainty about how the visualization would look in presence of an aneurysm
or a stenosis. The group also believe that medical personnel is more accus-
tomed to seeing the bloodáow in its original context, andwould, therefore,
require a certain training in order to proàt from the proposed method.

The speciàc questions we asked to the Cardiovascular MRI Group in
Freiburg were what kind of visual comparison are they interested in, whe-
ther this approach would ease the comparison of integrated lines in the
aorta, andwhat are other parameters typically investigated. Thenwe asked
whether they think that physicians would proàt from this technique as
well, and what do physicians generally look at, in such data. According to
their answers, at the present they do not perform that much comparison
visually, but the presented approach could be useful to compare hemo-
dynamic parameters, while other typical parameters of interest along the
vessel are helicity and vorticity. The presented approach has been seen
as deànitely easing the comparison of integrated lines from their point of
view, but, from amedical point of view, pysicians are currently very accus-
tomed to the original shape of the vessel. Last, visual features of interest
from the medical point of views are helices, vortices, and retrograde áow
at late timepoints.

From this evaluation we can conclude that domain experts could proàt
from this áow straightening techniques, but some training is necessary.
However, there have been other cases of reformation techniques which
required a certain learning, before being embraced in the clinical routine,
such as the curved-planar reformation of the human vessel tree [75].

B.5 Summary and conclusions

In this paper we present a general solution for producing straightened
tubular áowviews by applying standardáowvisualization techniques to a
straightened vector àeld along the centerline of the tubular object. In addi-
tion, we presentedmultiple techniques for composing such views, in order
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to form straightened side-by-side visualizations. We used our method to
visualize two different tubular áow datasets, showing that the technique
is generally applicable for any dataset where the áow under inspection
streams within a tubular structure. With the generated side-by-side visu-
alizations we achieved improvements over standard techniques, in terms
of efàciency in the usage of the available visualization space, and in terms
of ease in the comparison of the different aspects of the data. We received a
positive feedback by domain experts, that let us conclude that it is worth-
while, in certain cases, to choose an alternativeway to look at the data over
the conventional ones, to exploit the power of visualization. Limitations of
our approach are, at the present, the handling of structures with unnatural
narrow bends, when cross planes intersects each other within the lumen of
the pipe, and the handling of structures with major bifurcations. Both of
these issues require further investigations. As a future work, we also plan
to investigate more thoroughly the perception of áow straightening for
longer, more complex structures and to obtain a more formal evaluation.
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Abstract

Cohort studies inmedicine are becomingmore common, to en-
able the study of medical hypotheses in large samples. Often,
a large amount of heterogeneous data is acquired from many
subjects. The analysis is usually hypothesis-driven, i.e., a spe-
ciàc subset of such data is studied to conàrm or reject speciàc
hypotheses. In this paper, we demonstrate how we enabled
the interactive visual exploration and analysis of such data,
helpingwith the generation of such hypotheses and improving
the process of validating them. We propose a data-cube based
model which allows to handle partially overlapping data sub-
sets during the interactive visualization. This enables seamless
integration of the differentmeasures, and linking of spatial and
non-spatial views. We implemented this model in a prototype,

After a àrst round of reviewing, a major revision is now in preparation for the journal
Computer Graphics and Applications
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and analyzed a cohort study on cognitive aging, comprising
information of white matter tracts, gray matter regions, and
neuropsychological measures acquired at two time points.

C.1 Introduction

Cohort studies inmedicine are becoming increasingly common, partly due
to the availability and recent improvements in medical imaging technolo-
gies. Such studies are used to evaluate medical hypotheses in a sample,
either healthy or presenting a common pathology, in order to gain a better
understanding of healthy aging in contrast to pathological changes, or to
assess the progress of a pathology. Cohort study data is often acquired
over longer time periods and following strictly deàned protocols. Nor-
mally, they are designed to deliver data which, later, can be a basis for
evaluating further sets of hypotheses.

However, while there are means to evaluate speciàc hypotheses, based
on such cohort study data, often involving accordingly designed data ex-
traction, transformation, and fusion approaches, there is a lack of technol-
ogy that would support the áexible and open-ended exploration of such
data, mostly because of its highly heterogeneity. Integrating all the avail-
able data within one visualization tool that allows to seamlessly combine
them on demand is expected to help the experts to explore heterogeneous
cohort study data more easily, to allow for an improved hypothesis gen-
eration, and, not at the least, to speed up their current research workáow.

The exploration and analysis of cohort study data generates speciàc
new challenges for visualization. In this article we characterize them, in
particular in relation to the substantial heterogeneity of the data, and ex-
emplify how a tailored approach enables hypothesis generation as well as
the swift analysis of relations between otherwise unconnected data parts.
Wedescribe our solution in terms of amore general data-cube basedmodel
that can also be adopted in similar situations of highly heterogeneous data.
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C.2 A Typical Scenario of Heterogeneous Data in a Cohort Study

One goal of this work was to create a solution that would enable the ex-
plorative visualization and analysis of data that was acquired as part of a
longitudinal study on cognitive aging. During this study, more than 100
healthy individuals (mean age 60.8 (7.8), 65% females at inclusion)were re-
cruited through advertisements in local newspapers. At inclusion, all the
participants were interviewed before inclusion, to exclude those report-
ing previous or present neurological or psychiatric disorders, a history of
substance abuse, or other signiàcant medical conditions. The neuropsy-
chological evaluation conàrmed that the participants showed no symp-
toms indicating mild cognitive impairment (MCI) or dementia. Each par-
ticipant was examined twice, àrst in year 2004/2005, and then in 2008 (a
thirdwave is at themoment about to be completed). The participants were
subjected to neuropsychological testing, genetic analysis (not used in this
work), and multimodal MR imaging. The result of each examination con-
sisted of data on white matter àber integrity, as expressed by fractional
anisotropy computed from diffusion tensor imaging (DTI), cortical and
subcortical graymattermeasures, automatically calculated from structural
MR images, and a number of neuropsychological tests, including the Cali-
fornia Verbal Learning Test–Second Version (CVLT-II), the Color–Word In-
terference Test (CWIT), the Digit Symbol Substitution Task from WAIS-R,
and the Mini Mental State Exam (MMSE). In addition, multiple quantita-
tive measures for the white matter àber bundles and the gray matter seg-
ments were extracted: different anisotropy measures for the bundles, and
volume, thickness and area measures for the brain regions. To summarize,
each examination (per subject and year) consists of:

• white matter àber bundles with anisotropy measures. Each indi-
vidual àber was divided into 100 segments of equal length for the
derivation of associated measures.

• gray matter cortical and subcortical regions with quantitative mea-
sures for each region.

