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Abstract

The overarching theme of this thesis is the cross-disciplinary application of medical
illustration and visualization techniques to address challenges in exploring, analyzing,
and communicating aspects of physiology to audiences with differing expertise.

Describing the myriad biological processes occuring in living beings over time, the
science of physiology is complex and critical to our understanding of how life works.
It spans many spatio-temporal scales to combine and bridge the basic sciences (biol-
ogy, physics, and chemistry) to medicine. Recent years have seen an explosion of new
and finer-grained experimental and acquisition methods to characterize these data. The
volume and complexity of these data necessitate effective visualizations to comple-
ment standard analysis practice. Visualization approaches must carefully consider and
be adaptable to the user’s main task, be it exploratory, analytical, or communication-
oriented. This thesis contributes to the areas of theory, empirical findings, methods,
applications, and research replicability in visualizing physiology.

Our contributions open with a state-of-the-art report exploring the challenges and
opportunities in visualization for physiology. This report is motivated by the need
for visualization researchers, as well as researchers in various application domains, to
have a centralized, multiscale overview of visualization tasks and techniques. Using
a mixed-methods search approach, this is the first report of its kind to broadly sur-
vey the space of visualization for physiology. Our approach to organizing the litera-
ture in this report enables the lookup of topics of interest according to spatio-temporal
scale. It further subdivides works according to any combination of three high-level
visualization tasks: exploration, analysis, and communication. This provides an easily-
navigable foundation for discussion and future research opportunities for audience- and
task-appropriate visualization for physiology. From this report, we identify two key ar-
eas for continued research that begin narrowly and subsequently broaden in scope: (1)
exploratory analysis of multifaceted physiology data for expert users, and (2) commu-
nication for experts and non-experts alike.

Our investigation of multifaceted physiology data takes place over two studies. Each
targets processes occurring at different spatio-temporal scales and includes a case study
with experts to assess the applicability of our proposed method.

At the molecular scale, we examine data from magnetic resonance spectroscopy
(MRS), an advanced biochemical technique used to identify small molecules (metabo-
lites) in living tissue that are indicative of metabolic pathway activity. Although highly
sensitive and specific, the output of this modality is abstract and difficult to interpret.
Our design study investigating the tasks and requirements for expert exploratory analy-
sis of these data led to SpectraMosaic, a novel application enabling domain researchers
to analyze any permutation of metabolites in ratio form for an entire cohort, or by sam-
ple region, individual, acquisition date, or brain activity status at the time of acquisition.
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A second approach considers the exploratory analysis of multidimensional physi-
ological data at the opposite end of the spatio-temporal scale: population. An effec-
tive exploratory data analysis workflow critically must identify interesting patterns and
relationships, which becomes increasingly difficult as data dimensionality increases.
Although this can be partially addressed with existing dimensionality reduction tech-
niques, the nature of these techniques means that subtle patterns may be lost in the
process. In this approach, we describe DimLift, an iterative dimensionality reduction
technique enabling user identification of interesting patterns and relationships that may
lie subtly within a dataset through dimensional bundles. Key to this method is the
user’s ability to steer the dimensionality reduction technique to follow their own lines
of inquiry.

Our third question considers the crafting of visualizations for communication to au-
diences with different levels of expertise. It is natural to expect that experts in a topic
may have different preferences and criteria to evaluate a visual communication rela-
tive to a non-expert audience. This impacts the success of an image in communicating
a given scenario. Drawing from diverse techniques in biomedical illustration and vi-
sualization, we conducted an exploratory study of the criteria that audiences use when
evaluating a biomedical process visualization targeted for communication. From this
study, we identify opportunities for further convergence of biomedical illustration and
visualization techniques for more targeted visual communication design. One oppor-
tunity that we discuss in greater depth is the development of semantically-consistent
guidelines for the coloring of molecular scenes. The intent of such guidelines is to
elevate the scientific literacy of non-expert audiences in the context of molecular visu-
alization, which is particularly relevant to public health communication.

All application code and empirical findings are open-sourced and available for reuse
by the scientific community and public. The methods and findings presented in this
thesis contribute to a foundation of cross-disciplinary biomedical illustration and vi-
sualization research, opening several opportunities for continued work in visualization
for physiology.



Abstract in Norwegian

Det overordnede målet med denne avhandlingen er tverrfaglig anvendelse av me-
disinske illustrasjons- og visualiseringsteknikker for å utforske, analysere og formidle
aspekter ved fysiologi til publikum med ulik faglig nivå og bakgrunn.

Fysiologi beskriver de biologiske prosessene som skjer i levende vesener over tid.
Vitenskapen om fysiologi er kompleks, men samtidig kritisk for vår forståelse av hvor-
dan levende organismer fungerer. Fysiologi dekker en stor bredde romlig-temporale
skalaer og fordrer behovet for å kombinere og bygge bro mellom basalfagene (biologi,
fysikk og kjemi) og medisin. De senere årene har det vært en eksplosjon av nye,
avanserte eksperimentelle metoder for å detektere og karakterisere fysiologiske data.
Volumet og kompleksiteten til fysiologiske data krever effektive strategier for visualis-
ering for å komplementere dagens standard analyser. Hvilke tilnærminger som benyttes
i visualiseringen må nøye balanseres og tilpasses formålet med bruken av dataene, en-
ten dette er for å utforske dataene, analysere disse eller kommunisere og presentere
dem.

Arbeidet i denne avhandlingen bidrar med ny kunnskap innen teori, empiri, anven-
delse og reproduserbarhet av visualiseringsmetoder innen fysiologi. Først i avhandlin-
gen er en rapport som oppsummerer og utforsker dagens kunnskap om muligheter og
utfordringer for visualisering innen fysiologi. Motivasjonen for arbeidet er behovet
forskere innen visualiseringsfeltet, og forskere i ulike anvendelsesområder, har for en
sammensatt oversikt over flerskala visualiseringsoppgaver og teknikker. Ved å bruke
søk over et stort spekter av metodiske tilnærminger, er dette den første rapporten i sitt
slag som kartlegger visualiseringsmulighetene innen fysiologi. I rapporten er faglit-
teraturen oppsummert slik at det skal være enkelt å gjøre oppslag innen ulike tema
i rom-og-tid-skalaen, samtidig som litteraturen er delt inn i de tre høynivå visualis-
eringsoppgavene data utforsking, analyse og kommunikasjon. Dette danner et enkelt
grunnlag for å navigere i litteraturen i feltet og slik danner rapporten et godt grunnlag
for diskusjon og forskningsmuligheter innen feltet visualisering og fysiologi. Basert på
arbeidet med rapporten var det særlig to områder som det er ønskelig for oss å fortsette
å utforske: (1) utforskende analyse av mangefasetterte fysiologidata for ekspertbrukere,
og (2) kommunikasjon av data til både eksperter og ikke-eksperter.

Arbeidet vårt av mangefasetterte fysiologidata er oppsummert i to studier i avhan-
dlingen. Hver studie omhandler prosesser som foregår på forskjellige romlig-temporale
skalaer og inneholder konkrete eksempler på anvendelse av metodene vurdert av
eksperter i feltet.

I den første av de to studiene undersøkes konsentrasjonen av molekylære substanser
(metabolitter) ut fra data innsamlet med magnetisk resonansspektroskopi (MRS), en
avansert biokjemisk teknikk som brukes til å identifisere metabolske forbindelser i lev-
ende vev. Selv om MRS kan ha svært høy sensitivitet og spesifisitet i medisinske an-



viii Abstract in Norwegian

vendelser, er analyseresultatene fra denne modaliteten abstrakte og vanskelige å forstå
også for medisinskfaglige eksperter i feltet. Vår designstudie som undersøkte opp-
gavene og kravene til ekspertutforskende analyse av disse dataene førte til utviklingen
av SpectraMosaic. Dette er en ny applikasjon som gjør det mulig for domeneeksperter
å analysere konsentrasjonen av metabolitter normalisert for en hel kohort, eller etter
prøveregion, individ, opptaksdato, eller status på hjernens aktivitetsnivå ved under-
søkelsestidspunktet.

