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Abstract
Brushing plays a central role in most modern visual analytics solutions and effective and efficient techniques for data selection
are key to establishing a successful human-computer dialogue. With this paper, we address the need for brushing techniques
that are both fast, enabling a fluid interaction in visual data exploration and analysis, and also accurate, i.e., enabling the user
to effectively select specific data subsets, even when their geometric delimination is non-trivial. We present a new solution for
a near-perfect sketch-based brushing technique, where we exploit a convolutional neural network (CNN) for estimating the
intended data selection from a fast and simple click-and-drag interaction and from the data distribution in the visualization.
Our key contributions include a drastically reduced error rate—now below 3%, i.e., less than half of the so far best accuracy—
and an extension to a larger variety of selected data subsets, going beyond previous limitations due to linear estimation models.

1. Introduction

Linking and brushing is useful for interactive visual data explo-
ration and analysis in coordinated multiple views [Mun14,Rob07].
Already 30 years ago, Becker and Cleveland [BC87] defined brush-
ing as an interactive method for selecting data points in a visualiza-
tion by drawing simple geometries onto it. A key functionality in
coordinated multiple views is that brushing leads to a consistent
highlighting of the selected data in all linked views. This results
in the most common form of focus+context visualization [Hau05],
enabling the fast and effective exploration of data relations, which
are too challenging to show in just one view. Many techniques for
brushing have been developed and variants can be categorized into:
• brushing using simple geometries—the most commonly used

brushing solutions include the rectangular or circular brushing
on scatterplots, line-brushing on data graphs [KMG∗06], etc.
• lassoing—the user selects subsets by drawing a geometrically

detailed lasso around the target group of item representations
• logical combinations of simple brushes—the user makes use of

multiple brushes and combines them using logical operators to
refine the data selection [MW95, DGH03]
• sketch-based brushing—the user sketches a shape onto a visual-

ization and a selection heuristic is used to determine which data
are selected [MKO∗08, FH17, RSM∗16]

For designing a brushing technique, two particularly important cri-
teria should be taken into account:
• efficiency—is the brushing is fast enough (including the in-

teraction and all computation) to enable a fluid data explo-
ration/analysis [EVMJ∗11, TKBH17]?
• accuracy—does the brushing interaction lead to a selection of

exactly the data subset, which the user wished to select in the

view (we refer to the most common form of brushing, where data
points are selected due to their location in the visualization)?

Despite the rich variation of existing brushing tools, we rarely see
a solution that combines both criteria really well: Many brushing
techniques are indeed fast, as clicking on one point, for example, or
drawing simple geometries—also sketched brushes are fast, requir-
ing only a simple gesture as interaction and thus enabling a swift
user–computer dialogue during the exploration/analysis [CRM91].
A common disadvantage of fast techniques, however, is that it can
be difficult to accurately brush a particular data subset.

On the other hand, we certainly find brushing techniques, that are
straight-forward for accurately selecting subsets of interest, such as
lassoing and the logical combination of simple brushes. This bene-
fit, however, comes at the price of being slower—specifying a lasso,
for example, easily becomes a unit task by itself [CRM91], poten-
tially interrupting the exploration/analysis process. In our work, we
aim to integrate both criteria in one technique as good as possible.

Recently, deep learning methods, especially convolutional neural
networks (CNN), have been used very successfully in a wide range
of fields including natural language processing [SHG∗14,KGB14],
object detection [RHGS15] and image classification [KSH12]. As
brushing is mainly used to select spatially coherent data subsets,
which is related to detecting patterns in images, we see the potential
of exploiting deep learning to improve brushing even further.

Inspired by the impressive performance of CNNs in image pro-
cessing, we developed a new CNN-based technique for brushing in
scatterplots (we chose brushing in scatterplots as our study case,
assuming that this approach is extensible to other views and ac-
cording brushes, as well). Our quantitative evaluation shows that
we reduce the brushing error rate from about 8% (Mahalanobis
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brush [FH17]) to about 2.5%. We also build on a fast and simple
click-and-drag interaction, but provide a solution which is much
faster and also more flexible in terms of which data subsets can be
selected (not limited due to a linear model). Since brushing is cen-
tral in most modern visual analytics systems, we see this result as
potentially very relevant.