• scores from different neuropsychological tests.

For a detailed study protocol and previous results from this longitudinal
study see, e.g., Ystad et al. [199].

A heterogeneous dataset

Resulting from this study, a number of measures related to different as-
pects are available. One speciàc challenge with respect to data exploration
and analysis is that their domains overlaps only partially. For example,
how should one combine, in a scatterplot, fractional anisotropy, speciàed
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for each segment of the àber bundles, with thickness of the cortex, avail-
able for each cortical region? In short, this partial incompatibility of the
data domains proved to be one – if not the – key challenge of this work.

Physical and abstract data

For certain aspects such as white matter àber bundles and gray matter
regions, there are both quantitative abstract measures (such as àber aniso-
tropy or cortical region thickness), and physical (anatomical) data of the
bundles trajectories, or brain regions meshes. While the analysis is often
performed on the quantitative measures, it also becomes necessary to oc-
casionally fetch and inspect the related anatomical data, which can, for
example, explain data outliers.

Analysis goals

When designing a solution for visualization of such data, there is a dual
goal: on one side, it is important to enhance the data exploration process,
in particular in those aspects not yet investigated, and possibly provide
enough information to generate new hypotheses and subsequently verify
them. On the other side, it is also important to enhance the process of
hypotheses veriàcation by easing the extraction of the aspects of interest
from the dataset, and to investigate the relation between them.

C.3 RelatedWork (goes in a box)

While the vast majority of visualization research – in particular also med-
ical visualization – was (and still is) focused on the visualization of in-
dividual datasets, the visualization of data from population studies has
not been a research topic until recently. One recent exception is the work
by Bruckner et al. [19], who presented a system to retrieve and visualize
anatomical brain data of fruit áies, covered in a large database of such
áies brains. This system enables a novel way to perform visual queries,
combined with a volume rendering solution called Maximum Intensity
Difference Accumulation (MIDA). Longitudinal medical imaging datasets
are analyzed in the work by Durrleman et al. [36]. The authors investi-
gated the variability of the data by devising a regressionmodel that àts the
data of a single subject over time. They use their framework to estimate a
spatio-temporal atlas from the data. They analyze the morphological evo-
lution of hominids’ skulls and the growth of certain brain regions. More
recently, Steenwijk et al. [169] presented a novel visual analytics frame-
work to query and visualize data from a cohort study on neuropsychiatric
SLE, consisting of imaging and non-imaging data for each subject. Their
approach was to preprocess and store the imaging and non-imaging data

92



C.4. A Data-Cube Based Model To Enable Interactive Visual Analysis

Figure 1: A tree visualization of the dimensions (red), measures (green) and entities (blue)
present in the cohort study data-cube collection. The dimension hierarchy is not inherently
present in the data, but has been derived according to the number of occurrences of each di-
mension in the database. This hierarchy is used only for presentation, as the presented model
makes no assumptions on a hierarchy of dimensions, and can treat all the dimensions equally.

in a searchable database, to which a visual interface would perform dy-
namic queries.

More generally, quite a number of visual analysis methods have been
proposed for the analysis of higher-dimensional and heterogeneous data.
One relevant related solution was presented by North et al. [126], who in-
troduced visualization schemas to achieve the concurrent analysis of dif-
ferent sources of information in relational databases. Their system offers
opportunities to construct coordinated visualizations in a similar fashion
as when constructing relational data schemas. More recently, Weaver uses
a method called cross-àltered views [193] to interactively drill down into
multidimensional relations between multiple datasets. In his method, dif-
ferent variables are visualized in particular views and brushes in these
multiple views are cross-àltered to discover complex relations in the data.

C.4 A Data-Cube BasedModel To Enable Interactive Visual
Analysis

Storing and accessing the data acquired with such studies in a fast and
áexible way is the àrst and perhaps the biggest challenge in designing an
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Figure 2: Screen-shot of the prototype of the proposed model. The Measure Browser lets
the user drag desiredmeasures into a view, the SelectionManager allows to addnew selections,
activate them, enable one of them for editing, and drag them into views, to be used as ölters.
The Dimension Brusher (left) enables slicing the data cubes in the data collection, while the
other views can be seen as projections of the data, and allow a more advanced deönition of
the selections, by means of brushing ranges of measures. Finally, the VTK Fiber Model view
represents a selection in the anatomical context using a brain model.

interactive visualization system targeted at this problem. Organizing the
data in a relational database, similarly to Steenwijk et al. [169], is probably
the àrst solution at hand, and probably the easiest to design. However, it
is ináexible: the database schema is bound to the particular structure of
a speciàc study, and has to be redeàned for different studies, as well as
the logic for data access. Moreover, using a relational database does not
provide the required performance to enable interactive exploration of such
large data. In Polaris, Stolte et al. [170] showed how data can also be orga-
nized for visualization as n-dimensional data cubes, in data warehousing
called OLAP cubes (for On-Line Analytical Processing).

Dimensions, measures and entities

In data warehousing, OLAP cubes are constructed using categorical at-
tributes as dimensions, while quantitative numerical values are stored as
measures. The dimensions and measures can be thought as independent
and dependent variables, where dimension coordinates are used to access
the measures. Practically, after assigning an order to the dimensions, a
data cube can be implemented as an in-memory n-dimensional array. This
allows, for example, a faster data access, as compared to keeping the data
in a relational database. In our model we organize the cohort study data
in data-cubes. In this way, for example, a measure of a segment of a white
matter àber bundle, say, fractional anisotropy, is represented as a áoating
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point data cube consisting of four dimensions: subject, year, bundle, and
segment. In principle, these dimensions do not have any embedded hier-
archy, (they are independent). However, if we want to have a dimension
hierarchy to, for example, represent the data in a tree-like visualization (as
shown in Fig. 1), we could deàne the dimensions that occur most often as
root nodes, and then proceedwith the dimensions having less occurrences.
In case that two or more dimensions have the same number of occurrences
(in our example, this is the case with the dimensions subject and year), it is
sufàcient to deàne an arbitrary order among them. Having deàned such
a hierarchy, it is possible to represent the measures in our cohort study
data like in Fig. 1. Compared to the model as proposed for Polaris, we also
introduce a third type of element, called entity. An entity can be thought
of as a row in a database table, and quantitative row àelds are then the
measures for that entity. In our example, the measure àbersegment.fa is re-
lated to the entity àbersegment. In our model, an entity takes the place of
the measures attached to it, when it comes to deàning a data selection, an
operation that is described further below.

