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Figure 1: Left panel: The MoBa GWAS Explorer interface overview: (1) Information bar links to details on the tool and on the
MoBa study, (2) Query view, (3) Genomic Heatmap view, (4) Manhattan Plot view, (5) Temporal Forest Plot view, (6) GWAS Explorer
Tutorial. Right panel: The MoBa GWAS Explorer Tutorial. (a) and (b) show two steps in the non-expert user onboarding tutorial.

ABSTRACT

Public health studies generate extensive datasets providing impor-
tant insights into human health. The Norwegian Mother, Father, and
Child Cohort Study (MoBa) is a longitudinal cohort study captur-
ing information on pregnancy and early childhood. This informa-
tion helps uncover the genetic underpinnings of traits or diseases
drawing interest from researchers in public health. Non-experts
are also attracted to the study, both to understand their contribu-
tions as data donors and relevant health determinants. However,
the complexity of MoBa data hinders its exploration, analysis, and
dissemination. We present a design study exploring the needs and
uses of the MoBa dataset in a mixed-user context and introducing
the MoBa GWAS Explorer, a web-based visual tool for exploration
and analysis of MoBa data by a mixed audience. This tool sup-
ports experts in exploring and analyzing MoBa data interactively.
Though designed primarily for researchers, we explored the poten-
tial for onboarding strategies to make this tool more approachable
for non-experts. We conducted a qualitative study with both user
groups to evaluate their experience with the tool and its usabil-
ity. Our evaluation indicates that the application, along with the
integrated onboarding, has potential to serve both expert and non-
expert groups. Supplementary materials for this study are available
athttps://osf.io/k5bvj/.

Index Terms: Visual analytics, design study, genomics data, on-
boarding, mixed audience.
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1 INTRODUCTION

The public health field plays an important role in improving popu-
lation health by analyzing disease trajectories and health patterns
within a population. Genetic epidemiology is an area of public
health focused on how human genetic factors influence traits in-
cluding health and diseases [21]. To gain insights into health and
disease patterns, genetic epidemiologists analyze large amounts of
data collected through longitudinal cohort studies, such as the Nor-
wegian Mother, Father, and Child Cohort Study (MoBa) [26] that
captures important information on pregnancy and early childhood.
The study collects participants’ genetic information alongside data
on observable traits or diseases. Moreover, MoBa includes large-
scale gene association studies exploring links between genetic data
and physical traits or diseases on a population scale, offering in-
sights into how genetics influence our health.

While providing insights into how genetics shape our health tra-
jectories from pregnancy to early childhood, MoBa study data pose
numerous challenges due to their complex nature. The study in-
cludes data on a range of traits and diseases across different time
points and genetic information of children, fathers, and mothers
participating in the study. This results in a dataset which is ex-
tensive, multidimensional, and composed of different data types.
Furthermore, MoBa data present a special challenge for analyzing
the results of genome-wide association studies (GWAS). GWAS
results are summary statistics describing associations between ge-
netic information and observable traits and diseases. These statis-
tics are typically organized in tables containing millions of entries.
Researchers often rely on various visualization methods to analyze
these data that we outline later in this section. While challenging
for domain experts, this type of data is even more difficult for peo-
ple without a specialized background. Understanding how genetics
affect specific traits or diseases requires a solid foundation in genet-
ics and statistical analysis, which many non-experts may not have.
Here, we define non-experts as individuals interested in learning
how genetics shapes human health or how data collected through
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cohort studies are being used, and who do not have knowledge of
genetics beyond an introductory biology course.

Several visualization techniques have been developed to facili-
tate the analysis of genetic data [31] and data on observable traits
and diseases [34], including specialized toolkits like Gosling [24].
However, these approaches target experts and are ill-suited to
non-experts out-of-the-box. Projects like FinnGen [15] and UK
Biobank [43] offer web interfaces for exploring genotypic and phe-
notypic cohort data similar to MoBa. However, they require domain
knowledge and are inaccessible to a broader audience, including
those who donate data and may want to access their own informa-
tion. FinnGen’s companion scrollytelling website [18] explains ge-
netics and GWAS to non-experts, yet lives detached from the expert
interface. We focus on integrating expert and non-expert experi-
ences within a single application through onboarding, investigating
the extent to which this strategy can empower non-experts to ex-
plore tools designed for experts. This fusion of user experiences
can promote greater transparency between researchers and partici-
pants by allowing users to directly interact with the tools used by
experts. Moreover, this approach has the potential to reduce the de-
velopment time of such applications and reach a broader audience
that ranges along a spectrum from experts to non-experts.