This paper is organized as follows: After reviewing related work
(Sect. 2), we first describe our principal approach (Sect. 3), before
we then present our technique in detail (Sect. 4). The network train-
ing and evaluation are presented in sections 5 and 6, before we
present details about our user studies (Sect. 7) and the model of nat-
ural variation among click-and-drag sketches for brushing (Sect. 8).
We conclude and address future work in section 9.

2. Related work

In the following, we first review some critical works concerning
brushing for visual analytics, before we then discuss related work
concerning applications of convolutional neural network.

2.1. Brushing techniques

Many variations of brushing have been proposed, each with its own
strengths and weaknesses—for example, in terms of their ease of
use and the degree of control that the user has. Brushing is intrinsi-
cally based on the interaction between the user and the system, of-
ten a combination of mouse/cursor motions and clicks. Less usual
methods, based on eye/head tracking, for example, or gestures in a
virtual reality environment, have also been proposed [YA01].

Brushing in scatterplots is often based on the use of simple geo-
metric shapes such as a rectangle or circle. Alternatively, users can
use a lasso to specify the selection more accurately. Several exten-
sions to simple brushing have been published, including techniques
to formulate more complex brushes by combining multiple brushes
using logical operators. Martin and Ward [MW95], for example,
enable the user to configure composite brushes by applying logi-
cal combinations of brushes, including unions, intersections, nega-
tions, and exclusive or operations.

Koytek et al. [KPV∗17] created MyBrush, which extended the
popular brushing and linking technique by incorporating personal
agency. It offers users the flexibility to configure the source, link,
and target of multiple brushes. Hurter et al. [HTE11] developed a
semantic lens which selects a specific spatial and attribute-related
data range and it is applicable for scenarios requiring a mixed se-
lection of the zones of interest.

Similarity brushing [NH06, MKO∗08] is a typical example of
sketch-based brushing, which is based on a fast and simple sketch-
ing interaction—the user uses a swift and approximate gesture (for
example, drawing an approximate shape that the data should fol-
low) and then a similarity measure (target function) is defined to
identify, which data items actually are brushed. This way, the inter-
action is fast, but likely not 100% accurate.

Recently, the Mahalanobis brush was presented as an interesting
alternative for brushing scatterplots [RSM∗16]. The user simply
clicks into the center of a coherent data subset to be selected. The

link between the interaction and the actual selection is realized on
the basis of an analysis of the underlying data (a local covariance
matrix indicates the overall shape and orientation of the data to be
brushed, forming then the basis for a local Mahalanobis metric,
which is then used as a distance measure to select the data).

While this technique is giving quite good results, it still has limi-
tations, including a non-optimized selection of the local context for
the Mahalanobis computation and one off-screen parameter for the
brush size. Fan and Hauser [FH17] extended the Mahalanobis brush
and improved the accuracy by optimizing the parameters based on
a user study and getting rid of the off-line parameter. However, this
improved solution is still linear and has difficulties with complex
structures that would require a more flexible approach. Also, it is
not really real-time for large datasets.

2.2. CNNs and visualization

A convolutional neural network (CNN) is a deep learning ar-
chitecture, which is inspired by the connectivity pattern between
neurons and their organization in the visual cortex [HW62]. The
concept of a neocognitron, proposed by Fukushima [FM82], is
widely considered a fundamental basis of modern CNNs. LeCun
et al. [LBBH98, LBD∗90] established the framework of CNNs by
developing a multi-layer artificial neural network called LeNet-5,
which was applied successfully to image classification problems.
With the emergence of big data and the development of computing
infrastructure, the structure of some CNNs has become very deep.
A solution by Krizhevsky et al. [KSH12] was able to classify about
1.2 million images into 1000 classes, i.e., a record-breaking result
in the ImageNet Large Scale Visual Recognition Challenge. Often,
the impressive success of image processing CNNs is attributed to
their ability to learn rich mid-level image patterns as opposed to
hand-designed low-level features used in more traditional methods.

Considering an increasing number of successful applications of
CNNs in many fields, we would expect according approaches also
in visualization. While several interesting works look into the op-
portunity of visualization helping with the design, training, and
analysis of CNNs [ZF14], we do not yet see a mentionable num-
ber of visualization solutions that exploit CNNs, in particular not
in interaction techniques in visualization. With our work, we also
hope to inspire interesting new research in this direction.