Seamless dimension aggregation

One of the advantages of having the measures stored in data cubes is that
we are able to automatically compute the common dimensions of two or
moremeasures by simply intersecting the dimensions’ set of themeasures,
without having any prior knowledge of the relations betweenmeasures (as
necessary when using a relational database model for the data – the sys-
tem would then need to know about the database schema, together with
a complex logic for performing the operations). In our model, when mul-
tiple measures are combined in a visualization (e.g., in a scatterplot, or a
parallel coordinate view), each measure is aggregated across those dimen-
sions not belonging to the intersection. This operation is also referred to
as the projection of a data-cube [170] (see Fig. 3). There are several options
for the aggregation operator (usually estimating a statistic of the data), but
for the moment we can simply think of using the average operator as ag-
gregator.

Fig. 4(left) shows a scatterplot of two measures, i.e., the radial diffusiv-
ity of all àber bundle segments versus the mean curvature of all cortical
brain regions. As in Fig. 1, the common dimensions of these twomeasures
are (subject, year), therefore each point in the scatterplot represents a single
examination, while its position along the x axis represent the average ra-
dial diffusivity over all àber segments of all bundles of the subject’s brain
during that speciàc examination. On the y axis, the position represents the
average mean curvature over all the cortical regions of the subject. In our
framework we implemented a drag-and-drop interaction model, where it
is sufàcient to drag the desired measures into a view to obtain the aggre-
gation (if necessary) and the visualization. In certain cases, it is also useful
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to change the level of detail. In the situation above, for example, we might
want a point to represent a single year of examination, aggregated across
all subjects, to see if the overall values decrease over time. To allow this, we
propose to give the user the opportunity to toggle which of the common
dimensions should be kept during the aggregation, and which not, thus
performing something similar to a roll-up operation. The difference with
a classical roll-up operation is that there is no hierarchy in the dimension
structure, and it would be possible to disable any dimension in the set.

Selections and selection-based öltering

So far, we are able to create projections of a measure by aggregating over
entire dimensions. Obtaining the average of ameasure over awhole brain,
however, may not always be enough to answer speciàc questions. To en-
able a more focused analysis, àltering and/or selection techniques can be
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Figure 3: Projecting two three-dimensionalmeasure cubes (e.g., thickness of cortical regions
and volume of subcortical regions) on the common dimensions. The dimensions which are not
common (in red) are processed using a statistical estimator (e.g., average).
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Figure 4: (left) Radial Diffusivity of the all the öber bundles opposed to the mean curvature
of all the cortical regions in a scatterplot, for each examination (meaning a pair subject, year,
the common dimensions of these two measures). (right) The same measures, with the radial
diffusivity now öltered using a selection containing the superior longitudinal fasciculi, while
the mean curvature of the cortical regions is öltered with a selection containing the superior
cortical regions, showing a higher correlation, and suggesting the hypothesis that these two
aspects are related.

used in order to restrict the processed/visualized data to the focus of the
analysis. An example is the Polaris speciàcations [170] for deàning selec-
tions. Interactive visual analysis has also introduced the concept of brush-
ing, a visual method to select items with certain characteristics (e.g., àt-
ting a certain range on speciàc measures), by deàning a visual brush over
a view on the data. Normally, this brush gets transformed into a struc-
ture like a data-cube itself, where each item is tagged either with a binary
or with a percentage value. In our case, we have an additional challenge:
we have to tag all those items in the collection sharing at least one dimen-
sion. In this case, an extension of this brushing paradigm is needed. In
our model, a brush on one entity (to which the brushed measure belongs)
is propagated to all the other entities in the collection that share dimen-
sions with the brushed one, by àrst computing a projection of the brushed
entity using the common dimensions with the other ones. This projection
of the brush is performed using the max operator, which eventually tags
the items in these projections that have been created out of at least one
tagged item. Using the percentage operator, instead, would produce a non-
binary measure of what percentage of items has been tagged using the
speciàc common coordinates, resulting in a smooth value of the Degree-
Of-Interest (DOI).

This approach gives the user more áexibility wrt. selecting items, and
multiple selections can also be combined using Boolean logic. These se-
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lections can be visually highlighted in the views. In our model, they can
be used also for another purpose: since most of the views are built upon
aggregated data-cubes, this aggregation can be steered, or àltered, using an
item selection – see Fig. 4 (right) for an example). By setting a selection as
aggregation àlter, the aggregation is performed only using the items that
are selected in the àlter. In this case, selections containing smooth DOI
values are treated as binary.

C.5 Linking Abstract and Spatial Data

Sometimes it is of interest to relate abstract information to the brain’s ana-
tomy. A practical example would be showing where, in the anatomy, the
parts of the white matter àber bundles within a certain range of aniso-
tropy, or having certain properties (e.g., sensitivity to aging) are located.
Once these segments have been determined, they must be related to the
brain’s anatomy. The problem here is that we are dealing with entities be-
longing to many different brains, therefore there is the need of a sort of
anatomical aggregation.

Visualizing aggregates in anatomical space: using an atlas

To represent statistical information for a selection in anatomical space, we
propose to use an anatomical atlas of the brain onto which these aggre-
gated statistics can be mapped and visualized, for example using a color
encoding. For this purpose, a template brain together with its coarse seg-
mentation into white and gray matter as well as a more àne-granular par-
cellation of the cortical and sub-cortical white and gray matter are needed.
Furthermore, a geometric representation of the àber tracks is required.
Since the display of each individual àber in every àber bundle across all
subjects (>20,000 àbers in total, per subject) results in a highly cluttered
visualization (see Fig. 5a), we propose to compute a representative àber
for each àber bundle. For simpliàcation purposes, we so far treat the in-
dividual data of a representative subject as an atlas. A more sophisticated
approach would require the computation of brain regions and representa-
tive àbers which are averaged across all subjects. The latter is described
by O’Donnell et al. [129].