Our primary contribution is a design study that explores
the potential for a single visual analytics application to serve
two disparate audiences using visualization onboarding, which
we evaluate through a between-subjects qualitative study. Through
this design study we also contribute the MoBa GWAS Explorer,
a web-based visual tool to explore and analyze MoBa data.

2 RELATED WORK

Our research builds on prior work on genomic data visualization,
visual science communication, and visual onboarding strategies.

Visualization of genomic data Several visualization tech-
niques have been developed for genomic data analysis [31]. For
example, Gosling [24] is a specialized toolkit that offers visualiza-
tion tools tailored to researchers’ datasets and questions. Common
visualizations for GWAS data include Manhattan plots, which dis-
play SNPs at their genomic positions along the x-axis and their
corresponding negative logarithms of the p-values along the y-
axis to produce a visual metaphor echoing the Manhattan sky-
line. Tools like ggman[42], GWAMA (Genome-Wide Associa-
tion Meta-Analysis) [25] and SNPEVG [45] support creating these
plots. However, these packages primarily serve experts with do-
main knowledge and an understanding of what to visualize. In
contrast, our work aims to serve both expert users and individuals
without relevant domain background. Other relevant efforts include
the FinnGen project [15] and a large-scale biomedical database UK
Biobank [43], which allow users to explore genotypic and phe-
notypic cohort data similar to MoBa. While these projects offer
public-facing visual web interfaces, they require domain expertise
to be fully usable and are unapproachable for broader audiences.

FinnGen’s companion scrollytelling website [18], by contrast,
combines illustrations and narrative approaches to explain human
genetics and GWAS to non-experts. Another example is a design
study conducted by Zhang et al. [46], which explores design strate-
gies for the public communication of GWAS data in MoBa. Both
of these works are illustrative of visual science communication as
opposed to visual analysis efforts in describing genetics data.

Visual science communication Science communication
strategies are essential for bridging the gap between the lab bench
and the public sphere [33]. Trumbo [41] emphasizes the challenge
of communicating scientific information to individuals without a
relevant domain background and their limited access to a special-
ized vocabulary within a scientific discipline. Visual science com-
munication has become a key practice for enhancing explanation,
comprehension, and relatability of scientific topics [16, 13] for a

broader audience [8]. Examples range from infographic and illus-
tration work [44, 17] to more technically complex illustrative [35]
and narrative visualization projects [36] which blend visual abstrac-
tion, storytelling and interactivity to convey messages with sensi-
tivity and clarity. For example, Meuschke et al. [28] explore nar-
rative visualization techniques to effectively communicate scien-
tific findings about diseases to a general audience, including pa-
tients and their families. An additional example of narrative visu-
alization, developed outside of academia, is a tool called The Mi-
crobeScope [27], which offers four stories on diseases and uses in-
teractive visualization and text to familiarize users with the data.

Visualization onboarding Visualization tools support data
understanding, but users still need to learn how to use them, es-
pecially those with low visualization literacy or limited familiarity
with the underlying data. Effective visualization onboarding [38]
can facilitate this learning process and empower users to use visu-
alization tools and better understand the underlying data. Stoiber et
al. [37] emphasize the importance of guiding users through com-
plex data representations to improve their comprehension of the
representations and support knowledge discovery. Another work
by Stoiber et al. [38] examines different visual onboarding meth-
ods such as interactive step-by-step guides, scrollytelling, and video
tutorials. Their evaluation shows that video tutorials received the
most positive feedback, followed by step-by-step guides and, lastly,
scrollytelling. Our choice of onboarding strategy is guided in part
by these results. Similarly, Kwon et al. [22] examine different meth-
ods to help users learn to use visualizations, comparing the follow-
ing approaches: baseline (i.e., no tutorial), static, video and inter-
active tutorials. Their results indicate that participants using the in-
teractive tutorial performed better on analytical tasks and reported
a more engaging experience. In addition, Tanahashi et al. [40] ex-
plore how online guides with exercise questions support users in
learning visualizations. Their results suggest that exercise ques-
tions in tutorials improve visualization comprehension. Inspired by
these studies, we adopt an interactive step-by-step guide with exer-
cises to bridge the gap between expert and non-expert users.

3 DOMAIN BACKGROUND AND CONTEXT

Our collaborating domain involves specialized data and terminol-
ogy that may be unfamiliar. We briefly introduce key concepts rele-
vant to GWAS before discussing our research approach. The MoBa
study contains phenotypic and genotypic information. Phenotypic
data describes phenotypes, which are observable characteristics or
traits of an organism, e.g., physical features or disease manifesta-
tions. MoBa phenotypic data includes information like physical
measurements (e.g., height and weight), medical history, and de-
mographic details (e.g., marital status and income, etc). Genotypic
data refers to the genetic makeup of an individual and is obtained
from an individual’s DNA.