3. The principal approach

The overall goal of our research was to devise a brushing technique,
which is both fast and accurate. In order to get as close as possible
to both requirements, we used the following approach (also illus-
trated in Figure 1):

In order to achieve a fast interaction and a fluid exploration, we
excluded any technique that would require the user to do multiple
basic interactions in order to define just one brush (like a lasso,
for example). To be as accurate as possible, we had to go beyond
simple geometries with their limited abilities to accurately select
data subsets, in particular in “crowded” regions of a visualization.
Therefore, we needed a computational link between the fast and
simple interaction and the selection of a non-trivially delimited sub-
set, estimating the visual structure that the user identified as the
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Our Principal approach

Sketching interaction 
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Figure 1: Illustration of our principal approach: To be fast, we use
sketching as interaction; to estimate which data to actually brush,
we use a CNN trained with data from two user studies.

brushing target. Usually, users brush subsets, which are spatially
coherent in the visualization. Thus, we assume that we can esti-
mate the brushing goal from both the actual brushing interaction
and the data distribution in the visualization near the interaction.

Following successful previous work [MKO∗08,RSM∗16,FH17],
we deemed the combination of an basic sketching interaction I, in-
dicating the location, size, and orientation of the subset to brush,
with a computational estimation function S, determining which
subset to actually select, based on its visualization V near sketch I,
to be a useful framework for modeling our solution. In previous
work [MKO∗08, RSM∗16, FH17], the estimation function S was
carefully modeled according to meaningful heuristics, based, for
example, on a geometric similarity function in visualization space.

Since S amounts to interpreting the data visualization in terms of
which spatially coherent subset best possibly relates to the sketch-
ing interaction, we found it promising to exploit recent successes
of deep learning in image processing for our solution. We expected
that the increased flexibility of this approach also helps to overcome
limitations in previous work with respect to the variety of shapes
that such an interaction can address—all solutions S for sketch-
based brushing of scatterplots, so far [RSM∗16, FH17], are limited
to brushing structures that are described by linear models.

We also wished that the users would not have to adjust any off-
screen parameters, interrupting their exploration/analysis (such that
they can benefit from a fluid interaction with the data). Thus, we
constructed our solution around a convolutional neural network
(CNN) that we trained with data from two user studies.

The first user study, presented in more detail in another recent
publication [FH17], provided information about both the brushing
goals (which dataset subset did the users wish to brush) and the
according interaction (which gesture would the user do to actually
select the targeted data subset). In the second user study, presented
further back in this paper, we examined the variation information of
the user’s interaction in order to use this for modeling an extension
of the training data for the CNN.

Overview of our brushing technique

User interaction/sketching

(click and drag)

Selected data points 

Degree of selection per histogram bin

Data histogram in target region

Offline trained CNN

Figure 2: Overview of our fast and accurate brushing technique:
For sketching, the user clicks into the middle of the data subset
to be selected and drags the pointer to the border of the subset;
The CNN then sees the data distribution near the interaction as a
2D histogram. It delivers a degree-of-selection value per histogram
bin, from which we can compute, which data subset is selected.

4. The new brushing technique

Figure 2 provides an overview of our new brushing algorithm. In
the following, we first describe the overall construction of our solu-
tion, before we then describe the individual components in detail.

4.1. Technique at large

Since we aim at estimating the selection information S from both
the input sketch I as well as from the data visualization V , we need
to efficiently and effectively consider these two heterogeneous parts
of input information. For mainly two reasons, we handle I and V
individually, using the CNN only for the interpretation of V . The
critical input from the click-and-drag sketch, i.e., the click point c
(center of the interaction) as well as the length r and the angle φ

of the drag component, is first used to locate, scale, and orient the
receptive field of the CNN. This way, we "normalize" the network’s
operation with respect to I by a simple linear transformation such
that we can easily "undo" this normalization after the network’s
estimation process. Accordingly, the network’s task is then to in-
terpret the 2D data distribution in the appropriately located, scaled,
and rotated region of the visualization. In order to predict which
data subset to select, we model this step as an image processing
operation: on the input side, we let the network see a 2D histogram
of the data in the targeted area; on the output side we expect a mea-
sure p per bin of the histogram, indicating a "degree of selection"
such that a simple thresholding at p = 0.5 can identify the region
within the target area corresponding to the selected data subset.
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A        B    C

Figure 3: Computing the input to the CNN: A, a square area is specified by the interaction (red line segment); B, after rotating to the
horizontal; C, histogram of the local data distribution (CNN input).