The computation of a representative àber for each àber bundle is car-
ried out similarly that approach [129], also. If all àbers in the bundle take
a very similar course, the àber with the highest àber density is chosen as
a representative. If not, a clustering step is carried out in order to group
àbers with a similar course. Then, an individual representative is com-
puted per cluster as described above. For the grouping, we employ a spec-
tral clustering approach leading to a spectral embedding of all àbers on
which ànally a standard k-means clustering is performed [128].
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Since each individual àber was divided into 100 segments of equal
length for the derivation of associated parameters such as fractional ani-
sotropy, we also divide each representative àber into 100 segments. The
color value of each segment may then be modiàed individually. For map-
ping a statistical parameter to àber segments, we àrst decide in favor of
a color scale and then, map each parameter value to its segment and a
RGBA value (Fig. 5b). Then, we modify the saturation of the assigned
color with respect to the corresponding DOI value, for example a high
value results in a high saturation (recall Sec.4 for a description of DOI val-
ues). The àbers are visualized by means of illuminated streamlines which
are extended with halos to improve spatial perception. Instead of repre-
senting each àber segment by a tube, view-aligned quads are employed in
a GPU-based implementation. This guarantees a high-quality rendering
at interactive frame rates even when the user drills down to subject spe-
ciàc data and wants to display all individual àbers instead of a few àber
bundle representatives (Fig. 5a). Gasteiger et al. [50] successfully used this
approach for visualizing streamlines in the exploration of blood áow in
cerebral aneurysms.

a b

c d

Figure 5: (a) The white matter öber tracts of the subject used as model. (b) The bundles
representatives, computed from each bundle. (c) Bundles in combination with the segmented
brain regions and the brain outer surface. (d) Cross sectional images to augment the rendering.
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Besides the statistical information related to the àber tracks, measures
of the segmented brain regions are available from the study. The segmen-
tationswere obtained byusing the software Freesurfer (http://surfer.
nmr.mgh.harvard.edu/) and the therein contained brain atlases. For
displaying the measures, the surface geometry must be constructed based
on the segmentation results. The standard Marching Cubes algorithm is
employed for generating an isosurface per segmented region. Each sur-
face is either assigned a uniform color according to Freesurfers’s look-up
color table or a color scale is deàned and the value of a selected measure is
mapped through this scale to surface color (Fig. 5c). The transparency of
the surface is modiàed with respect to the DOI value which is associated
to the brain region, for example a low DOI results in a highly transpar-
ent surface. We augment the visualization of àbers and brain regions by
superimposing the outer surface of the brain as a highly transparent sur-
face. Furthermore, orthogonal, adjustable image planes can be added that
show slice renderings through the original volume data (Fig. 5d). Both ap-
proaches simplify the spatial orientation and serve as a context rendering.

C.6 Case Study

To exemplify the potential of our model/method, we show how to use our
prototype to explore and analyze the data as described above. In partic-
ular, we investigate which àber bundles show a decline in fractional ani-
sotropy with age, and which do not. In the next phase, we then look for
evidences of known hypotheses of age related white matter changes in the
sample under investigation. We start the explorative investigation of the
relation between anisotropy decline and age, by looking at the correlation
coefàcient of each àber bundle’s fractional anisotropy with age, as well
as the regression coefàcient. The system estimates these statistics for the
chosen measure by iterating over a user speciàed dimension, in our case
àberbundle. These estimates are presented in two bar charts shown in Fig. 6.
It is easy to spot one àber (fornix) that goes against the general declining
trend, also showing a bad àtting (sum of squared residual, SSE). We de-
cide to show this àber in a scatterplot (Fig. 6, top right) and detect several
zero values, probably due to missing data, so the information for this àber
should be discarded or the missing data should be removed. Therefore
we perform a brush on the scatterplot, to exclude the incorrect values, and
this leads to opposite results (Fig. 6, bottom right), in line with the over-
all declining trend (these results are sketched with a dashed line in the
barchart of Fig. 6). We also notice that the corticospinal àber tracts seem
to be particularly insensitive to age decline, while other tracts have very
strong decline (anterior callosal àbers and inferior longitudinal fasciculi).
Finally, we notice two corresponding tracts, left and right occipitofrontal
fasciculi, which are not homogeneous, with the right one showing a more
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Regression Coefficient

SSE 0.073.5

Pearson's r

P   > 0.05

P <= 0.05

Figure 6: (top) Visualizing the correlation coefficient between age and fractional anisotropy
of the öbers across all subjects,years. The FA measure is öltered by automatically iterating over
a chosen dimension, in this case öberbundle (thus iteratively slicing the measure). Therefore,
each bar in the bar chart represents the correlation referred to a speciöc coordinate in the öber-
bundle dimension. (bottom) The same type of visualization representing the regression coeffi-
cient instead. (right) Scatterplots related to the fornix, before and after excludingwrong values.

pronounced anisotropy decline, even though they are anatomically sym-
metrical.

In the second part of this case study, we attempt to conàrm or reject
three hypotheses (which were already statistically examined in previous
work [172, 189]):

• The increased anisotropy decline in the anterior callosal àber (CC-
Anterior) with aging, as compared to the posterior portion of the
corpus callosum, called splenium (CC-Splenium).
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• The higher sensitivity of superior àbers (Superior-LF) to anisotropy
decline, as compared to inferior àbers (Inferior-LF).

• The resistance of the cortico-spinal tract to anisotropy decline.

To do so, we begin with selecting the àbers under investigation. Then, we
use these selections as àlters in scatterplots opposing the age of the subjects
and the fractional anisotropy (FA) of the àber segments in their brains. In
these scatterplots, shown in Fig. 7, each point represents a single subject
examination (subject, year), while the other dimensions are aggregated for
each of the measures. In the case of FA, this aggregation was àltered using
the selections above. The system automatically computes the Pearson’s r
value of the two measures (one aggregated using the àlter), the p-value,
which, in our case, is below 0.05 except for the corticospinal tract (that,
therefore, does not show a correlation that is statistically signiàcant) and
the regression line. The regression analysis also provides the regression
coefàcient and the sum of squared residuals (SSE) as a metric of the good-
ness of àt. These plots conàrm that the spinal tract is relatively insensitive
to the age effect. They also show that the posterior portion of the corpus
callosum is less prone to age effect compared to the frontal portion. How-
ever, in contrast to our hypothesis, superior àbers were less prone to age
effect than inferior àbers, which could mean that language function stays
normal, but visual integration might decline.

C.7 Conclusion and FutureWork

Medical cohort studies are an excellent starting point for exploratory data
analysis, because most of the data acquisition is standardized before spe-
ciàc hypotheses are formulated. Often, such studies are designed to pro-
vide enough data, of very heterogeneous character, such that a large set
of possible hypotheses can be tested on them. Accordingly, hypothesis
generation becomes an own challenge, when associated with populations
studies. In this work, we have demonstrated that an exploratory inter-
face, which is capable of áexibly linking up different aspects of the data
even if they are not given with respect to the exactly same domain, can
help to swiftly identify new and possibly promising research hypotheses.
We also showed, that the same approach is also capable of enabling a àrst
quick analysis of the identiàed hypotheses, leading to an accelerated anal-
ysis methodology with respect to such highly rich and versatile data. This
project is, however, very broad, and the prototype system presented here
is still relatively limited in the spectrum of functionalities offered.