DNA, or deoxyribonucleic acid, is a molecule that carries the
genetic instructions for an organism [1]. Composed of units called
nucleotides, each nucleotide consists of three components: a phos-
phate group, a sugar molecule, and one of four chemical bases:
adenine (A), thymine (T), cytosine (C), and guanine (G). These
chemicals form specific base pairs: A with T, and C with G. The se-
quence of these DNA base pairs build the complete genetic code, or
genome [2], which holds the information needed for an organism’s
development, function, and inheritance. The mammalian genome is
organized into structures called chromosomes. Humans (typically)
have 23 pairs of chromosomes with a total of 46 chromosomes in
each cell. Each chromosome in a pair is inherited from one parent.

Genomic variation refers to differences in DNA sequences
among individuals or populations [3], and can be caused by dif-
ferences in base pairs, additions, or deletions. Single-nucleotide
polymorphisms (SNPs) are the most common type of genomic



variation in humans. Different individuals may have different nu-
cleotides at specific positions in their DNA sequences. These differ-
ences, represented as single-letter changes, are SNPs. For example,
at a particular position in the genome, one person may have a G,
while another person an A. SNPs can affect how genes function and
influence specific phenotypes: some SNPs are associated with an
increased risk of certain diseases, while others with physical traits
such as height or weight. An individual may have zero, one (inher-
ited from one parent), or two (inherited from both parents) copies
of a certain SNP, e.g., a G nucleotide, at the same position. In some
cases, having two copies of a SNP can have an additive effect on
the phenotype, with each copy contributing equally.

Genome-wide association studies (GWAS) rely on SNPs to
identify and statistically quantify associations between genomic
variations and traits or diseases [9]. Methods for quantification are
logistic regression for binary traits (e.g., disease status) and linear
regression for continuous traits (e.g., height). Our study focuses
primarily on quantitative traits.

Different SNPs may have different effects on a trait or disease
within a population. These effects are measured by the effect size,
commonly represented as the beta coefficient (). This beta coeffi-
cient signifies the deviation from the phenotype mean value caused
by the presence of a certain SNP within a genome. Its magnitude
reflects the strength of the effect the SNP causes on the phenotype.
Its sign implies the character of the effect: if the beta coefficient for
a specific SNP is positive, it means the presence of this SNP tends
to increase the value of the phenotype and vice versa. For example,
a SNP with a positive beta coefficient for BMI implies that this SNP
is associated with higher BMI.

The linear regression model for quantitative traits also provides
an estimate of the error in beta estimation, called standard error,
as well as reporting a p-value reflecting the probability of observ-
ing a similar or higher beta and standard error by chance. Do-
main researchers widely use a p-value threshold of (5¢ —8) to
discriminate between strong and weak associations [12]. Genetic
associations with p-values greater than (5¢ — 8) are considered to
have a weak association with a phenotype, while lower p-values are
considered genome-wide significant. This corresponds to a thresh-
old of 0.05 with one million independent tests. Genetic associa-
tions with p-values higher than (le —4) are considered spurious.
Since p-values of interest are so small, researchers transform them
into negative logarithms to ease identification of significant associ-
ations, which results in the skyscraper metaphor of the Manhat-
tan plot described previously. These negative logarithms of the
p-values are referred to as significance levels. SNPs with signif-
icance levels above the threshold —logy(5¢ — 8) are considered
strongly associated with a phenotype, while lower significance lev-
els indicate weak associations. SNPs with significance levels below
—logjo(le —4) are considered spurious. These different thresh-
olds are important to show, with different degrees of priority and
salience, for a complete picture of genomic association likelihoods.

4 DATA AND TASKS

Our approach is guided by Munzner’s nested model for visualiza-
tion design [29]. We begin with a characterization and abstraction
of data and tasks.

Data The MoBa study includes data from over 100,000 preg-
nancies, documenting genomic information and data for a wide
range of phenotypes. The data collection has been going on from
1998 (the start of participant recruitment) to the present. As our
work is dedicated to visualization techniques rather than an ex-
haustive analysis of all phenotypes within the MoBa dataset, we
focused on three widely available and interpretable phenotypes:
weight, length, and Body Mass Index (BMI) of children from birth
to eight years of age. These phenotypes serve as primary indica-
tors of growth, development, and overall health of children. MoBa

collected measurements for each phenotype at twelve distinct time
points to cover the stages of development before puberty. This
information enables researchers to examine how associations be-
tween genetics and phenotypes change over time. After data collec-
tion, domain experts performed GWAS analyses for each phenotype
and time point. Moreover, they conducted analyses against three
genomes—fetal, maternal, and paternal—allowing researchers to
explore whether a trait or health condition is influenced by ge-
netic material inherited from a parent, the genetic material of the
fetus, or both. Consequently, the data is stratified along three vari-
able groups: phenotype (categorical), time point (quantitative) and
genome (categorical). Following this stratification, the data is or-
ganized into multiple subsets, each containing GWAS data for a
specific combination of phenotype, time point, and genome, This
results in a multidimensional table with mixed data types.