I den andre studien foreslås en metode for å utføre utforskende analyser av flerdi-
mensjonale fysiologiske data i motsatt ende av den romlig-temporale skalaen, nem-
lig på populasjonsnivå. En effektiv arbeidsflyt for utforskende dataanalyse må kritisk
identifisere interessante mønstre og relasjoner, noe som blir stadig vanskeligere når
dimensjonaliteten til dataene øker. Selv om dette delvis kan løses med eksisterende
reduksjonsteknikker er det alltid en fare for at subtile mønstre kan gå tapt i reduksjon-
sprosessen. Isteden presenterer vi i studien DimLift, en iterativ dimensjonsreduksjon-
steknikk som muliggjør brukeridentifikasjon av interessante mønstre og relasjoner som
kan ligge subtilt i et datasett gjennom dimensjonale bunter. Nøkkelen til denne metoden
er brukerens evne til å styre dimensjonalitetsreduksjonen slik at den følger brukerens
egne undersøkelseslinjer.

For videre å undersøke kommunikasjon til eksperter og ikke-eksperter, studeres i
neste arbeid utformingen av visualiseringer for kommunikasjon til publikum med ulike
nivåer av ekspertnivå. Det er naturlig å forvente at eksperter innen et emne kan ha
ulike preferanser og kriterier for å vurdere en visuell kommunikasjon i forhold til et
ikke-ekspertpublikum. Dette påvirker hvor effektivt et bilde kan benyttes til å formi-
dle en gitt scenario. Med utgangspunkt i ulike teknikker innen biomedisinsk illus-
trasjon og visualisering, gjennomførte vi derfor en utforskende studie av kriteriene
som publikum bruker når de evaluerer en biomedisinsk prosessvisualisering målret-
tet for kommunikasjon. Fra denne studien identifiserte vi muligheter for ytterligere
konvergens av biomedisinsk illustrasjon og visualiseringsteknikker for mer målrettet
visuell kommunikasjonsdesign. Særlig beskrives i større dybde utviklingen av seman-
tisk konsistente retningslinjer for farging av molekylære scener. Hensikten med slike
retningslinjer er å heve den vitenskapelige kompetansen til ikke-ekspertpublikum in-
nen molekyler visualisering, som vil være spesielt relevant for kommunikasjon til be-
folkningen i forbindelse med folkehelseopplysning.

All kode og empiriske funn utviklet i arbeidet med denne avhandlingen er åpen
kildekode og tilgjengelig for gjenbruk av det vitenskapelige miljøet og offentligheten.
Metodene og funnene presentert i denne avhandlingen danner et grunnlag for tver-
rfaglig biomedisinsk illustrasjon og visualiseringsforskning, og åpner flere muligheter
for fortsatt arbeid med visualisering av fysiologiske prosesser.
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(B) L. Garrison, J. Vašíček, A. R. Craven, R. Grüner, N. Smit, and S. Bruckner, "In-
teractive Visual Exploration of Metabolite Ratios in MR Spectroscopy Studies,"
Computers & Graphics, vol. 92, pp. 1–12, 2020.
Laura Garrison contributed to the task and requirement characterization, tool
design, case studies, and paper write-up. Jakub Vašíček provided the implemen-
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Chapter 1

Introduction

That thing the nature of which is totally
unknown to you is usually what you
need to find, and finding it is a matter of
getting lost.

Rebecca Solnit

Physiology describes the interconnected biochemical processes that sustain life.
Life is complicated—millions of reactions occur within our bodies at any given time,
allowing us to extract energy from the food that we consume, breathe, move, and more.
Understanding more about these processes in humans can lead to, for example, im-
proved communication between experts and general audiences, promote drug devel-
opment that is more targeted and effective, and advance the quality of healthcare and
individual health management. The study of physiology unifies the basic disciplines
of biology, chemistry, and physics with medicine and numerous other connecting dis-
ciplines, such as systems biology. Advances in hardware and software have led to
new imaging paradigms at higher resolution, more sophisticated simulations, and new
experimental methods able to capture processes in real time in situ, such as spatial tran-
scriptomics [474]. The volume and complexity of these data necessitate new methods
for both experts and non-experts to explore, analyze, and communicate salient informa-
tion. The work in this thesis is motivated by the profusion of multifaceted, multidimen-
sional physiological data that necessitate new visual approaches for their interpretation
and communication from a cross-disciplinary visualization and biomedical illustration
perspective. This introductory chapter describes the motivation for this thesis and pro-
vides relevant background on physiology, visualization tasks, and a brief primer on
color theory. A detailed outline of the scope and contributions follows, along with an
overview of the structure of the remainder of this thesis.

1.1 Problem Statement

New experimental and computational techniques are enabling researchers to map the
spatio-temporal organization of the body and dynamic behaviors of molecules, cells,
tissues, and organs in unprecedented detail [30, 137, 211, 498, 527]. These techniques
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and research initiatives span multiple disciplines. Consequently, identifying and bring-
ing together the myriad visualization opportunities that these new methods present re-
quires a multidisciplinary perspective.

Data describing aspects of physiology are complex due to their often multifaceted,
high-dimensional nature. Experts need an effective means to discover interesting fea-
tures in these data in order to perform tasks, such as identifying new biomarkers for
disease. Finding such interesting features or patterns can be particularly challenging as
the dimensionality of the data increase. Keeping track of different, possibly interesting,
aspects is also challenging, e.g., comparing and aligning qualitative and quantitative
data features. While already difficult in the case of an individual, these challenges are
compounded in the case of a group, as occurs in clinical cohort data. Visual analysis
approaches that integrate statistical methods with human interaction are useful to re-
duce the analysis space, but maintaining a meaningful connection to the input data and
balancing user agency and insights with data complexity remains an ongoing challenge.

Communicating the key insights of physiology data to different application do-
mains, e.g., clinical research, or to the public is yet another grand challenge in the
visualization of physiology. Effective communication necessitates finding an appro-
priate level of abstraction to convey information in a way that is comprehensible to
the intended user or audience. Limited visualization research addresses the practice of
visual communication for physiology, often falling to disciplines outside of the core
visualization field, e.g., biomedical illustration [148]. Better understanding of these
practices and preferences is necessary in visualization research to advance our efforts
in communicating the complexity of physiology to different stakeholders.

Biomedical illustrations are ubiquitous in visual communications for their tuneabil-
ity to the degree of abstraction that is most appropriate for conveying the intended mes-
sage to the target audience. They are furthermore employed when the source data are
absent, of poor quality, or otherwise inadequate to communicate the desired informa-
tion. However, in some cases illustrations can be too abstract due to their lack of direct
connection to the source data, or lack consistent semantic meaning in favor of exercis-
ing creative license. While conventional visualization approaches often tackle a prob-
lem from a technical perspective driven by data characteristics and user task demands,
approaches from biomedical illustration more often frame the problem from a visual
design-centered perspective. The latter perspective prioritizes visual composition and
storytelling methods that are beneficial for communication-based tasks. While illustra-
tive visualization draws inspiration from illustration techniques in its approach [412],
further work exploring the relationship and integration of data- and illustration-driven
techniques is necessary. Such work can improve semantic consistency and create visual
narratives that better facilitate the communication objective of a given visualization.

Our cross-disciplinary perspective in this thesis enables us to address these chal-
lenges and gaps between conventional visualization approaches and biomedical illus-
tration techniques in visualization for physiology. This perspective is enabled in part
by the increased recognition of physiology as a multidisciplinary field of study, and by
the increased societal demands for compelling and understandable tools to craft visual-
izations of physiology that have begun to span disciplines in new ways.
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Figure 1.1: Schematic of spatio-temporal scale ranges in which physiological processes occur
(from Paper A).