As future work we plan to import genotype data for the subjects, that
at the time being was not readily available, and to integrate 2D/3D graph
views for representing the brain connectivity information. We are also try-
ing to obtain amore thorough evaluation of the system in terms of required
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Figure 7: Age opposed to Fractional Anisotropy (FA) for each examination (subject, year).
In each scatterplot, the FA value has been aggregated (across segments and bundles) using
a different ölter, as labeled in the views. Top left and middle right show a stronger negative
correlationof theFAplottedagainst age,while top right andbottom left showaweakernegative
correlation. Middle left shows almost no correlation of FA change with age for the corticospinal
öber tracts, which conörms previously published studies, and can be used as control. In each
plot: R is the correlation coefficient, SSE is the sumof squared residuals of the regressionanalysis.
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functionalities, in particular froma statistical anddata-miningperspective.
Finally, we plan to add functionalities to retrieve and visualize patient spe-
ciàc image data, in order to assess whether outliers originates from the im-
age data, or whether they are the result of an erroneous derivation process.
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Abstract

Ultrasonography allows informative and expressive real time
examinations of patients. Findings are usually reported as print-
outs, screen shots and video sequences. However, in certain
scenarios, the amount of imaged ultrasound data is consider-
able or it is challenging to detect the anatomical features of
interest. Post-examination access to the information present
in the data is, therefore, cumbersome. The examiner must, in
fact, review entire video sequences or risk to lose relevant infor-
mation by reducing the examination to single screen shot and
printouts. In this paper we propose a novel post-processing
pipeline for guided visual exploration of ultrasound video se-
quences, to allow easier and richer exploration and analysis
of the data. We demonstrate the usefulness of this approach
by applying it to a liver examination case, showing easier and
quicker ultrasound image selection and data exploration.

This article was published in the Proceedings of the Eurographics Workshop on Visual Com-
puting for Biomedicine, 2010:125–132
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D.1 Introduction

Ultrasonography (US) is a powerful and inexpensive imaging modality
appreciated by many physicians. It causes little to no patient discomfort
and is non invasive, providing high safety with neither contraindications
nor radiation exposure. Ultrasonography has also good spatial resolution,
combinedwith very high temporal resolution. This makes it an invaluable
tool for examinations, where both anatomic and dynamic information is
of interest. In the clinical practice it is successfully used for examination,
diagnosis and intra-operative guidance.

However, US also suffers from certain limitations when it comes to in-
terpretation and retrieval of image information. US waves are heavily at-
tenuated by air and bones, and fatty tissue causes artifacts in the images.
Furthermore, the acquisition process is dependent on the examiner, as the
image acquisition is done by free hand and the interpretation is done in
real time. US has also drawbacks regarding the data storage and review-
ing modalities: the typical ultrasonographic examination work áow, in
fact, consists of live diagnosis during the examination. When there is the
need to communicate the examination further, the acquired data can be
saved for later reviewing. Data exported by 2D US scanners consists of
annotated, and often printed, still images, and video sequences containing
all the acquired US images, captured during the examinations at a certain
frame rate. During certain kinds of US examinations, the physician scans
several different anatomical structures, without focusing exclusively on
one part of the anatomy. In such situations, as, for example, during ab-
dominal examinations, simple snapshots of US slices may lack contextual
information. They may also miss some important information that the ex-
aminer may have scanned, but not recognized and thus stored, in the àrst
place. Stored video sequences contain all the imaged data, and, to a cer-
tain extent, prevent the loss of important information about structures of
interest or their context. Unfortunately, such video data lacks higher se-
mantic information, present during the live examination, such as the 3D
position and orientation of the US planes, knowledge of which anatomical
structures are imaged, neighboring anatomical structures, scanning direc-
tion, and so on. Therefore it can be challenging and time-consuming to
review ultrasonographic sequences after the examination, especially if the
review is performed by another physician, without àrst hand knowledge
of the examination. Considerable efforts are required to mentally recon-
struct the spatial position and orientation of the US images, and some-
times to understand which anatomical structures the displayed images re-
fer to. Moreover, videos of US data, lacking semantic annotations such as
the imaged anatomical structures, require the examiner to go through all
the video sequences, during the reviewing process, to ànd the imageswith
the structures of interest, taking (potentially) long time.
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To solve these limitations, in this paper we present a pipelined ap-
proach that enriches the US data with semantic information. By using the
added semantics, we want to guide the examiner during the data explo-
ration and reviewing tasks. The key concept of the presented solution is to
compute the degree of interest (DOI) for eachUS imagewith respect towhich
anatomical structures the examiner wants to see. We do this by consider-
ing a so called DOI volume, that describes how much each voxel belongs
to the structure(s) of interest. In the following step we combine this user
deàned annotation of the space with the US images. This way we derive
an aggregated measure of the DOI for each image in the US sequences.
This measure is a semantic information that represents how much of the
selected anatomical regions is present, or visible, in the US images, and
can therefore be seen as a measure of the importance of the US images. It
is used through proposed visualization methods to guide the examiner to
the relevant images or video subsequences.

A possible use-case of our technique is when a physician wants to re-
view previously acquired US scans of, for example, gastrointestinal exam-
inations of a patient, and focus on regions that look suspicious. Normally,
she would have to browse through each video sequence, trying to under-
stand the position and orientation of each image with respect to the ana-
tomy of the patient. Then she would identify the region of interest in each
image of the sequences. Using our approach, the same physician could se-
lect the desired suspicious regions, speciàed in one of the proposed ways.
The system computes aDOI proàle, showing theDOI of each of the images
for all the US scans she wants to review. Using this additional semantics,
the system helps the physician to ànd quickly the images showing the de-
sired anatomical regions in the videos. It can also superimpose the corre-
sponding regions over the US images to allow for easier and quicker iden-
tiàcation of the interesting anatomical regions. Our technique could also
be useful for physicians who need to communicate examinations results
to other doctors: video sequences together with relative regions of interest
contain much more information as compared to single screen shots. Us-
ing our method, these videos are much easier to analyze by a physician
without àrst hand knowledge of the examination.

Our implementation of the proposed technique has, at the moment,
two pre-examination requirements. First, a volumetric dataset of the pa-
tient, such as MRI scan. This is used as anatomical context, as reference
coordinate frame and as basis for the deànition of DOI volumes along the
anatomical regions of interest. Second, even if, in this work, we make the
assumption that the multi-modal data are already spatially co-register, for
the registration method adopted in our prototype the US videos must be
recorded with US plane positioning information, acquired via any suit-
able tracking device. This provides registration of all the frames in the
videoswith the DOI volumes by just having to register one frame [20, 187].
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Our pipeline is, in principle, also applicable without a volumetric dataset
of the patient: it could be possible to specify the DOI information based
solely on the tracked US data, as explained in Section D.3.1. The presented
technique is, however, useful even in presence of a pre-acquired volumet-
ric scan of the patient: ultrasonography allows to re-examine patients in
an effective, fast and inexpensive way, without having to let the patient
undergo other complex, expensive, and potentially harmful examinations
such as CT or MRI.