Expert tasks Following data characterization and abstrac-
tion we proceeded to task analysis, beginning with expert tasks
that we defined through a requirements analysis. We conducted
semi-structured interviews with three domain experts conducting
research on MoBa data: a geneticist, a genetic epidemiologist, and
a psychiatric genetic epidemiologist. Each researcher participated
in a single interview session lasting 45-60 minutes. The inter-
views included open-ended questions probing participants’ tasks
with MoBa data, workflows, specific pain points or limitations in
current tools or processes. For example, we asked the participants
to describe the main features of the MoBa dataset that they were
working with or were interested in exploring. For the complete set
of interview questions, we refer to supplementary materials. Af-
terward, the author team met over several sessions to synthesize
domain needs into the following tasks and questions:

* ET1: Effectively navigate MoBa study variables to identify
and select data subsets to explore particular combinations
of phenotypes, time points, and genomes within the study.

e ET2: Compare the associations between phenotypes and
SNPs across fetal, maternal, and paternal genomes.

* ET3: Browse SNPs for a specific phenotype, time point, and
genome combination. They want to identify significant SNPs
or look up and verify a specific SNP.

* ET4: Explore the dynamics of SNP impact (i.e., beta coeffi-
cients) over time.

¢ ETS: Summarize the genetic basis of a phenotype.

Non-expert tasks We define non-experts as individuals in-
terested in learning how genetics shape human health or how data
collected though public health studies are being used, and who do
not have deep knowledge of genetics and statistical analysis. We
synthesized non-expert tasks through literature review [19, 32] and
discussions with the same set of domain experts on their experience
with public interest in the MoBa study. Following this process we
determined the following tasks and questions that non-experts may
aim to solve:

¢ NET1: A non-expert may want to discover information about
genetics and their impact on health to satisty their curiosity
about the topic.

e NET2: Non-experts aim to learn how a specific trait is af-
fected by genetics by looking up GWAS data for a specific
phenotype and time point, and browsing the corresponding
SNPs’ significance levels.

* NET3: A non-expert may seek to discover more about the
methods employed by researchers to examine association be-
tween a phenotype and genomic variation.

* NET4: MoBa participants wish to learn how their personal
information is secured. They may aim to explore the entire
dataset available to ensure that their data are not revealed.

We used our data and task characterization to develop the MoBa
GWAS Explorer, an exploratory tool adopting onboarding strategies
to help a mixed audience learn about GWAS data from the MoBa



HENI
hundiﬁé‘ﬂill.ﬁjil.tl.x

T |
hﬂnixié‘]ail.klllsIIAx

Figure 2: The MoBa GWAS Explorer overview. The exploration pro-
cess: (1) shows the initial state of the dashboard, (2) — the Ge-
nomic Heatmap View reveals an overview of the GWAS data for three
genomes, (3) — the Manhattan Plot View reveals the GWAS data for
a genome of interest, (4) — the Temporal Forest Plot View reveals the
dynamics of SNP impact over time.

project while facilitating expert analysis. We developed this tool
using Django [14] as a backend and D3.js [6] to serve the frontend.

5 MoBA GWAS EXPLORER

Our tool consists of a navigation panel with two pages: MoBa
GWAS Explorer and About. The About page contains contextual
information about the MoBa study and the interface itself to help
researchers and lay audiences understand the context of the MoBa
GWAS Explorer and, hence, facilitates all the expert and non-expert
tasks. Illustrated in Fig. 1, the GWAS Explorer page contains
our developed tool for GWAS exploration and consists of multiple
views: Query, Genomic Heatmap, Manhattan Plot and Tempo-
ral Forest Plot views. We provide the mapping of the views and
the corresponding tasks each of them supports in the supplemental
materials. Through these different views, an expert user can, for
instance, use the Query and Genomic Heatmap views to find SNPs
linked to BMI at 8 months in the maternal genome, then use the
Manhattan Plot to identify top associations and the Temporal For-
est Plot to explore when they most impact the phenotype. Addition-
ally, the interface features a tutorial designed to onboard non-expert
users [NET1, NET3, NET4].