4.2. Computing the input to the CNN

The interaction I by the user amounts to a line in the scatterplot. To
focus on the related, local visualization V near I, we use a square
area including the user’s brushing goal, with side length 2 · r ·ω and
r being the length of I. To choose ω, we balance two goals: On
the one hand, we need to make the receptive field of the network
large enough to indeed see the data subset, which is targeted by the
user as the brushing goal. On the other hand, this area should be
not bigger than necessary in order to optimize the CNN results with
respect to the resolution of the input histogram. Examining the user
study data [FH17], we found ω = 1.5 to be a useful compromise.
Figure 3A shows the square area of the local visualization V related
to I (red line segment).

In order to let the CNN see a normalized input (independent of I)
as well as to interpret its output efficiently, the square area is rotated
by−φ into a horizontal orientation as shown in Figure 3B. To make
use of the local data distribution, we divide the square into a grid
with a specific resolution (15 by 15 in our experiments) and com-
pute a histogram by counting how many data points show up in
each bin of the grid, denoted by Ci j where i, j ∈ [1,15]. We then
normalize the value of each bin into [0,1] by Ci j/max(Ci j). Fig-
ure 3C shows a visualization of the network input with darker bin
colors representing larger Ci j values.

4.3. CNN design

A typical image processing CNN is composed of convolutional,
pooling and dense layers [LBD∗90]. The purpose of convolutional
layers is to extract patterns in local regions of the input images.
Pooling layers are also referred to as a downsampling layers, with
maxpooling being the most popular choice. This serves two main
purposes. First, the number of parameters gets limited, reducing
both the computation cost and overfitting. Second, the network can
this way "see" on different scales, including also larger structures
(earlier layers usually see smaller structures with subsequent lay-
ers then focussing on larger patterns). Fully connected layers then

connect every neuron in one layer to every neuron in the next layer.
This is typically used in the last stages of the CNN.

For CNN design, the two most important goals are to avoid both
overfitting and underfitting. Overfitting refers to when a model is
overly tuned to the training data so that it does not generalize well.
And if the model is too simple, with too few parameters, then this
leads to underfitting, i.e., bad results (low accuracy, etc.).

We carefully experimented with many different layouts/settings
of the CNN model, varying the size and number of the convolution
filters, the number of convolutional and fully-connected layers, and
the number of neurons in the fully-connected layers. As a result,
we found a model which fits our scenario well. In our design, we
deviate from the conventional CNN layout by replacing the last
layer (classifier) with a structured regression layer to encode the
output information from which the actual data subset selection can
be derived in a subsequent step.

Altogether, we propose a model with two convolutional (C), two
max-pooling (M), and two fully-connected layers (F). Figure 4
shows this architecture and the association between the last layer
and the histogram-aligned grid of p-values. In detail, our model
is configured as Input(15×15×1), C(11×11×16), M(6×6×16),
C(4×4×16), M(2×2×16), F(64), F(64), and F(225). The sizes of
the C and M layers are defined as width×height×depth, where
width×height determines the extent of each feature map and depth
represents the number of maps (filters).

The activation function of the last F layer (regression) is chosen
to be a sigmoid function so that the output values are from [0,1]. To
reduce the likelihood of vanishing gradients, ReLu is used for all
the other F and C layers. The filter size is chosen to be 5×5 for the
first C layer and 3×3 for the second one. The max pooling layer
uses a window of size 2×2 with a stride of 2 in each direction.

In order to check that we have chosen a reasonable number of
parameters and a useful structure, avoid overfitting as well as un-
derfitting, we have also visualized the weights of the neurons in
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Figure 4: The proposed CNN model. C, M and F represent the convolutional layers, max-pooling layers, and fully connected layers, re-
spectively. The purple arrows from the last layer illustrate the association between the final layer’s outputs and histogram-aligned grid of
degree-of-selection values.