The paper is structured as follows: in the next sectionwe discuss the re-
lated works regarding multimodal visualization focused on US with spe-
cial attention on guidance, focus+context and importance driven visual-
ization. In Section 3 we present the details of each stage of the pipeline.
In Section 4 we present the results of this technique applied to a case of
liver examination, showing the beneàts achieved through our guided vi-
sualization system. We conclude discussing the presented work in Section
5.

D.2 Related work

Our work aims at improving the diagnosis and treatment planning, which
is one of the main challenges in medical visualization research. The chal-
lenge is to enable a clear understanding of themedical conditions depicted,
and to guide the US examiner to the most relevant information during the
reviewing process. Previous research related to advanced US data visu-
alization has been mainly focused on the development of techniques for
noise-free image rendering, especially in the case of three-dimensional vi-
sualization. The direct volume rendering of 3D US data requires a àl-
tering stage to improve the image quality [161]. More recent approaches
use probability metrics to evaluate a presence of an interface between tis-
sues [67]. Furthermore, redundant information from3DUSmeasurements,
resulting from volume overlap of consecutive scans, can be exploited to
improve the rendering by preserving the temporal coherence [139].

2D US data rendering has been previously combined with augmented
reality hardware to blend US with the real environment. US images have
been displayed in the context of the body of the patient to show where
they intersect the body [8]. Currently, registration techniques are usually
based on internal landmarks and external markers, visible in the US data
and in the pre-interventional 3D acquisition modality. In clinical practice
non-rigid registration techniques are occasionally used [100, 123]. US im-
ages have been fused with MRI for neurosurgical interventions [124, 151].
Most of the commercially available techniques, such as fused visualization
of PET-CT through image overlays, or linked CT-US slicing, or fused visu-
alization of CT and US operate primarily on the data level [167]. Very re-
cently, GE added a point tracking feature in their last generation of Logiq
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scanners (Logic E9), to aid the physician during the examination to ànd
previously analysed areas.

To provide better 3D orientation, an integration of a 3D CT visual-
ization with 2D interventional US has been recently proposed for CT-US
guided intervention incorporating cutaway views [20], or superimposed
information on imaged liver segments on US images [187]. These works
originate from importance-driven visualization techniques, whichuse data
segmentation and relevance information to automatically generate expres-
sive visualizations [185]. Approaches to visually emphasize features in
volume renderings have also been discussed in different contexts. In the
visualization of volumetric scalar data, two-level volume rendering uses
segmentation information to render objects in the data with different com-
position and rendering techniques [62]. In the visualization of 3D áow
data, a user-speciàed DOI function affecting optical properties is shown to
visualize important áow features [61]. A more comprehensive overview
about focus+context visualization is given by Hauser [59].

Our work is also related to the context of video visualization as we
deal with video sequences. Chen et al. [23] propose a technique to extract
features fromvideo sequences. 2DUS videos have also been automatically
classiàed using a machine learning approach [134]. With respect to the
visualization of time-varying data, interesting approaches to visualize the
changes in time are also available [74, 196].

D.3 Guided Ultrasound Visualization

D.3.1 DOI Volume Speciöcation

The àrst stage of the pipeline, illustrated in Figure 1, consists of the ac-
quisition of the DOI volumes. These volumes represent the anatomical
regions that the examiner is interested to see in the US data, and are used
as a guidance instrument in the following stages. The value of a voxel in a
DOI volume represents to which degree the respective anatomical location
is relevant, or interesting, to the examiner. Special attention is required not
only for the placement of the boundaries of the region of interest, but also
for their deànition. Hard boundaries are characterized by a steep transi-
tion to the region of interest from the surrounding volume. DOI values
change immediately from 0 to 1 when entering a region of interest with
hard boundaries and thus deànes precisely the region of interest. How-
ever, since there is no gradual transition, DOI volumes with hard bound-
aries cause the DOI proàles to be rougher. Moreover, hard boundaries
amplify segmentation and registration errors present at the edge of seg-
mented regions of interest. To attenuate this, we propose to allow for soft
boundaries in the speciàcation of DOI volumes [34], for example, by con-
volving the volume with a suitable smoothing kernel, such as an averag-
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Figure 1: Schematic illustration of the proposed pipeline for guided visualization of US video
sequences

ing or Gaussian 3D kernel. This way we attenuate small segmentation or
registration errors by covering a slightly larger area with fading DOI val-
ues (Figure 3). By this, we also obtain a smoother transition of the DOI
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Figure 2: DOI proöle generation through intersection between an US image plane and a
DOI volume (segmented right hepatic vein tree), used as 3D texture. The result is a gray scale
footprint of the DOI values in the 3D texture on the image plane. Summing each pixel of the
intersection texture gives the DOI value for the US image

from one image to another. In case of DOI volumes with small interest-
ing features, however, the smoothing operations should be carefully tuned
to prevent information loss. A more formal deànition of DOI volumes is
then:

DOI(x, y, z) =

 1, structure in (x, y, z) in focus.
0 < d < 1, structure in (x, y, z) near focus.

0, structure in (x, y, z) is context.
(1)

DOI volumes are scalar volumes and they must be co-registered with the
US to match the desired anatomical structure in the US data with the re-
lated DOI value. There are several methods to specify the regions of in-
terest. The most intuitive one is by segmentation of a volumetric scan of
the patient, such as a CT or MRI. For example, if a PET scan of the pa-
tient is available, high tracer uptakes in the PET scan can be used as a DOI
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Figure 3: Original (a) and smoothed (b) DOI volume (segmented right hepatic vein tree).
Small registration errors result attenuated and the DOI proöle of the sequence results smoother

volume. Another possible method consists of using a transfer function to
deàne structures of interest in a volume without the need of segmenta-
tion [20, 86, 150]. In this case, modiàcations to the transfer function are
equivalent to selecting a new DOI volume. One more way to specify DOI
volumes consists of selecting interesting regions in US images, which can
then be transferred into 3D space using the registration information. This
selection can be as simple as a point, used to position a simple sphere of
parameterizable radius, or to start a limited region growing process, fol-
lowing the gradients either from the volumetric data, if available, or from
the US data.