Upon opening the application, users see the interface, as shown
in Fig. 2.1, with the Genomic Heatmap, Manhattan Plot, and Tem-
poral Forest Plot initially displayed as placeholders. This approach
provides orienting support which we adopt from visualization guid-
ance literature [10, 11], an area closely related to onboarding in
visual analytics. As the user explores the application, the views
gradually reveal the corresponding MoBa data, as shown in Fig. 2,
which for non-experts is further facilitated by a tutorial. This grad-
ual unfolding of the views supports incremental exploration, and
allows the user to process these multidimensional data in smaller,
more manageable subsets [30].

Query view Starting in the top-left corner, the Query view
(shown in Fig. 1.2) serves as the initial point of interaction with
the dashboard and provides users with tools to query the dataset
and explore its content. The view includes a drop-down menu for
phenotype selection and a timeline slider for specifying a time point
of interest [ET1, NET1, NET2, and NET4].

Genomic Heatmap view Adjacent to the Query view, the
Genomic Heatmap view supports user navigation of the genome
variable. The view consists of radio buttons for selecting a genome
of interest [ET1, NET1, NET2, and NET4] and a grid heatmap
showing the aggregated significance levels of SNPs across chromo-
somes for each genome [ET2, ET3, ETS, NET1, NET4]. The radio

buttons represent the categories of the genome variable (fetal, ma-
ternal, and paternal) and enable the user to select a genome to exam-
ine. The heatmap offers an overview of GWAS data by displaying
the weighted sum of SNP significance levels per genome and chro-
mosome, enabling comparative analysis across genomes and guid-
ing further detailed exploration [ET2]. The heatmap’s color scale
ranges from zero to the maximum weighted sum across all chro-
mosomes and genomes for the selected phenotype and time point.
When a user selects a genome, it is highlighted. Changing the phe-
notype or time point updates the heatmap to reflect the new query
variables.

Manhattan Plot view The Manhattan Plot view appears be-
low the Heatmap view. For a given combination of phenotype, time
point, and genome, we used a Manhattan plot to represent the cor-
responding GWAS results [ET1, ET3, ETS5, NET1, NET2, NET4].
A Manhattan plot was considered the most suitable representation
for this task for several reasons. Firstly, a Manhattan plot provides
an overview of genome-wide associations [ETS, NET4]. Secondly,
Manhattan plots have a linear layout which facilitates the compar-
ison between data points [7] and, thus, supports the search for the
most significant genomic variations [ET3, NET1, NET2]. In addi-
tion, the interviews with the experts revealed that Manhattan plots
are widely used in scientific publications to communicate GWAS
results. As a result, many researchers are likely familiar with this
representation, which facilitates its use.

The SNPs in the Manhattan plot are organized by chromosome,
and SNPs from different chromosomes are spatially separated. To
visually connect the Manhattan plot’s chromosome regions with the
corresponding columns in the heatmap and distinguish neighbor-
ing chromosomes, we use alternating vertical white and grey back-
ground shading, shown in Fig. 1.4. Additionally, linking the aggre-
gated data in the heatmap’s cells with a more detailed representation
of SNPs in the Manhattan plot helps the user identify chromosome
regions with dense SNP clusters.

The GWAS dataset contains a significant amount of data, largely
due to the extensive SNP arrays that make visualization and anal-
ysis especially challenging. However as discussed in Sec. 3, SNPs
with significance levels below —logy(1le —4) are considered spu-
rious and can be mainly ignored. As a result, the Manhattan
plot displays only the SNPs with a significance level greater than
—log;o(le —4). To visually represent the SNPs with a signifi-
cance level below —log;y(le —4) and avoid the misinterpretation
that there are no SNPs below the significant threshold, we included
a visual metaphor in the form of a patterned (striped) rectangle,
demonstrated in Fig. 1.4. The plot contains a button, shown in
Fig. 1.4b, that allows the user to collapse this rectangle. This re-
sults in a more focused view and, consequently, facilitates NET1,
NET?2, and NET4. Following discussions with domain experts, we
incorporated a threshold to differentiate between SNPs with strong
and weak levels of association within a selected phenotype. This
threshold is encoded by a horizontal red line shown in Fig. 1.4 and
equals —log;(5¢ — 8). This encoding helps users quickly identify
the most relevant SNPs based on their significance level [ET1, ET3,
NET1, NET2, NET4]. To provide details-on-demand [5], hovering
over data points displays detailed information about SNPs, such as
SNP identifiers, chromosome name, genomic position, and signif-
icance (here, the negative logarithm of a p-value) [ET3]. Addi-
tionally, we supplemented the Manhattan plot with zooming and
panning to help the user focus on specific areas of the visualization.