Figure 5: Visualization of the weights of 8 selected neurons among
64 in the second fully connected layer of the CNN.

the second fully connected layer, the output of which are used to
compose the overall results. The weights are useful to visualize,
because well-trained networks usually display nice and smooth fil-
ters without any noisy patterns [ZF14]. Noisy patterns can be an
indicator of a network that has not been trained for long enough,
or possibly a very low regularization strength that may have led
to overfitting. Figure 5 shows a weights visualization of 8 selected
neurons among 64 in the second fully connected layer, showing that
our model learns meaningful structures and patterns.

4.4. Interpreting the output of the CNN

The output of the CNN is a grid comprised of degree-of-selection
values p per histogram bin and we threshold this information
at p = 0.5 to locate the selected data subset (Fig. 6). We use the
Marching Squares algorithm [LC87] with a threshold of 0.5 to gen-
erate the selection contour based on the two-dimensional network
output and all points in the selection contour are selected to be the
brushing result. Instead, one could also use the p values directly
and select all data points that fall into a bin with p > 0.5. Since this
would correspond to an unnatural selection contour, we prefer the
smoother results as provided by the Marching Squares.

Figure 6: Left: output of the CNN. Right: the points colored in
green are the brushing result (inside the Marching Squares contour,
surrounding the pink area).

5. Training the CNN

We define the training data as (xi ∈ Tin,yi ∈ Tout)
N
i=1 with pairs of

input and expected output (N is the number of the training samples).
We optimize the parameters of the network based on the training
data using the mean-squared error as a loss function. The method
of computing the network input xi (appropriately located, scaled,
and rotated histograms) has been described in section 4.2. In the
following, we explain the design of the reference output yi, which
the model is trained against, and the implementation of the CNN.

5.1. Computing the reference output

For training the CNN, the information of the user goal (data items
to select), which we have from the first user study, needs to be given
to the training in an appropriate form that is compatible with the
output layer of the CNN. For the specific square area that we con-
sider for xi, we know which points are the user’s goal from the user
study. On the left side of Figure 7, for example, the yellow points
are the user’s brushing goal and the red points are not to be selected.

To extract the information that is needed for the CNN train-
ing, we convert this binary select-vs.-disregard information from
the user study into an image of the same resolution as the CNN
input, using an adapted form of the K-nearest neighbors algo-
rithm [Alt92]. For each bin of the grid, we estimate the degree-
of-selection value p, that we then want the network to learn, by
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Figure 7: Left: binary select (yellow) vs. disregard (red) informa-
tion from the user study. Right: the image-based reference output
computed with an adapted nearest neighbor algorithm.

considering all data points in the bin and, if needed, nearby points.
Further points are included from near to far, if there are less than K
points in the center bin, stopping when at least K points are found.
We give less weight to more distant points, based on the Euclidean
distance dk between the bin, where the point is located, and the
center bin. We then estimate the degree-of-selection by

p =
∑k ik/(1+dk)

∑k 1/(1+dk)
(1)

where p ∈ [0,1], k being the index of the points in the search area,
and ik = 1 if the point is a user goal, otherwise ik = 0.

In general, the user goal is confined to the inside of the target
area. Thus we ensure that the border bins have small values. Ac-
cordingly, we stop the search procedure, when an outside bin of the
grid is searched. If the number of points found so far is then less
than K, we synthesize the missing points right outside of the grid,
and these points are labeled as not being a user goal.

A visualization of one according reference output is on the right
of Figure 7: the darker a bin is colored, the smaller the corre-
sponding p value is. Even though also other methods for estimat-
ing p come to mind, we found that this simple approach gave very
good results—most likely due to well-behaved data from the user
study (all of the user goals from the study lead to selection geome-
tries with substantially smooth boundaries). In our research, we ex-
perimented with different values of K and validated them against
the user study data—we found that K = 3 achieved the smoothest
boundaries that successfully separate the user goal.