D.3.2 DOI Proöle Generation

The second stage of the pipeline consists of the derivation of the DOI for
the US images in the video sequences the examiner wants to review. With
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the DOI of each image, we build a curve, or proàle, of the relevance of each
image in the video sequences, and we call it DOI proàle. We compute the
DOI of an US image with respect to a DOI volume as the amount of the
volume intersected by the image. This is done by using the registration
information for the image, coming from a (suitable) registration method,
and calculating the image spatial coordinates with respect to the DOI vol-
ume. Details on the registration method we employed in our prototype
system are given in Section D.4. We can now use the DOI volume as a 3D
texture, and the image spatial coordinates as texture mapping for a rectan-
gular polygon. The next step consists of texturing the polygonwith the 3D
DOI information from the DOI volume, and rendering it to a frame buffer
object (FBO). The rendered image is a gray scale footprint of the values in
the DOI volume on the polygon, representing the US image, as illustrated
in Figure 2. Summing up the intensities of the pixels in the rendered image
allows us to compute the aggregated DOI value of the US image. Storing
the footprint enables us also to use it for visualization, as it highlights the
interesting region in the US image. Keeping in mind that, by lowering
the frequency of the US waves, the imaged area increases and vice-versa,
a formal deànition of the aggregated DOI, derived from the intersection
footprint, is

DOI(image) =
image area

w · h
·
w·h∑
i=0

pixeli (2)

The w and h parameters in Equation 2 represent the width and the height
resolution of the intersection image. The pixeli parameter represents each
pixel of the intersection image, while image area is the physical area of
the region in the US image. The DOI proàle generated in this stage of the
pipeline should be easy to modulate and use, and therefore needs to be
normalized, or equalized, to be àtted into a [0,1] range. These operations
are going to be performed in the next stage of the pipeline.

D.3.3 DOI Proöle Processing / Enhancement

The third stage of the pipeline is dedicated to processing and enhance-
ment operations on DOI proàles to enhance the usability of the proàles.
As previously outlined, raw DOI proàles do not have any common value
range, and the values can be very small if the region of interest is small.
Therefore, the àrst step consist of bringing the values into the unit range.
We propose two possible techniques: normalization and histogram equal-
ization of the proàles [70]. Both map the values onto the unit range, but
normalization retains the proportions between values, while equalization
evenly distributes the proàle values in the value range. Equalization will
enhance local variations of the DOI intensity instead of global variations,
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Figure 4: DOI Proöle processing / enhancement operations

and it is useful when a small number of images have very different values
compared to the others.

Once the proàles have beenmapped into the unit range, they are ready
for further processing, to improve the derivation of useful information
for the visualization. The àrst operation we propose is temporal àltering
of the DOI proàles. A àlter kernel can be used for temporal smoothing,
when the proàle is too rough. This helps in the proàle visualization, as
it shows better the trends in the data. We then adopt a peak detection
algorithm [12, 127], that identiàes cluster peaks on the DOI proàles in a
waterfall-alike way, and thus ànds a representative image for each clus-
ter. To achieve good results, such algorithms are usually also applied on a
relatively smooth curve, otherwise they lead to too many peaks along the
proàle.

The last operation we propose to process the proàles is proàle modu-
lation. This type of operation multiplies an input proàle with one or more
other proàles, to modulate the input proàle values. If pDOI is the DOI
proàle and pm is the modulation proàle, a formal description of proàle
modulation is then

p′DOI(x) = pDOI(x) · pm(x) (3)
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Proàle modulation is very useful as it can combine information from dif-
ferent proàles, and we use this operation to weight the DOI proàle with a
similarity proàle of the scans. The reason for this is that the desired struc-
tures of interestmay be poorly imaged or visualized from speciàc points of
view, even when the image plane intersects well the structure of interest.
So the image with the highest DOI value might not show the structures of
interest in an optimal way. This can happen under certain circumstances
like with air, or bones, attenuating the US waves. But the structures may
become visible with a similar image plane position, or under different pa-
tient conditions. For this reason we want to provide the examiner with a
similarity weighted DOI proàle, different for each image in the videos, so
that similar and important images can be found quickly. To provide this
functionality, we needed a metric to deàne the similarity between two US
images. We have chosen to use distance and orientation: closer images
have closer image centers, while a small angle between image normals
means similar orientation of images in space. So we compute the sim-
ilarity between a selected image and another image by multiplying the
distance between image centers with the angle between image normals.
This way the system can build a similarity proàle for a selected image,
and use it to modulate the DOI proàle (see Figure 4). Such augmentation
is especially useful when there are many sequences to review and they are
acquired with different transducers or under different examination setups
or patient conditions. We also use DOI proàle modulation with a proàle
of angles between image normals in the automatic generation of a multi
planar reconstruction, as explained in the next section.

D.3.4 Guided Visualization

The àrst visualization technique we create using the DOI information is a
plot of the DOI proàle. In the plot we also highlight the position of the cur-
rently visualized US image (see Figure 7(d)). This becomes a navigation
tool for the examiner during the data exploration process. We also apply a
peak detection algorithm to the proàle, as previously discussed. This en-
ables us to ànd representatives for clusters of neighboring images. We use
the peaks to place a selectable US image thumbnail on the corresponding
proàle location. The thumbnails work both as a high level overview of the
data and as a bookmark for quick data browsing. The second technique
we propose to enhance the exploration and playback of US images con-
sists of using the intersection images already utilized in the DOI compu-
tation (Section D.3.2), as an on-demand, semi-transparent layer to super-
impose over the US images. This visualization highlights to the examiner
the relevant regions in the image. We also integrate the classic 2D US im-
age visualization, familiar to the examiner, in a linked 3D view where the
image is rendered together with the DOI volume or a volumetric scan of
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Figure 5: Image of a US image co-registered with the MRI volume

the patient. We do this by rendering a proxy geometry, textured with the
US image, correctly positioned into a volume rendering of the volumetric
data (Figure 5). This helps the examiner to better understand the position
and orientation of the displayed US image.

Multi-Planar Reconstruction from 2D US Data

The last visualization techniqueproposedhere is an automaticmulti-planar
reconstruction (MPR) of the anatomy with intersecting 2D US images. It
provides a ”‘21/2D”’ visualization of the region of interest using the 2D US
data (Figure 6). In the US domain such visualization is possible nowadays
only with 3DUS volume data, or has to be generatedmanually [80].To cre-
ate such anMPRvisualization, we again employ a proxy geometry for each
US image in the reconstruction, texture it with the image and then render
each geometry in 3D space. For this technique we have also developed
an algorithm to automatically compute a suitable selection of intersecting
images showing the region of interest. It consists of a recursive modula-
tion of the DOI proàle of the US data with the angle between the images
in order to favor images that are as normal to each other as possible. The
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algorithmworks as follows: It takes the current DOI proàle and selects the
image with the highest DOI value. Then it calculates a modulation proàle
with (1− cos(angle)) of the angles between the selected image and all the
others, to have a measure of the orthogonality of the all the images against
the selected image. Finally, it modulates the current DOI proàle with the
computedmodulation proàle, and iterates. The second selected imagewill
therefore be the image that conjugates best DOI value with orthogonality
with the previously selected image. The third image will conjugate DOI
value with orthogonality with the àrst and the second images. This algo-
rithm is fast, taking only the normal of the US planes into consideration.
However we also provide a manual tuning option to allow complete data
exploration capability.