The user can select a particular SNP by selecting a point or us-
ing a search box, shown in Fig. 1.4a [ET1, ET3]. When a SNP is
selected, the MoBa GWAS Explorer displays blue lines, illustrated
in Fig. 1.4, that link the SNP and the next view.

Temporal Forest Plot view The next view is the Temporal
Forest Plot view. The name refers to a forest plot—a representation



commonly used in medical studies to display study estimates along-
side their confidence intervals [23], both of which are available in
MoBa data. Initially, the view appears as a placeholder, indicating
that more information will be shown once a SNP in the Manhattan
Plot is selected. The Temporal Forest Plot displays phenotype mean
values alongside the corresponding deviations from the trait means
caused by the presence of one or two SNPs in a genome. The view
displays several measurements across the time points (hence, our
metaphor of a forest over time):

* The mean values of a phenotype selected in the Query view.

* The deviations from the mean values caused by a SNP se-

lected in the Manhattan Plot View when one instance of the
SNP is present in a genome. For each time point, a deviation is
calculated as mean + 3, where mean and 3 are the phenotype
mean value and the beta coefficient at this time respectively.

* The deviations from the mean values caused by a SNP se-

lected in the Manhattan Plot View when two instances of the
SNP are present in a genome. For each time point, a deviation
is calculated as mean + 2 x 3.

The y-axis represents phenotype measurements labeled as “Chil-
dren’s phenotype”, where phenotype is the selected phenotype. The
slider in the Query View above serves as the x-axis for this view.
To visually link the two views, dashed lines, shown in Fig. 1.5, ex-
tend from the slider’s tick labels through the Temporal Forest Plot.
We represent the mean values as magenta points, while mean + 3
and mean + 2 * B—Iight and dark purple points, respectively. We
encode confidence intervals for mean + B and mean + 2 x B values
as semi-transparent light purple lines. Users can zoom along the
y-axis and pan for closer examination [ET4, NET1, NET2, NET4].
Additionally, a toggle button, shown in Fig. 1.5a, allows switching
between two representations: deviations including the phenotype
mean values (mean+ f and mean + 2 x ) and deviations showing
only the beta coefficients 8 and 2 x 8. The latter highlights when a
selected SNP has the largest effect on the phenotype, indicated by
the highest point [ET4, ETS5, NET1, NET2, NET4].

Non-Expert tutorial The MoBa GWAS Explorer offers an in-
teractive tutorial shown in Fig. 1.a and Fig. 1.b that supports non-
expert tasks NET1, NET2, NET3, and NET4. The tutorial aims
to explain MoBa data and their analysis to non-expert users, for
example, those who are interested in learning how genetic stud-
ies are conducted in MoBa or how genetics may influence their
child’s health, such as BMI. The tutorial leads the non-expert user
through the dashboard’s views, describing the analysis pipeline us-
ing a particular example: the analysis of GWAS results for BMI
at eight months for the fetal genome. The tutorial covers various
concepts from basic genetic terms (DNA, SNP) to advanced topics
(GWAS, beta coefficients). The tutorial acts as an interactive step-
by-step guide integrated in the MoBa GWAS Explorer as inspired by
prior work [37, 38] that combines textual descriptions and illustra-
tions [44, 35] and learning-by-doing approach [22, 40]. The tutorial
follows the martini glass narrative structure [36] to guide the user
through the sections of the dashboard. Upon completion, the tuto-
rial closes inviting the user for more independent exploration. We
provide a recording of the tutorial in the supplemental materials.

The user launches the tutorial via the button shown in Fig. 1.6.
Upon activation, the dashboard fades and becomes inactive, while a
modal window appears in the center of the screen showing the on-
boarding content. This window contains textual descriptions, some
of which are supplemented with references to external sources and
illustrations to provide a second channel for information process-
ing [44, 35]. The textual descriptions are split into steps, with
each step focusing on a specific term or concept related to genet-
ics and MoBa study. The user uses buttons to navigate through
each step, and may exit the tutorial at any time. To support cer-
tain textual descriptions, the tutorial reveals parts of the dashboard.
When these parts are revealed, the user can not interact with them

User ID || User type Expertise Study phase
EO1 Expert Genetic epidemiology | Intermediate
E02 Expert Genetic epidemiology | Intermediate
EO3 Expert Genetics Summative
NEO1 Non-Expert | Digital culture Summative
NEO02 Non-Expert | Digital culture Summative
NEO03 Non-Expert | Comparative politics Summative
NEO04 Non-Expert | Psychology Summative
NEO5 Non-Expert | Carpentry Summative