5.2. Training details

Usually, high accuracy cannot be achieved unless enough training
samples are provided. It is labor-intensive and time-consuming to
invite a large number of users to provide large amounts of user
data. Instead, we follow a common strategy and synthesize addi-
tional training data [KSH12] from the already acquired training set
based on a second user study that we did with the goal to study
the variation of the user’s interaction (in our sketch-based brushing
context). We assumed that there would be a certain amount of nat-
ural variation in the users’ sketching interaction (in terms of where
exactly they click and how far and in which direction they drag).
In the user study, we thus measured this variation, and modeled it
in a statistically best-possible way, and then synthesized additional

Figure 8: Left: Two cases from the second user study, 10 interac-
tions for a specific brushing target in each case. Right: 15 modeled
interactions per case (semi-transparent) with the original user in-
teraction shown as solid line.

interaction sketches according to the resulting models as additional
training data for the CNN. On the left of Figure 8, we see several
user interactions from the second user study that we used for the
variation analysis, and on the right are correspondingly modeled
synthetic variations, confirming that our model leads to meaning-
ful new training data. More details about this user study and the
modeling procedure are provided in sections 7 and 8, respectively.

We then used three datasets of different sizes to train the CNN
and compared their performances. The smallest dataset consists of
500 (xi,yi)-pairs, based on 500 selections from the first user study.
The larger and the largest training sets were generated by synthe-
sizing additional 1500 and 7500 (xi,yi)-pairs, respectively.

We implemented the network and executed its training in
Keras [C∗15] which provides useful GPU acceleration. For the
training and testing, we used a PC with an Intel Xeon E5-1650
CPU and an NVIDIA GeForce GTX 1080 GPU. We used regular-
izers in the convolutional layers and a dropout function with a drop
rate of 0.2 to avoid overfitting. As the output of our model is related
to a degree-of-selection instead of a binary matrix, an L2 regular-
izer is more suitable in our model, resulting in less sparse output as
when using an L1 regularizer. The learning rate was set to be 10−3

and in order to obtain a good convergence towards a high-quality
optimum, we ran 10000 epochs for the training with a full batch.

6. Evaluation

For evaluating the new method, and in particular the trained CNN,
we used k-fold cross-validation [K∗95]. In k-fold cross-validation,
the original sample is randomly partitioned into k equal sized sets.
In each of the k folds, a single set is retained as the validation data
for testing the model, and the remaining k−1 sets are used as train-
ing data. The cross-validation process is then repeated k times, with
each of the k sets used exactly once for validation. The results from
all k folds are then averaged to assess the model. In our evaluation,
we set k = 6 and split the original 600 selections (from the first user
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Table 1: Statistics of the cross validation and training times

Group (validation)
Size factor of training data

1 4 16
G1 95.73% 96.33% 96.65%
G2 96.43% 97.74% 97.72%
G3 98.39% 98.50% 98.60%
G4 97.11% 97.13% 97.24%
G5 95.00% 96.02% 96.82%
G6 95.37% 97.17% 97.46%

Mean 96.34% 97.15% 97.42%
Variance 1.3 ·10−4 6.9 ·10−5 444...111 ·111000−5

Time ≈5mins ≈20mins ≈80mins

study) into six evenly sized groups Gi. For training the network, we
use five groups as such (500 selections), or the extended training
sets (see section 5.2) with 2000 or 8000 selections, respectively.

Table 1 shows the results of the cross validation in terms of ac-
curacy for the three training set sizes. With the extended training
data, the trained model is more stable and has a higher accuracy.
We also see that the performance of our model, when using the 16
times larger training set, is only slightly better as when trained with
the four times bigger training set, with an overall accuracy 97.42%.

Based on the trained CNN model, we did a quantitative accu-
racy comparison with the previously published new Mahalanobis
brush [FH17] using the same 600 selections as presented in their
user study. For each point in each of the cases, we test whether the
Mahalanobis brush selects it, whether our new technique selects it,
and whether it should be selected (ground truth), looking at 252,400
points altogether. We use different colors in the visualization to rep-
resent the comparison result:
• yellow points (both brushing techniques succeed to select the

point correctly; both true positive), purple points (both brushing
techniques fail to select, i.e., both false negative), and pink points
(both techniques select falsely; both false positive)—purple and
pink points (both techniques fail) amount to about 4.57% of all
cases, where at least one technique fails.
• green points (the new technique succeeds, while the old fails)

and blue points (the original method selected falsely, while the
new one does not)—these points represent the cases, where our
new technique improves the so far best results and ≈89.3% of
all cases, where at least one method fails, fall into this category!
• orange points (the new method fails to select, while the old did)

and red points (the new method selects falsely, while the old did
not)—these points represent cases, where the new technique is
worse than the one (only about 6.13% of all cases, where at least
one method fails, amount to this category).