1.2 Background

1.2.1 Physiology Primer

Human physiology requires a careful balancing act, known as homeostasis, of a mul-
titude of processes occurring over a broad span of time and space, as summarized in
Fig. 1.1. The cell is the smallest entity in the human body with the functional char-
acteristics for independent life. Cells contain inorganic molecules, such as water and
ions, as well as organic molecules, such as proteins, that are involved in the processes
necessary for survival. Genes are the basic unit of heredity in cells that are made up
of DNA and which encode the synthesis of RNA, which then is translated to build pro-
teins. Genes, proteins, and other molecules interact through sequences of reactions
that form pathways, which ultimately form networks contributing to specific cellular
functions. For example, a metabolic pathway is any set of chemical reactions that con-
verts food into usable energy and removes waste from the cell [180]. The molecular
reactants, products, and intermediates of this type of pathway are called metabolites.
Metabolites are the main focus of one of the visualization approaches, SpectraMosaic
(Paper B), that we discuss in this thesis. Molecular structures are typically nanome-
ters to hundreds of nanometers in size, and molecule-scale processes can occur over a
broad temporal range from femtoseconds, e.g., bond vibrations between atoms within a
molecule, to seconds, e.g., global motions or the chain of reactions in a pathway [193],
to minutes and hours in the case of large-scale pathways, e.g., gene expression, signal
transduction, and metabolism [31].

Cells contain specialized cellular structures called organelles that perform specific
functions within the cell. For example, the nucleus houses the cell’s genes, while the
mitochondrion is often referred to as the powerhouse of the cell [180]. Specialized
molecules, known as receptors, as well as channels and other structures facilitate com-
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munication and exchange of nutrients between the cell and the outside world through
a semipermeable membrane. Cells vary widely in size, but average around tens of mi-
crons with cell-scale processes occurring over a temporal range of milliseconds, e.g.,
the generation of an action potential, to a day for a complete cycle of human cell growth
and division.

Tissue is formed from groups of specialized cells with shared properties and func-
tions. There are four primary tissue types in the body, each with unique physiological
properties reflective of their function: muscle, epithelial, connective, and nerve tissue.
For example, connective tissue supports and protects the various structures of the body,
in addition to storing fat and assisting in structural repairs. Abnormal tissues arise when
cells take on different characteristics than the surrounding tissue in which they occur,
as is the case in cancerous tumors. Tissue-scale processes span hundreds of microns
to millimeters in size and range in time from milliseconds, e.g., signal propagation, to
weeks or months, as in tissue growth and development.

Organs are composed of a collection of tissues that perform specific function(s)
in the body. For example, the main function of the lungs is gas exchange, whereby
freshly-oxygenated air is brought into the body and deoxygenated air is removed. Most
human organs measure in the range of centimeters. Organ-scale processes, such as
a complete heartbeat or a complete breath cycle, occur in roughly one second, but the
lifespan of an organ may span the years the organism itself survives.

A system is a group of organs that work in concert to perform one or more func-
tions in the body. For example, the respiratory system includes the lungs, airways, and
accessory muscles that bring air in and out of the body. Our organ systems are inter-
dependent. The respiratory system cannot function without the cardiovascular system,
which includes the blood vessels which carry oxygen throughout the body. The normal
functioning of an organism depends upon the systems of the body working in harmony.

Physiology is valuable to study at the population scale to understand general pat-
terns of processes across larger groups, or to follow evolutionary processes over even
longer time scales. This thesis touches on small-scale population physiology in two ap-
plications that we discuss in more detail in Chapter 3: in the study of metabolite ratios
of small cohorts in SpectraMosaic (Paper B) and in larger cohorts with a broader range
of data types in DimLift (Paper C).

1.2.2 Visualization Tasks Primer

Visualization is a powerful tool used to derive insights from data. These data sources
come from, and can be used in, a number of different ways. While computer science
tends to think of visualization as a means to augment human capabilities through vi-
sual representations of a dataset [354], these representations may also be data-inspired,
often to convey a clear message to a chosen audience. The latter is true for much of
the work from the centuries-old field of biomedical illustration. Just as in visualization,
advances in technology have introduced new opportunities for biomedical illustrators
to use data in their craft. While many biomedical illustrators rely on observation, just
as Renaissance artists like Andreas Vesalius and Leonardo Davinci did to illuminate
the structure and function of the human body, modern-day biomedical illustrators can
incorporate data more directly into their workflow, e.g., modeling and animating a beat-
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ing heart from CT data. This thesis investigates the overlap and respective influences
of visualization and biomedical illustration techniques to address user tasks in visual-
izations for physiology.

Effective visualizations are those designed to solve a particular user task or set of
tasks for a given user and data type. Adapting from Brehmer & Munzner’s multilevel
typology of abstract visualization tasks [66], these tasks can be categorized at a high-
level as exploratory, analytical, or communication-oriented. A single visualization
may address these three tasks to varying degrees.

Exploratory tasks often occur when the user is unsure of the contents of the data.
In the context of the visualization pipeline, the user, often an expert, typically wishes
to minimally abstract the data to produce a visual mapping that remains close or is
easily trackable to the source format. Through exploration the user can familiarize
themselves with the characteristics and features of the data prior to a more detailed
analysis. Exploratory visualization strategies are often direct visualizations, e.g., direct
volume rendering or time-lapse image sequences. Interaction techniques allow users to
browse the data for interesting features, and focus+context techniques enable users to
explore specific aspects of the data within the context of the overall dataset.

Analysis tasks can arise when the user has familiarized themselves with the intrin-
sic characteristics of the data and now wishes to organize and extract meaning from
these data. Analysis and exploration are closely linked through the concept of discov-
ery. A user may begin with an exploratory approach to generate a hypothesis, then per-
form low-level analytical tasks incorporating statistical methods to verify their hypoth-
esis. This workflow shows the human as an integral part of the analysis process, where
insights are generated by human-machine cooperation. In the visualization pipeline,
analysis may produce new artefacts through transformation, derivation, and abstrac-
tion of the data [10]. Visualization strategies to accomplish analysis-based tasks often
employ interaction techniques, such as brushing and filtering, to sift through the data
and identify features of interest. Linked multi-view visualizations that include common
chart types such as bar and scatter plots are common approaches to facilitate detailed
analytical tasks.

Key data concepts can be emphasized or summarized through communication
tasks such as presentation, education, or enjoyment. These tasks serve a particular
audience or user group, e.g., experts between domains or the general public. Visual-
izations developed for communication are often further abstracted from the data than
in analysis- or exploration-oriented tasks, often incorporating cinematic or storytelling
elements to convey the author’s interpretation of the data. While nearly all publica-
tions include figures to communicate scientific results, for the work presented in this
thesis we identify uses of visualization for communication beyond what is achievable
with standard, out-of-the-box tools. Illustrative visualization techniques, inspired by
biomedical illustration, are accessible strategies for communication as they can tell a
simpler story than, e.g., a complete volume rendering strategy may tell.

Many visualizations cannot be defined through one of these tasks alone, and instead
often aim to achieve a combination of tasks. This thesis describes visualization ap-
proaches and findings from case studies that achieve a combination of user tasks, e.g.,
exploration and analysis.
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(a) HSL color space (b) Color wheel

Figure 1.2: Color. (a) Source: https://en.wikipedia.org/wiki/HSL_and_HSV. (b)
Adapted from: https://commons.wikimedia.org/wiki/File:RGB_color_wheel_360.
svg (from Paper E).

(a) Monochromatic (b) Analogous (c) Complementary

Figure 1.3: Three common color harmony rules using blue as the base color. Created in Adobe
Color [6]: https://color.adobe.com/create/color-wheel (from Paper E).

1.2.3 Color Primer

Color can help users achieve their desired tasks more easily [354]. While color can
be represented through numerous models, such as RGB (red, green, blue), CMYK
(cyan, magenta, yellow, key: black), or HSL (hue, saturation, lightness) [417], for our
purposes the HSL color model is the most useful and intuitive way to consider color.
The 3D cylinder in Fig. 1.2a depicts the three parameters of this model. Hue describes
a base color, e.g., green, that is localized by angle around the color wheel shown in
Fig. 1.2b. Saturation specifies the purity of a hue, and range from no saturation, i.e.,
grey, at the center of the cylinder to complete saturation, e.g., pure green, the cylinder’s
outer perimeter. Lightness defines the brightness of a color, ranging from no light,
i.e., black, at the base of the cylinder to fully light, i.e., white, at the top of the cylinder.
Blending black into a color produces a shade, while mixing a color with white produces
a tint.