Table 1: Overview of participants for intermediate and summative
evaluations.

unless instructed to do so by the tutorial. While guiding the user
through different elements of a tool, the tutorial displays or high-
lights these elements on their mention in the onboarding window.
For example, when describing SNPs with strong associations, the
tutorial brings up the relevant SNPs by reducing the opacity of the
other SNPs [20]. Similarly, when the window explains SNPs with
weak significance, the corresponding SNPs are brought into focus.
Following the learning-by-doing approach [22, 40], certain steps
prompt the user to take specific actions. For instance, when explain-
ing Temporal Forest Plot view and effect size estimate, the tutorial
instructs the user to toggle the deviation view, as shown in Fig. 1.a.
Advancing the the next step is not possible until the user has com-
pleted the necessary action (Fig. 1.a and Fig. 1.b). The tutorial
concludes, and invites the user to explore the tool independently.

6 EVALUATION

Our primary aim with this study was to understand the feasibility
of the MoBa GWAS Explorer for use by both expert and non-expert
groups, supported by visualization onboarding. In the early phases
of our study we included checkpoints for discussion and feedback
with two domain experts. We did not include intermediate evalua-
tion with non-expert users due to resource and time constraints. We
evaluated the completed application in a pilot study with detailed
1:1 interviews with a domain expert and five non-experts. This sec-
tion outlines the evaluation process and feedback from both groups.

Expert evaluation During the development phase, we con-
ducted an intermediate evaluation with two domain experts
[EO1, E02] through our collaboration with the MoBa research com-
munity. We presented early prototypes to expert EO1 and asked
for feedback on their clarity and usefulness for the expert’s work.
Expert EO2 helped evaluate a later version of the tool through open-
ended exploration while thinking aloud. Afterward, we had an in-
formal discussion on the dashboard’s strengths and weaknesses.

Following feedback integration, we held a summative evaluation
of the tool in a 1:1 semi-structured interview with the geneticist
who had not been involved in the intermediate interviews [E03]. To
simulate a real-world use case, we asked the expert to explore the
MoBa GWAS Explorer freely. We observed and screen-recorded the
session to identify moments of hesitation or confusion. Afterward,
we asked the geneticist usability-focused questions drawing on the
principles of usability testing [4]. For instance, we asked the expert
to describe how easily they could navigate through the dashboard.
The goal was to assess end-to-end user experience, gather overall
user impression and identify opportunities for improvement. When
asked to rate their satisfaction with the overall usability of the dash-
board on a scale of 0-3 (0: not satisfied and 3: fully satisfied), the
expert gave a score of 1.5 referring to the navigation as a weak
point, especially after selecting a phenotype, where the next steps
were unclear. Despite this, they considered the dashboard moder-



ately useful and highly likely to be used in their professional work.
Additionally, the geneticist noted positive aspects of the dashboard
and provided recommendations for additional features and possi-
ble improvements, such as a tutorial for experts to learn about the
offered interactions and navigation within the application.

Non-expert evaluation We evaluated the dashboard through
1:1 interviews with five non-expert participants. We recruited the
participants using convenience and purposive sampling [39], target-
ing individuals without knowledge of genetics and statistical anal-
ysis. Each interview lasted approximately one hour and consisted
of three stages. In the first stage, the participants were asked pre-
testing questions covering their background and demographics, mo-
tivation to engage with genomic data, and familiarity with science,
health, genetics, as well as their data literacy. For example, we
asked how often they encountered data visualizations in general,
specifically in health-related contexts. We also probed their pri-
vacy concerns regarding the sharing of personal information—an
essential part of the MoBa study. This is particularly relevant in the
Norwegian context where many people are study participants and
may be concerned about how their data are being used. The second
stage involved direct interaction with the MoBa GWAS Explorer.
We asked the participant to interact with the dashboard freely, sim-
ulating a real-world scenario when the user explores the application
independently. We observed their interaction and recorded the time
required to complete the tutorial. The final stage included post-
testing questions on their experience with the tutorial, their under-
standing of its content, and interpretation of the application views.