To make this color-coding easier to follow, an accordingly colored
Venn diagram is embedded in Figures 9 and 10 as color legend.
The dashed circle on top represents the user goal (ground truth).
The solid circle represents the brushing results by our new tech-
nique, while the dotted one surrounds the brushing results by the
previously published Mahalanobis technique. We note that in the
shown schematic, the areas do not correspond to the proportions of
the respective cases—it’s just a color legend.

Figure 9: Two typical examples of a good match between the user’s
goal and the CNN-based brushing technique.

In total, when using the dice coefficient [Dic45] to assess how
well both techniques agree with the ground truth, we get excel-
lent 99% for our new technique, as compared to 91% for the ref-
erence method [FH17]. In terms of efficiency, the new technique
is similarly fast as the previous Mahalanobis brush for small sub-
sets; when brushing 2000 points, for example, it takes around 20ms.
But when it comes to larger datasets, our method takes only 180ms
when brushing 1 million points, while the Mahalanobis brush takes
very long 110s for 100000 points, which is orders of magnitude too
slow for a fluid interaction with large data.

To further substantiate the evaluation of our new approach, we
organized a new user study and invited ten users to test our CNN
model on new data. In this study, we followed the established pro-
cedure of the first user study [FH17], but provided 6 completely
new datasets (D7–D12 in the supplementary video) for the users to
brush, which were not used in any way in the construction or train-
ing of our model. We got 120 new selections from this user study
and the average accuracy is ≈95.3%, providing further evidence
that our model is good at capturing relevant features of the user’s
brushing preference, rather than being biased by the training data.

6.1. Examples of good cases

Figure 9 shows two typical situations, when our method performs
very well, while the Mahalanobis brush [FH17] results in a worse
selection. On the left of Figure 9 we see many green points which
the Mahalanobis brush would need to select, but actually does not,
while our technique selects them correctly. Besides, we see many
blue points on the right of Figure 9: by design, the Mahalanobis
brush brushes an elliptical area that more often than the CNN has
troubles in selecting elongated, skinny groups.

6.2. Worst cases

We also did a worst case analysis, shown in Figure 10, which we
selected based on the ratio of false negatives to our brushing result
(FN/ours) and false positives to the goal (FP/goal). Comparably
large values in either of these measures identify our worst cases.

Case A, highest value of FN/ours: our technique has a problem
to differentiate whether the user’s goal is a circular region or an
elongated group in some very similar regions.
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A                                               B                                               C
Figure 10: Three (most extreme) cases of suboptimal matches between the user’s goal and the new brushing technique.

Case B, highest value of FP/goal: the user’s interaction has a big
influence when selecting very small subsets (here, the start point of
the user interaction deviates a bit from the center point of the target
cluster, leading to a bad performance in this case).

Case C: Actually, this is not a very bad example, but we chose to
show it here, because it performs relatively badly both in FP/goal
and FN/ours (a worst case that isn’t really bad, after all).

7. User studies

As the user plays a central role in brushing, we conducted a new
user study to explore how the user uses our brushing tool in practice
and analyzed the natural variation of the sketching interaction in
order to prepare the synthesis of additional data for the training of
the CNN. This new user study can be seen as a follow-up user study,
based on the user study done earlier [FH17] (called the first user
study in this paper). In the following, we first describe, what data
we used from the earlier published user study, before then going
into details about our new user study.

The previously published user study (50 participants) provided
the following data which we also used for this work: Given a par-
ticular scatterplot (one out of six) and a particular request (one out
of three), the study participant chose a target data subset to select
(ground truth, reported by the participants using a lasso tool) and
then also provided the corresponding click-and-drag interaction,
which this participant would use to select the target group.

Naturally, for each user goal, the interaction done by the user
will be at least a bit different every time. In order to understand the
natural variation of the user’s sketching interaction, when having
the same brushing operation in mind, and to model this variation to
enable the synthesis of additional data for the training of the CNN,
we did this follow-up user study based on the first user study. In the
new study, 10 individuals, all students or employees from the Delft
University of Technology, participated. We used 100 representative
selections from the 600 selections in the first user study. For each
user, 10 different selections were displayed only showing the user
goal information.