The combination of colors used to design a visualization is called a color palette.
Several color harmony rules aid in creating aesthetically pleasing palettes. Drawing
from Itten’s seven models of color contrast [222], harmony rules may be monochro-
matic, analogous, or complementary, among others. Monochromatic palettes are cre-
ated from tints and shades of a single color, as shown in Fig. 1.3a. Analogous palettes
consist of adjacent colors on the color wheel, as in Fig. 1.3b. Complementary palettes
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consist of opposite colors on the color wheel, as in Fig. 1.3c. Colors in a palette can
be used strategically to, e.g., establish a visual hierarchy or to guide the eye through a
narrative.

1.3 Scope and Contributions

The overarching theme of this thesis is the cross-disciplinary application of biomedical
illustration and visualization to address challenges in exploring, analyzing, and com-
municating aspects of physiological processes to audiences and users with different
degrees of expertise. We restrict our scope according to the following field, actors, and
cases:

1. Our work is restricted to visualization primarily for the field of human physiology,
although some instances noted in our state-of-the-art report come from model
organisms.

2. The actors we focus on are domain experts and non-experts, i.e., individuals
who either classify as a lay audience or who lack expert-level knowledge of the
particular process being visualized.

3. The cases this thesis deals with are restricted to high-level user tasks, predom-
inately exploratory analysis or communication of physiology through visualiza-
tion. The theory, empirical findings, methods, and applications that this thesis
presents are developed from these high-level tasks or combinations of tasks.

This thesis makes several contributions in the areas of theory, empirical findings,
method, application, and research replicability. We outline individual contributions
according to these areas below:

Theory:

1. A novel classification system that identifies visualizations according to the high-
level visualization task they serve, and to the spatio-temporal scale of the physio-
logical process(es) that they cover, as displayed in Fig. 3.1 (Paper A).

2. The groundwork for a set of guidelines and best practices for semantically-
meaningful coloring of molecular visualizations (Paper E).

Empirical Findings:

3. A state-of-the-art report that surveys both within and beyond the core visualiza-
tion venues to provide a view into mature and open opportunities in visualization
research for physiology according to spatio-temporal scale and high-level visual-
ization task (Paper A).

4. A detailed review of magnetic resonance spectroscopy (MRS) data characteristics
and abstraction of spectral analysis tasks identified from domain expert collabo-
ration (Paper B).
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5. A short study on the role of algorithm choice in data imputation for high-
dimensional, mixed-type datasets in the context of our DimLift method (Paper
C).

6. An asset library cataloguing standard practices for the creation of biomedical
illustrations and visualizations of common concepts in physiology (Paper D).

7. A survey of expert and non-expert preferences for the visual communication of
common concepts in physiology (Paper D).

8. A preliminary study of the color palettes used for molecular visualizations from
two domain perspectives: (1) biomedical illustration and (2) application domains,
e.g., structural biology, systems biology (Paper E).

Method:

9. A heatmap matrix display with nested glyphs to explore ratios of metabolite con-
centrations from magnetic resonance spectroscopy (MRS) data (Paper B).

10. The DimLift method for semi-automated creation and editing of semantically-
related dimensional groupings, called dimensional bundles, to explore subtle pat-
terns in high-dimensional data. This method semantically connects and tracks
data transformations through visual mappings and interactions that allow on-the-
fly recomposition of dimensional bundles (Paper C).

Application:

11. SpectraMosaic, a visual exploratory analysis pipeline and tool which provides an
interface for linking of structural, spectral, and patient data. It includes group
creation and uncertainty communication. This application integrates our heatmap
matrix display with nested glyphs to explore metabolite ratios through different
attributes. This approach is validated with a clinical case study and feedback from
three MR spectroscopy research experts (Paper B).

12. An application interface for the DimLift method that allows experts to interact
with complex, high-dimensional data. We validate this approach in a physiologi-
cal context through a cerebral small vessel disease case study (Paper C).

Research replicability:

13. All software for the applications developed is open-source and certified replicable
through the Graphics Replicability Stamp Initiative (Papers B and C). Empirical
data packages and accompanying visualizations are also publicly available (Pa-
pers A, D, and E).

1.4 Thesis Structure

This thesis is divided into two main parts. Part I summarizes the motivations, chal-
lenges, and scientific results of this thesis. Part II contains the publications that con-
tribute to this thesis, which remain unchanged apart from adjustments to fit the format
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of this template. We also streamline the bibliographies of the respective publications,
combining them to a single bibliography at the end of the thesis.

Part I is organized as follows: Chapter 1 (the current chapter) describes the problem
space, provides necessary background material, and outlines the scope and contribu-
tions of this thesis. Chapter 2 provides an overview of related work in the following ar-
eas: visualization of physiology, discovery-centric visualization, and communication-
centric visualization. Chapter 3 builds on related work to discuss the contributions of
this thesis in the areas of theory, empirical findings, method, application, and research
replicability. Chapter 4 concludes Part I and discusses opportunities for future work.

Part II includes five publications that provide further details on the contributions of
this thesis.

• Paper A corresponds to contributions 1, 3, and 13.
• Paper B details contributions 4, 9, 11, and 13.
• Paper C provides further details for contributions 5, 10, 12, and 13.
• Paper D corresponds to contributions 6, 7, and 13.
• Paper E expands on contributions 2, 8, and 13.
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Chapter 2

Research Context

Do you think miners stand around all
day talking about how hard it is to mine
for coal? They do not. They simply dig.

Cheryl Strayed

In this chapter we discuss works related to this thesis in the areas of (1) visualiza-
tion of physiology, (2) discovery-centric visualization, and (3) communication-centric
visualization.

2.1 Visualization of Physiology

Many of the theoretical frameworks guiding visualization design are constructed
around data characteristics or user tasks. Munzner [354] and Tominski & Schu-
mann [503] consider both elements in their framing of the purpose of visualization as
the exploration, description, explanation, communication, and/or presentation of data.
Munzner provides a nested model of visualization [353] that enables visualization re-
searchers to validate their design choices according to data, user, and task at four levels,
ranging from algorithm design up to domain characterization. A task-specific frame-
work is that proposed by Brehmer & Munzner [66], who present a multilevel task
typology on the what, why, and how of visualization tasks. Our work draws inspira-
tion from these frameworks in our consideration of visualization tasks in the context of
physiology.

Physiology has received extensive attention from the visualization community.
However, this has been in a fragmented, unevenly distributed form across numerous
subtopics, data sources, and visualization techniques. Few works extend their focus
beyond one or two scales, e.g., only molecular-scale [267], molecular- and cellular-
scale [169], or organ-scale [287]. Surveys on a particular data type, e.g., PC-MRI
by Köhler et al. [260], are similarly restricted in scope. This paints a limited pic-
ture of physiology’s true multiscale nature. Technique surveys, including by McGee et
al. [331] on multilayer network visualization, Bach et al. [33] on space-time cubes, or
Preim et al. [401] on medical animation, may cover multiple scales, but physiology is
not the primary focus and is often just one application area of many under discussion.



2

14 Research Context

Still others have surveyed the multiscale challenges in visualizing biomedical data from
a high-level perspective [10, 79, 245, 330, 523], though again without a specific focus
on physiology. The bioinformatics and systems biology domain has perhaps come the
closest to capturing the multiscale visualization challenges for physiology from the
molecular- to population-scale. However, these works are relatively brief and lack de-
tailed discussion of visualization tasks due to their different domain focus [452], or
retain a heavier focus on particular data types or scales, as in O’Donoghue et al.’s [376]
review on the multiscale challenges of visualizing omics and imaging data. The frag-
mented nature of these various reports on the topic of physiology as a whole motivated
our work for a broader-scope study that outlines mature and open opportunities in vi-
sualization research for physiology (Paper A).