Participants came from different backgrounds unrelated to ge-
netics. After being introduced to MoBa study, the participants ex-
pressed interest in learning more about the study, how genetics re-
late to diseases and how researchers uncover this information. Most
participants rated their familiarity with science and genetics as low
to average [NEO1, NEO2, NEO3, NEOS], except for one partici-
pant who rated their knowledge slightly above average [NEO4]. In
our data literacy pre-assessment, most participants reported limited
exposure to data visualizations, especially in health contexts. To
assess privacy concerns, we used an informal 0--3 scale to mea-
sure participants’ comfort levels with sharing personal information,
where 0 indicated not comfortable, and 3 was fully comfortable.
Three out of five participants [NE03, NEO4, NEO5] would be com-
fortable sharing their personal information, giving a score of 3. The
remaining participants [NEO1, NEO2] rated it 2, expressing con-
cerns about sharing biological data. The results suggest that while
some users may be open to contributing their data, data sharing
remains a concern, underscoring the importance of clear communi-
cation about data use in the MoBa GWAS Explorer.

In the second stage, on introduction to the tool two participants
[NEO2, NEO4] immediately launched the tutorial. The remaining
participants [NEO1, NEO3, NEOS5] started interacting with the views
instead, explaining that that they “never read instructions or tuto-
rials, usually skip them” [NEO3] and “felt confident with the new
tool” [NEOS]. These participants expressed confusion about the
views and eventually launched the tutorial. Overall, participants
smoothly followed the tutorial steps and successfully performed
the instructed actions. Only one required clarification for how to
complete tasks in the tutorial, thinking they had to close the on-
boarding window before interacting with the views. All participants
progressed quickly through most sections explaining phenotypes,
SNPs, GWAS, genomes, and the Manhattan plot. However, they
spent most of their time on the Temporal Forest Plot and beta co-
efficients. In total, the tutorial took between 9-24 minutes with an
average time of 16 minutes. After finishing the tutorial, all partic-
ipants were interested in continuing to interact with the dashboard
by exploring different variables. When asked about the tutorial’s
content, participants demonstrated an understanding of the term
“phenotype”, but most struggled to describe “SNP”” and “GWAS.”

All participants found the explanations of “beta coefficients” un-
clear, although they grasped the link to deviations in phenotypes.
“Confidence intervals” remained unclear to most participants.
Participants were also asked questions to evaluate their under-
standing of the dashboard’s views after tutorial completion. Their
answers pointed at the Temporal Forest Plot view being the most
difficult to comprehend. In the end, the participants were asked
about what they found interesting in the tutorial. Several partici-
pants noted that they enjoyed interacting with the application and
found parts of the content interesting. For example, “It was inter-
esting to see the changes in the Temporal Forest Plot” [NE03], and
“I liked the interactivity” [NEO1]. However, they also criticized the
complexity of the content and its length, noting “some terms were
challenging” [NEOS] and “too complicated sometimes” [NE04].

7 REFLECTIONS AND FUTURE DIRECTIONS

We contributed a design study that explored the potential for a sin-
gle visual analytics application to serve two disparate audiences
through the intervention of visualization onboarding. To support
our investigation we developed the MoBa GWAS Explorer, a web-
based visual tool for exploring and analyzing GWAS data presented
by the MoBa study for a mixed audience. Experts may use famil-
iar idioms to visually explore new questions about the data, while
non-experts have the same feature access in addition to an interac-
tive onboarding tutorial. This tutorial explains how MoBa data are
used and analyzed, walking users through the analysis process and
providing explanations of essential genetic concepts.

While the tool shows potential for such mixed-audience user, our
evaluation highlighted several limitations and areas for improve-
ment. One key issue was the confusion expressed by experts when
interacting with some parts of the application. This suggests that
developing a tutorial for expert users could be a useful direction. A
possible solution may be to readapt the existing non-expert tutorial
to explain the offered visualizations and interactions to researchers,
while omitting explanations of basic genomic terms and concepts
that domain experts are familiar with. Another issue concerns the
non-expert participants who did not launch the tutorial—due either
to an expressed confidence in their ability to independently learn
the application, or a wish to save time. These attitudes may stem
from seeing the use of a tutorial as admitting a lack of knowledge
on a certain topic, which may feel uncomfortable for some. Addi-
tionally, reluctance to engage with and invest time the tutorial may
come from a lack of interest in the data—users may not immedi-
ately see personal relevance or value of the study. Engagement with
such a tutorial may change with increased relevance or personal in-
terest in the data. While the tool shows promise, some participants
struggled to understand certain terms and concepts, for example,
“confidence intervals.” This raises the question of how we could
redesign or reconsider the complexity of the text and tutorial to bet-
ter facilitate understanding.

Designing visual analytics tools to support the different needs
and interests of truly mixed audiences remains a relatively open
research area. While our work investigated lightweight guidance
and an onboarding tutorial strategy to reach non-expert users, many
open and exciting questions remain to explore.

SUPPLEMENTAL MATERIALS
Supplemental materials available at https://osf.io/k5bvj/.
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