The second user study then consisted of two parts: In the first

part, the users were asked to look at the points, which they should
brush, using the user goal information from the first study for each
case. Then, the users were required to use our new technique to
select the target points. To do so, the users had to click into the
center of the target points and then drag the pointer, while holding
down the button of the mouse, to the border of the target group
(and then release to finish the selection). The users were asked to
repeat this interaction 10 times in each case. The user interaction
(the start point and end point) was recorded. This resulted in 1000
interactions which we then studied in a variation analysis.

Before the start of the study, we presented our new brushing in a
training session, where we showed the new technique by brushing
a test dataset. These sessions took approximately 10 minutes and
the participants were free to interrupt for questions and to take over
the software to experiment with the new brushing technique until
they were comfortable to do the study.

As mentioned, we also performed a third study to collect addi-
tional evidence about whether the learned model would general-
ize to new data and new users, basically following the design of
the first one [FH17]. We provided six completely new datasets and
invited ten new users. In the supplementary material, we include
more details about this third study and detailed information about
the achieved accuracy.

8. Modeling the variation in sketching

In order to make the CNN training as successful as possible, we
extended the training data with synthetic interaction data based on
the second user study. In our observation, the variation of the user
interaction consists of three parts that meaningfully are modeled
separately: the start point of the interaction (denoted by c), as well
as the length r and the angle φ of the drag-component.

If a user brushes a big group, the potential variation of the length
of the drag-component will be larger than when brushing a small
group. Therefore, when considering the variation of interaction
length r, we normalize by the mean of the interaction length. Fur-
ther, the users’ interaction has much less angle variation when they
brush an elongated, anisotropic group, compared with brushing
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more isotropic subsets. Our user study cases are related to a specific
question, which was used to instruct the users before brushing. The
questions "select a small cluster" (S) and "select a big cluster" (B)
are used to expect a rather isotropic data subset from the user and
the anisotropic cases are more related to the "select an elongated
group" (E) question. Therefore, we compute the variation of angles
separately according to the two different types of cases. We used
the statistical tool EasyFit [Sch02] to analyze which distribution
fits our variation data best and the resulting function details (prob-
ability density functions) and their specific parameters are listed in
Table 2.

For synthesizing new training data, given a user interaction I
with c = (cx,cy), r, and φ, we compute a new user interaction I′

based on random samples from the accordingly fitted PDFs. The
entries in the first column of Table 2 describe the random sam-
ples which we are drawing from the corresponding PDFs (with
"var" referring to variance). The new I′ is then given by c′, r′,

and φ
′ according to r′ = r±

√
var(r)

mean(r) · r and φ
′ = φ±

√
var(φ).

To compute c′, the sampling result var(c) is considered to be
an intermediate variation as the variation of the start point c is
also related to the size of the brushing goal. Therefore, we nor-
malized for this relation before fitting the PDFs. As a result, we
need to "undo" this normalization after sampling the PDF and get
c′ = c± (var(c)+0.1) · (v+20)/10, where v is the standard devi-
ation of the user goal (in x or y direction, respectively).

9. Conclusion and future work

With this paper, we demonstrate how deep learning can be used
to further improve the central operation of brushing in visual an-
alytics. By learning the relation between the data subset to be se-
lected and a click-and-drag sketch by the user to do the selection,
we achieve a solution, which is both very fast and also very accu-
rate. To the best of our knowledge, this is the first study to report
the successful application of a structured regression model, realized
by a convolutional neural network, to improve a central user inter-
action in visual analytics—in our case brushing in scatterplots. We
demonstrate, quantitatively, and in comparison with the previously
published Mahalanobis brush, that our CNN-based solution leads
to a significant reduction of the error rate (from ≈8% to ≈2.5%),
while enabling very fast interaction. In the future, we see several
opportunities to further extend our work, including
• the design of a brushing tool which is tailored for a single user,

using an appropriate method to learn a user’s particular brushing
behavior over time
• research possible improvements of both the network input (using

a different method for capturing the data distribution, like KDE)
and the reference output (alternative ways to estimate p from the
binary user goal information)
• the extension of our principal approach to other views and ac-

cording brushes
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β
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β
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2 (

lnx−µ
σ

)2)

xσ
√

2π

var(c) all

Log-logistic
mode=-0.0241

α = 3.7167
β = 0.08711
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β
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