Color in Visualization of Physiology. Color is a valuable tool in the development of
any visualization, with numerous works making use of color to facilitate user tasks in
visualizations of physiological phenomena. Surveys by Silva et al. [465] and Zhou et
al. [579] provide an overview of color guidelines and use of color maps from a gen-
eral visualization perspective, many of which are applicable to physiology. Particularly
ubiquitous at the organ-scale is the use of rainbow maps to indicate physiological pa-
rameters, and Borland et al. [57] discuss the controversies and pitfalls of this particular
color map in detail. Numerous tools enable the creation and selection of different color
maps and palettes for use in a visualization, including Colourmap Hospital [128], Col-
orBrewer [185], Colorgorical [173], and Adobe Color [6]. Many of these tools are
designed for basic charts, rather than complex 2D or 3D shapes or environments, and
can require discretion when applied to specific topics in physiology. Furthermore, these
tools can still offer a staggering array of options and may demand a degree of expertise
in color theory from the content author.

Color in Molecular-Scale Visualization. Although valuable across all scales of
physiology, color application is a particularly open and challenging research area at
the molecular-scale. Illumination models, such as Hermosilla’s diffuse color bleed-
ing model [195], may boost colors in a visualization to provide structural cues on a
molecular surface that are imperative for the identification of binding sites in molecu-
lar reactions. Szafir et al. [490] have also shown the value of ambient occlusion and
directional lighting when interpreting molecular surfaces that are in shadow, finding
that stylized rendering approaches hinder interpretability. Furthermore, since shadows
diminish luminance range, this study found luminance-varying ramps more performant
than isoluminant ramps. These works suggest the assignment of high luminance values
to molecules of interest or in shadow to direct attention and readability of structures of
interest. The application of high luminance values to structures of interest is common in
biomedical illustration, and has carried to other visualization works such as Waldin et
al.’s [535] technique for color application that spans atomic to whole-virus resolution.
Using a systematically adjustable color scheme across different scales through primar-
ily hue shift, their method enables visualization of structures of interest at a particular
scale, e.g., atoms or the structural compartments of a virus. They use an analogous
palette of saturated colors, and use luminance to draw attention to salient features, e.g.,
the quantity of a type of amino acid in a protein or a protein’s secondary structures.
Klein et al. [256] take a similar multiscale adaptive coloring approach in the context of
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microtubule dynamics. Similar to Waldin et al., the initial color assignment is largely
arbitrary, and focuses on structure rather than function. Based in part on the ideas
introduced in these works, Paper E of this thesis explores considerations for the devel-
opment of semantic coloring guidelines in molecular visualizations. The intent of such
guidelines is to facilitate communication, as well as discovery-related exploration and
analysis tasks.

2.2 Discovery-Centric Visualization

Visualizations of physiological phenomena for the purpose of discovery orient towards
generating and verifying hypotheses [66] through exploration and analysis. The focus
of such work is often for research or clinical experts. Visual exploration and analysis of
multifaceted, high-dimensional data is a grand challenge in the visualization research
community, with applications across numerous domains. Discussion of efforts in this
general area are beyond the scope of this thesis, but are detailed with a survey of ad-
vances in recent years by Liu et al. [307]. This thesis explores strategies for visual
exploration and analysis of multifaceted data on two levels. The first level is specific to
a particular data type that is little-explored in the visualization community: magnetic
resonance spectroscopy (MRS) data. This is the focus of Paper B. The second level
looks more broadly at strategies to visualize complex data that include a variety of dif-
ferent data sources, as is often the case in clinical cohort data. This more general level
of multifaceted data exploration is the focus of Paper C.

Visualization of MRS Data. Magnetic resonance spectroscopy (MRS) is an in vivo,
non-invasive technique used to estimate the concentrations of metabolites in a tissue
region. These concentrations provide insights to the activity of metabolic pathways in
that area. Acquisition techniques include single-voxel spectroscopy (SVS) or multi-
voxel spectroscopy (CSI), where single-voxel techniques cover a smaller area and are
more suited for detailed, quantitative metabolite analysis in a smaller region [513].
Paired with structural imaging methods such as magnetic resonance imaging (MRI),
MRS shows potential to improve clinical diagnosis and treatment monitoring of nu-
merous conditions of the central nervous system [517]. A major challenge in visualiz-
ing MRS data is that each voxel acquisition is itself a multivariate dataset. Our work
in Paper B draws inspiration from tools such as InSpectr [14], which employs compar-
ative visualization techniques [163] and multiple linked views to provide insights into
the composition of a multivariate, multimodal data source. We similarly combine ac-
quisition techniques, but in a different domain context with a different analytical focus.
Spectral Similarity Maps extend the InSpectr framework [141], which adopt isosurface
similarity maps proposed by Bruckner and Möller [72] to show correlations between
spectra. Rather than mapping energy correlations, we map metabolite ratios using a
similar visual encoding.

Prior approaches to visualizing MRS data have generally been limited to a sub-
set of metabolites at a time, and are summarized in a state-of-the-art report by Nunes
et al. [372]. Highlights from this report include work by Feng et al. [136], who
present scale-driven data spheres (SDDS), a technique using colored spheres to indicate
metabolite abundance in a voxel. Further work expanded this approach to include par-
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allel coordinates and scatter plots to compare metabolites concentrations, although this
remains limited to a subset of metabolites. Marino and Kaufman [321] combine MRI
with MRS and positron emission tomography (PET) data in a direct volume visual-
ization to understand the dimensions and characteristics of a prostate tumor. However,
their use of MRS is limited to a single metabolite ratio, and is constrained to a single in-
dividual at one time point. Nunes et al. [373] combine ComVis [328] and MITK [559]
in a visual analysis framework for radiotherapy that uses metabolite values to identify
a biological target volume. Retention of spectra is not the focus of this work, and it
provides limited functionality for comparing metabolites. Jawad et al. [229] present
a system for composition analysis of segmented brain tissue to identify the metabolic
signatures of brain tumors, with a follow-on reproducibility study [230]. This tool is
optimized for multivoxel data, and focuses on statistical outcome measurements. Fur-
ther work by Jawad et al. [228] describes an approach for the comparative analysis
of cohort single-voxel spectroscopy data. They employ violin and parallel coordinate
plots to analyze spectral metabolite relationships. Our work in Paper B uses similar
data inputs and processing tools in our SpectraMosaic application. While our work
uses similar abstract 2D visualization techniques as these various approaches, we are
not restricted to a particular analysis use case of MRS data, e.g., tumor composition
identification. We furthermore allow for the simultaneous comparison of all metabo-
lites in a sample with focus+context facilities to compare different regions, across time,
between individuals, or in different brain activity states.

While our first iteration of SpectraMosaic focuses on exploratory analysis of single-
peak metabolites directly from spectral graphs [150], our work in Paper B expands this
application for a complete analysis of simple and complex metabolite signatures and
integrates robust MR spectroscopy quantification tools. The practical usability of the
tool is also improved, with facilities for assigning group membership and displaying the
variation of the input data that align with several recent recommendations from Truong
& Duncan [508] for visualizing MRS data.

Visualization of Multifaceted Mixed-Type Data. Expanding beyond a specific data
type related to physiology, we now discuss work that broadly relates to the visualization
of multifaceted, mixed-type data that are typical to more complex studies in physiology.
Dimensionality reduction methods play a large role in visualization strategies for these
data.

Sacha et al. [429] provide an overview and classification of dimension reduction
methods as used in visual analysis. Our DimLift approach described in Paper C in-
corporates dimensionality reduction methods in a subset of the interaction scenarios
they identified: data selection & emphasis, data manipulation, and feature selection &
emphasis.