D.4 Results

To demonstrate the usefulness of the presented approach, and to obtain
a àrst evaluation from the medical side, we built a prototype system and
exempliàed its capabilities in a proof-of-concept case study consisting of
a trans-abdominal US examination with the focus on the liver. A 31 years
old healthy male volunteer was examined after having àrst undergone an
MRI scan of the abdomen. Several trans-abdominal US examinations were
performed at different times. The US data (total of 7 scans) were obtained
using different 2D transducers, in combination with a commercially avail-
able magnetometer-based tracking device (Flock of Birds, Ascension Tech-
nology) for image tracking during freehand US acquisitions. In our proto-
type systemwe have decided to adopt a landmark based rigid registration
technique, well suited if tracking information is going to be employed.
Our registration approach consist of identifying anatomical features vis-
ible in both the modalities, and indicating these through the placement
of landmarks in the data directly on screen. These two sets of points are
then used to compute a rigid transformation matrix from one dataset to
the other [187]. This matrix is then combined with the transformations
recorded with the tracking system, to compute a suitable transformation
for each US image in the video sequences. The presented visualization
pipeline is, however, independent of the employed registration technique,
as long as it can provide registration of each image in the video sequences
to theDOI volumes. More advanced registration techniques are nowadays
available. However, we found that the employed registration method is
quickly applicable to our type of data, a goal of the proposed technique,
and provides sufàciently good results. Abdominal examination scans do
not contain highly moving anatomy, and the deformation of the organs
caused by the pressure of the probe proved to be minimal, so this me-
thod was able to register the two modalities sufàciently well. In case of
changing the patient position, the physician simply started a new video
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Figure 6: Multi planar reconstruction of the region of interest using 2D US images. a) MPR
of the right kidney b) MPR of the right hepatic vein c) comparison image showing how MPR is
currently applied to volume data

sequence. The US data uptakes were stored in AVI format, then imported
into our system. The MRI scan was acquired at a resolution of 2562 × 176.
Figure 5 shows both the modalities co-registered, with the intersection be-
tween the whole liver parenchyma and the US image highlighted in red.
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Figure 7: Screen shot of the system showing linked views of a US image, (a)with the
intersection image superimposed, (b)forming a MPR with images crossing the DOI volume,
(c)positioned in DVR of the MRI data to provide spatial orientation and context, (d)highlighted
in the thumbnailedDOI proöle (in green). TheusedDOI volume is the segmentedand smoothed
right hepatic vein tree. The yellow lines in the proöle view (d) represent sequence boundaries.
Here, three US sequences have been joined.

We have speciàed several DOI volumes, all of them through segmentation
of the MRI scan. For the segmentation we used the ITK-SNAP tool. The
DOI volumes we used deàne the liver parenchyma, the right kidney, the
gallbladder, the right hepatic vein tree and the middle hepatic vein tree.
With respect to the performances, processing a video sequenceof ca. 3000
frames against a DOI volume requires around 5 seconds of computation,
with our CPU based implementation, on an Intel Xeon 2.5GHz worksta-
tion. Figure 7 shows an examples of three US video sequences joined to-
gether, enriched with DOI information and visualized with our system.
The development of the proposed pipeline into a prototype system ben-
eàted from our tight cooperation between technological and medical ex-
pertise. In the beginning we started with a broader range of possible vi-
sualization techniques, and some of them did not prove to be promising,
as, for instance, modulation of the playback speed according to the DOI
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values. The multi-planar reconstruction made out of 2D US images is a vi-
sualizationwhich attracted particular interest, since it was not realized out
of 2D data and from different sequences before, and it eventually turned
out to be a useful visualization to inspect the data. The DOI proàle was a
handy tool for an active and quicker inspection of the US videos. Themul-
timodal visualization of US images combined with DVR of the volumetric
scan was useful for enabling a quicker understanding of the orientation of
the images. The DOI region overlay was accepted as an interesting and
useful method for examination training. After the demonstration of the
test examinations with our system, it was acknowledged (on behalf of the
medical side) that it combines assisted navigation and useful visualization
techniques of US data in a novel way. It offers real time enhanced video
playback and interaction for image selection and visualization customiza-
tion, and changing the DOI volume takes also just a few seconds. The tool
has been seen also especially interesting for doctor-to-doctor communi-
cation, as it enriches plain video streams with semantic information and
allows to communicate the àndings without leaving out part of the orig-
inal data. Our system also potentially enables to ànd suspicious regions
during the review, which was missed by the examiner during the live ex-
amination.

D.5 Summary and Conclusions

In this paper we have presented a pipelined approach for guided visual-
ization during the review of US examinations. We have introduced the
concept of degree-of-interest volumes in the context of US data visualiza-
tion, to annotate the data with semantic information. We have presented a
suite of visualization techniques that use the added semantic information
to provide guidance and insight during the reviewing process, and aim-
ing at improving the diagnosis and treatment planning process. We have
implemented the proposed solution in a prototype system, and used it to
review a case of a trans-abdominalUS examination, achieving positive and
useful feedbacks from our medical partners.

During the development of the prototype we tightly cooperated with
our medical partners and addressed their needs. The presented prototype
has been seen as possibly useful tool for post examinationdata exploration,
to communicate examination results to other doctors, and for examination
training. To the best of our knowledge, no mechanism has been previ-
ously presented to aid the examiner to focus on particular structures while
reviewing 2D US examinations. Our approach extends the current ultra-
sonographic examination work áow during the live acquisition, since the
data must be acquired with tracking, unless registration for the US data
can be obtained by other means. We then add post processing steps cur-
rently non-existent in ultrasonographic work áow to enrich the data with

120



D.5. Summary and Conclusions

semantic information and thereby enable advanced data exploration. The
presented method is also meant for examinations of anatomy that does
not move particularly, or deform easily. When applied to cardiac data, for
example, the high dynamic behavior of the imaged anatomy would rep-
resent a problem for the registration of the data to the DOI volumes. In
such scenarios, alternative or additional solutions for the registration are
needed.
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