Similar work to our approach include Tatu et al. [493], who employ an interesting-
ness -guided subspace search algorithm to identify subspaces for further visual analysis.
However, their facilities for user-driven subspace composition are limited. Dowling et
al. [110] present the SIRIUS system, which explores the interplay of dimension and
item space in high-dimensional data with the help of multidimensional scaling (MDS),
a nonlinear dimensionality reduction technique. Their system uses linked views be-
tween dimension and item space to visualize correlations. We similarly link between
dimension and item space, but employ a linear dimensionality reduction method for
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clearer data provenance. Guided workflows such as DimStiller by Ingram et al. [215]
enable users to find a single global optimal composition through the dimensionality
reduction process. In contrast, our approach does not consider a single optimum, but
rather many possibilites that depend on the user’s line of inquiry. Yuan et al. [576] com-
bine a Dimension Projection Matrix, an extended scatterplot matrix, with a Dimension
Projection Tree to explore data and dimension subspaces. While we similarly allow
analysis of data subspaces at item and dimension level, our approach enables user ex-
ploration and comparison of subspaces for interesting correlations. Most inspiring to
our approach in Paper C is the Dual Analysis approach by Turkay et al. [510], which
enables the simultaneous exploration of dimensions and items for hypothesis genera-
tion. This work, along with a follow-on clinical application study [511], introduces a
visual analysis workflow where users seamlessly move between the comparative anal-
ysis of dimensions and items to identify outliers and correlations of interest. Brushing
and linking facilities provide clear visual feedback during the analysis process. Müller
et al. [351] extend this approach to incorporate mixed data (continuous and categorical)
with facilities for the visualization of missing data. Our DimLift method expands fur-
ther on the reciprocity between dimension and item space by introducing dimensional
bundles for the analysis of high-dimensional data.

The projection of relevant data features to low-dimensional space often yields
results that are difficult to understand. Although principal component analysis
(PCA) [394] is a well-known and broadly applicable method used in dimensionality
reduction, it suffers from this interpretation issue. Müller et al. [357] discuss design so-
lutions to visualize the connection between data inputs and results from a PCA. How-
ever, many of these solutions do not scale well with high-dimensional data. iPCA [235]
is one solution that bridges PCA results to the original data. This approach uses mul-
tiple linked views to depict PCA results with interaction facilities for user adjustment
of dimension contributions within any principal component. Any adjustments dynami-
cally update the visualization of the PCA results. Our DimLift method similarly relies
on visual elements and user interactions to connect original and derived dimensions,
although we use this link to facilitate hypothesis formation rather than to explain the
results of a PCA.

Visual Representations for Multifaceted Data. A number of visual representations
enable the subsequent analysis and exploration of multifaceted data. This thesis focuses
primarily on two strategies: heatmap matrices and parallel coordinates, both of which
include nested elements, such as glyphs. We discuss work closely related to these
strategies in the remainder of this section.

Numerous solutions have leveraged small related graphics series to visualize multi-
faceted data, as first introduced by Bertin [47]. We base our method and application
from Paper B, SpectraMosaic, on this concept, and extend this by including a sec-
ond layer of nested visual encodings. This is inspired by ATOM [390], a grammar for
unit visualizations where individual data items are represented by unique visual marks
(units) in a visual encoding system. PivotTable, which was extended by Polaris [482]
and subsequently trademarked by Microsoft, enables exploration and analysis of mul-
tidimensional data with the flexibility to modify visual encodings, graphics, and the
configuration of the table itself. Klemm et al. [257] build on this concept for linked vi-
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sualization of image-centric heterogeneous cohort data. Our approach is related in that
we allow on-the-fly reconfiguration of our matrix inputs.

Parallel coordinates are a popular means for representing multifaceted data [189].
Nested or hierarchical plots, adapted from the traditional flat parallel coordinates plot,
can visualize and be used to evaluate structural relationships in the data. Numerous
parallel coordinates solutions aggregate data according to item relatedness, in part as a
means to reduce clutter and noise in the plot [24, 80, 143, 144, 418, 518, 533]. These
methods focus on the hierarchical construction of sets of items, while we aim one level
above this to hierarchically construct sets of dimensions. Several approaches use par-
allel coordinates to visualize dimension-level aggregation, which are created through
algorithmic methods or pre-defined data hierarchies. These methods allow varying de-
grees of user interaction. For example, Dunica et al. [112] and Wang et al. [540] use
parallel coordinates to visualize results of a single-run PCA, where each axis represents
a different principal component. While we similarly incorporate principal components,
our approach iteratively produces principal components that consist of subsets of re-
lated dimensions.

Approaches to parallel coordinate dimension hierarchies often incorporate other
plots. These are either separate or directly integrated into the parallel coordinates plot.
Huang et al. [207] present hierarchical clusters of dimensions in parallel coordinates
through dendrograms that attach to each axis. DOFSA [571] and InterRing [572] are
connected tools enabling interactive visual exploration and modification of hierarchical
data. These modifications are made on InterRing and link to other plots, e.g., parallel
coordinates. By contrast, our method does not split user attention over different graph-
ical interfaces. Furthermore, the DOFSA hierarchy is flattened in the parallel coordi-
nates representation, with its order informed by the hierarchy constructed in InterRing.
We do not flatten the hierarchy in this manner. Weidele [548] present the conditional
parallel coordinates method, which connects and reveals additional dimensions to the
range of a given parent dimension when certain conditions are met. Perhaps most visu-
ally similar to our approach, Brodbeck & Girardin [70] and Andrews et al. [18] create
aggregated dimension axes in parallel coordinates plots. These axes may be expanded
to reveal the contained dimensions. In contrast to these methods, our DimLift approach
described in Paper C does not use pre-defined hierarchies, and instead allows for flexi-
ble dimension regrouping as hypotheses evolve.

2.3 Communication-Centric Visualization

The use of visualization design principles to communicate science through illus-
trative and data-driven means is another important facet of this thesis. Several
works [167, 168, 231, 232, 239, 551] emphasize visualization for communication with
the aid of illustrative techniques which often come from a practice-based perspective.
Sousa et al. include illustrative approaches in their illustrative scientific visualization
framework to help non-artists approach and solve visualization tasks [471]. This frame-
work parallels a traditional illustration pipeline that begins with receiving and recording
information, producing and refining sketches, followed by rendering and annotation.
Similar to these works, we take a broad view of visualization for communication that
includes illustrative and data-driven techniques. We additionally draw on prior ideas of
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abstraction spaces and build on the existing body of qualitative visualization research
in developing communication-oriented visualizations for physiology.

Visual Abstraction. Abstraction is inherent to visualization. Viola & Isenberg pro-
vide a formalization of abstraction in visualization [531]. Their definitions and updated
formalization [530] of visual abstraction serve as the basis for the abstraction spaces
which we discuss further in Chapter 3 and in detail in Paper D. Rautek et al. [412]
describe abstraction as a powerful tool in visual communication, which can lend ad-
ditional insights to one’s data. Andrews [17] takes a similar view of abstraction from
a biomedical illustration perspective, discussing instances where illustration is an op-
timal medium to visualize certain concepts. This includes removing “visual garbage,”
i.e., irrelevant or distracting structures from the core message, or superimposing struc-
tures that may otherwise be impossible to do without illustration. Tufte’s concept of
“chart junk” is a more extreme instance of visual abstraction whereby a visualization is
reduced to only its essence, with no additional visual elements beyond the data to drive
a message [509]. Abstraction, when fit appropriately to the task, user, and data, lays
the foundation for a successful visualization.

Communication With Color. While we discussed color earlier in this chapter as a
tool to facilitate user tasks in visualization for physiology in the broad sense, we now
discuss color use as it relates to communication tasks.

While biomedical illustrators follow perceptual design priniciples in coloring a vi-
sualization, they often take artistic license in their selection of a color palette. This is
particularly true for molecular visualization. David Goodsell’s watercolor paintings of
molecular machinery are foundational to the practice of molecular visualization, where
he uses color strategically to describe the spatial organization of molecules [165, 169].
However, he notes that most of his color choices are “completely arbitrary and are cho-
sen solely for aesthetic appeal [168].” Biomedical illustrators also commonly employ
color as a narrative or attention-drawing device to key elements in a visualization [231].
For example, Jenkinson et al. [232] applied low contrast, desaturated colors to context
molecules while assigning highly saturated, complementary colors to focus molecules
(ligand and receptor) to all treatments in their perceptual study on molecular scene
complexity relative to learning outcomes. In their guide to the visual analysis and com-
munication of biomolecular structural data, Johnson & Hertig [239] suggest a similar
color assignment approach. In a Points of View series article, Wong [561] states that
small objects in a scene require increased hue, saturation, and/or brightness in order to
stand out in a visualization. He furthermore suggests a simple trick of squinting at a
visualization to evaluate color evenness and visibility. Although these approaches are
valuable resources for using color to guide a narrative and improve the aesthetics of a
visualization, none suggest color use to semantically highlight structural or functional
features in a consistent manner.

Color can elicit different emotional and psychological associations and reac-
tions [222, 316] that often vary across cultures [4]. These different cultural associations
are well-summarized in the visualization “Colours in Culture”1, created by David Mc-
Candless and AlwaysWithHonor.com. This graphic shows the color black associated

1https://informationisbeautiful.net/visualizations/colours-in-cultures/
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with, e.g., intelligence for Asian cultures versus style for Hindu and Japanese cultures.
Color can also take on different meaning in different contexts within the same culture,
suggesting a more subjective and nuanced interpretation of color. For Native Amer-
ican cultures in the “Colours in Culture” graphic, we see black associated with both
balance and death. Similarly, Wexner’s [553] study of color-mood associations with
94 psychology students at Purdue University found strong associations for the color
black to despondent, dejected, unhappy, and melancholy as well as powerful, strong,
and masterful. A ground-breaking study by Adams & Osgood [4] analyzed the af-
fective meanings of color across 23 different cultural groups with mixed agreement.
Their analysis used bipolar adjectives grouped into three factors: Evaluation (E), e.g.,
good ↔ bad; Potency (P), e.g., strong ↔ weak; and Activity (A), e.g., active ↔ pas-
sive. Filmmakers frequently take advantage of affective color associations to define the
mood and genre of a film. To analyze the consistency of these choices, Wei et al. [547]
collected and classified multidimensional feature vectors, including movie dynamics,
pace, and dominant color ratio, to determine a film’s genre and mood (from a Western
perspective [316]) with approximately 80% accuracy.

Color affect is also well-researched in the visualization community. Bartram et
al. [37] studied the strength of affective associations with certain color palettes. Their
findings include a strong association of calm with cool-hued colors that have high light-
ness and low saturation, an association that was again found in a different study inves-
tigating affective word clouds [275]. Not all associations are so strong, and Bartram
et al. note a need for more nuanced analysis of color palettes and harmony patterns.
While we previously discussed the different meaning of color between and within dif-
ferent cultures, color affect may also be highly individual [8]. This is particularly true
when associating color with concepts or lesser-known objects [456], which need suffi-
cient context for the correct meaning to be inferred [443]. This is one of the challenges
in visualizing molecules, which are often unfamiliar to the public. However, colors
with strong semantic associations, e.g., yellow ↔ banana, can be leveraged with the
right audience to positively impact performance in comparison-related visualization
tasks [303]. Although there are numerous reasons for subjective and variable interpre-
tations of color semantics, e.g., culture or color blindness, we can use insights from
such works to tell more consistent stories through color in the visual communication of
physiology.

Empirical Visualization Studies. While empirical studies are increasingly core ele-
ments of visualization research to assess communication and other tasks [87], conduct-
ing a good empirical study can be challenging [549, 580]. For example, conducting
expert reviews rather than a broad user study is strongly dependent on the type of visu-
alization as well as the stage of that visualization’s development. Tory & Möller found
expert reviews particularly valuable when evaluating early prototypes [505]. Our study
on the practice and preferences for visualizing physiological phenomena, described in
Paper D, targeted experts from diverse domains. We took this approach in order to en-
sure sufficient knowledge to provide high-quality feedback from our participants on all
assets and scenarios that we presented. Empirical visualization research may attempt
to understand the field of visualization as a whole, e.g., visualization research key-
words [219], or specific aspects, such as memorability [55, 56, 301]. Our study design
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and the use of keywords is inspired primarily by the approach presented by Isenberg et
al. [219].

Empirical studies on biomedical visualization are often controlled and narrow in
scope, e.g., to evaluate a specific technique. Such studies tend to focus on perceptual
and cognitive aspects, e.g., Baca et al.’s [32] study assessing efficacy based on usabil-
ity, aesthetics, and iterability for a visualization of combustion. Comparative studies
may examine traditional illustration methods, e.g., pen and ink, relative to computa-
tional renderings mimicking the traditional illustration style [221]. Such approaches
may also assess different computational techniques, e.g., stylization and color adjust-
ments to improve surgical field imagery aesthetics [48], semi-transparent structures in
volume rendering [122], or perceptual comparison of aneurysm anatomy with an em-
bedded flow visualization [34]. Our study described in Paper D takes a more qualita-
tive approach focused on the comparison of assets produced using different biomedical
illustration or visualization techniques. As in Baer et al.’s work [34], we asked partic-
ipants to indicate personal preferences in their selections to help us understand, e.g.,
possible background biases.
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Chapter 3

Contributions

Every act of perception is to some
degree an act of creation, and every act
of memory is to some degree an act of
imagination.

Oliver Sacks
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Figure 3.1: Overview of publications included in this thesis, classified according to the high-
level task(s) and the spatio-temporal scale(s) which they address.

This thesis applies techniques from biomedical illustration and visualization to ad-
dress challenges in exploring, analyzing, and communicating aspects of physiological
processes to audiences and users with different degrees and types of expertise. This
chapter outlines individual publications and their contributions to this thesis, framed
according to their high-level task and spatio-temporal classification (Fig. 3.1). We be-
gin with an overview of visualization approaches for physiology that highlight chal-
lenges and opportunities across all three visualization tasks (Fig. 3.1A, Paper A). We
then focus on two research problems for the exploratory analysis of multifaceted data
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(Fig. 3.1B and C, Papers B and C), followed by select challenges in the visual commu-
nication of physiology (Fig. 3.1D and E, Papers D and E).

3.1 Visualization for Physiology

Human physiology is multiscale in that it integrates the individual functions of
molecules, cells, tissues, and organs into a whole organism [180]. This multiscale
nature of physiology allows us to understand how, e.g., reactions at the molecular scale
affect organ-scale events such as the beating of our hearts. An understanding of these
normal, multiscale processes in the body further allows us to identify abnormal pro-
cesses, e.g., irregular heartbeat patterns, and their root causes. Rapid advances in hard-
ware and software have enabled researchers to capture data related to physiology with
more sophisticated experimental and imaging paradigms to the point where it is now
possible to model physiology across multiple scales. Consequently, the time has come
to discuss visualization for multiscale physiology. The state-of-the-art report in Pa-
per A offers a broad overview of the challenges and opportunities in visualization for
physiology from a multiscale perspective.

Modern clinical workflows include a range of imaging protocols and tests related to
physiology used to guide therapy, monitor treatment response or disease progression,
and identify new biomarkers for medical research. Advanced technology and hardware
capture an unprecedented diversity and volume of data through various acquisition
techniques, e.g., spatial transcriptomics, as well as through models and simulations,
e.g., advanced numerical simulations of blood flow. Data are often multivariate, ranging
from static to time-dependent, from 2D to 3D images, and from scalar to tensor fields.
The processes these data capture range spatially from nanometers to full body length
and temporally from femto-/nanoseconds up to hours, months, and, in some cases, even
years, as previously described in Fig. 1.1. However, these data are often specific to a
relatively narrow spatio-temporal range. Establishing links between data across scales
has been identified for years as a grand challenge in systems biology [375, 378], visual-
ization [159, 385], and in a multidisciplinary 2018 Dagstuhl Seminar [7]. Linking these
data across space and time through analytical models and visualization approaches ne-
cessitates multidisciplinary teams, exemplified by initiatives such as the Physiome/Vir-
tual Physiological Human and affiliated subprojects [30, 137, 211, 498, 527] and the
National Institutes of Health’s Human BioMolecular Atlas Program (HuBMAP) [208].

In spite of the abundance of acquired and simulated data for physiology, a data-
driven visualization approach is not always optimal or even possible. Hand-crafted
biomedical illustrations are an invaluable supplement or alternative to data-driven vi-
sualization for representing physiology [167, 168, 180, 239, 427, 434]. However, these
illustrations are time- and labor-intensive to create. This often precludes their use in,
e.g., highly personalized data visualizations. Throughout this thesis, we highlight se-
lect illustrative works to demonstrate opportunities where illustration can augment or
inspire data-driven approaches.
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Figure 3.2: Our literature search process included both traditional search methodologies and
vitaLITy [361]. VitaLITy’s UMAP visualization allowed us to identify two main groupings of
physiology-related visualization literature: (A) contains molecular-scale visualization litera-
ture, while (B) contains cell, tissue, and organ-scale works (from Paper A).

3.1.1 Mixed Methods Literature Search and Classification

The report that opens the contributions of this thesis sketches out trends and opportuni-
ties in visualization for physiology across multiple scales, with an emphasis on human
physiology. Fig. 3.2 provides an overview of our method. Our report is restricted to
works discussing key domain topics that we identified from timely and highly-cited
physiology research. These works furthermore are mainly application-oriented, and
apply visualization techniques beyond a standard chart or figure for the topic domain.
Our literature search focused both on core visualization venues as well as a selection of
relevant works (approximately 46% of the total works collected) from the application
domains.

Our literature search approach combined a traditional keyword-based search method
with vitaLITy [361], a recent visual analysis tool for exploring academic literature.
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Figure 3.3: Distribution of literature by spatio-temporal scale, excluding surveys. Left: Lit-
erature abundance according to scale. Each work is counted once, according to the scale to
which it contributes most. Right: Works over spatio-temporal space, encoded by darkness.
The x-axis shows temporal scale in units 10nseconds, while the y-axis describes spatial scale
in units 10mmeters (from Paper A).

vitaLITy’s UMAP visualization, shown in Fig. 3.2, allowed us to identify main group-
ings (A and B) of thematically-relevant papers. Works that we found using vitaLITy
complemented those found with standard search methods. After collating works from
our initial search we conducted a second pass that reviewed titles, abstracts, and figures
to determine topical fit for our report. Our total literature set includes 305 individual
works and 61 surveys or works that provide an outlook on some aspect of visualization
for physiology.

Literature Taxonomy. We classified all works according to a two-level taxonomy to
better identify challenges and opportunities for physiology. Our first level is inspired
by the organization of physiology textbooks [180], and classifies literature into scales
along a spatio-temporal axis that is roughly discretized according to biological com-
plexity: molecule, cell, tissue, and organ (Fig. 3.3, left). Our approach bundles tem-
porality along with size because increasingly large structures also tend to be involved in
longer, more biologically-complex processes [106, 170, 452, 472]. This phenomenon
is observable in the heatmap visualization in Fig. 3.3. In this figure, each work spans
a segment of spatio-temporal space in increasing powers of ten, beginning with the
smallest spatial and temporal scale that the input data resolve to and spanning to the
size of the largest structure and time range of the process of interest discussed in the
paper. Layering these ranges from each work produces a heatmap that enables rapid
identification of common and less-commonly visualized processes.

A second level categorizes the literature that we collected by high-level visual task:
exploration, analysis, and communication, which we draw from Brehmer & Mun-
zner [66]. Depicted in Fig. 3.4, we use a triangle metaphor for each scale to array
works according to their high-level task classification. Each triangle represents a single
scale space, where the three triangle points represent the three respective visualization
tasks. Circles indicate the position of each work according to its balance of explo-
ration, analysis, and communication task(s). Circle darkness and size dually encode
the number of works with a given task categorization that we collected in our report.
This classification provides insights into the domain task requirements for each scale of
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Figure 3.4: Distribution of literature according to scale and high-level task (task classification
key on left). Many approaches support a combination of tasks. Darkness and size dually
encode the number of works that are categorized with a given task combination within each
triangle (from Paper A).

Figure 3.5: Screenshot of the STAR Literature Visual Explorer, our interface to visually navi-
gate the literature collected and categorized for our report on visualization for physiology.

physiology and facilitates identification of ongoing visualization needs and challenges.

STAR Literature Visual Explorer. One of the artefacts produced in the course of
this research is a visual interface for navigating the literature database that we created
for our report on visualization for physiology, shown in Fig. 3.5. Its role is to provide
a way for interested visualization and application domain researchers to easily browse
the complete library of literature that we collected in our report. With this tool, we also
begin to bridge the gap between exploration and communication, since this is intended
in part as a means to present the various approaches in visualization for physiology in
an interactive way to a diverse group of experts.

The tool consists of five panels. The top two panels directly relate to the two-level
taxonomy discussed earlier: the first level categorizes literature according to organi-
zational complexity and ranges from molecule to organ. A second level identifies any
of three high-level visualization tasks within a given work: exploration, analysis, and
communication. The visualization task categorization of a work is indicated by a circle
glyph positioned at the appropriate location in the triange. The circle increases in diam-
eter and darkness with the increasing density of works with the same task allocation.
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Hover facilities over a circle in a given triangle display the works that are contained
in that categorization. The remaining two panels on the left side of the interface in-
clude a bar chart displaying the number of works categorized to each scale, discretized
to molecule, cell, tissue, or organ. The bottom left panel displays a table that lists pa-
per ID, authors, the title of the work, and the publication year. The large panel on the
right provides details on a selected work, including an image preview and abstract. All
views are linked.

By default, the database does not include the set of related surveys that the report
found and rather shows only the individual methods, tools, etc. papers that we cata-
loged. However, the database input can be updated to include the surveys for those
interested in visualizing this information.

The main entry point to using this interface is the table visualization at the lower left.
Hovering or clicking on any of the rows in the table highlights that work’s main spatio-
temporal category (bar chart), its particular spatio-temporal distribution (heatmap), its
task classification (triangle chart), and its abstract along with a representative image
from the paper (article content panel). To filter works according to spatio-temporal
category, the user may click on any one of the bars in the bar chart above to filter by,
e.g., molecular-scale visualizations. Currently, only one category is selectable at a time.

3.1.2 Challenges and Opportunities

The following section summarizes the challenges and opportunities in visualization for
physiology that we identified from our report in Paper A.

Visual Analysis in Literature Search. Our literature collection approach combined
traditional search methods with new visual analysis tools from the community [361].
Although vitaLITy does not span the complete space of literature for our report, its vi-
sualization literature database is extensive and proved invaluable in identifying possible
gaps in our literature search.

Spatio-Temporal Saturation and Opportunities. Our literature classification along a
spatio-temporal axis uncovers some interesting patterns that we can identify in Fig. 3.3.
The most salient grouping of works near middle top of the chart captures organ-scale
processes that include brain, lung, and heart function as well as blood flow. Given that
the data acquisition methods capturing these processes are generally well-established
with strong clinical motivations, it is unsurprising to see an abundance of work at this
scale.

A second, moderately-dark region to the mid-lower right of the chart occurs over
minutes for large molecules and cellular substructures. This corresponds to works fo-
cused on visualizing data related to transcription and translation processes in gene ex-
pression. The experimental methods, e.g., proteomics and next-generation sequencing,
capturing these processes are relatively coarse-grained [105] and often capture the re-
sult of these processes, which typically occur in the span of minutes in the case of a
single gene [344]. The density of work we observe in this area corresponds to compar-
atively recent advances in experimental paradigms to measure gene expression, which
is also reflected in the growth of visualization works in recent years (Fig. A.4 in Paper
A) that we expect to continue in the coming years.
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The light region between these two darker areas corresponding to a temporal reso-
lution of a few seconds represents a few possibilities. The first relates to the previously
mentioned coarse temporal resolution of experimental methods to capture gene ex-
pression [105]. The second relates to the timespan of human physiological processes
themselves—while myriad processes bridge this time range, we found comparatively
few that are confined to this time frame. Molecules may diffuse across a human cell
over a few seconds [344], but this is more often of interest to researchers in the context
of a larger molecular pathway or when studying whole-cell behaviors that encompass
a larger temporal range.

Molecular-scale processes bridge an enormous time span, which presents both a
challenge and an opportunity in visualization research to provide experts with the nec-
essary tools to discover events of interest that are easily lost in temporal noise.

We found few cell- and tissue-scale visualization works relative to molecule- and
organ-scale works, as clearly shown in the bar chart in Fig. 3.3 and in the abbreviated
literature bibliography found at the end of Paper A in Sec. A.13. This is reflective of the
history and trends in the availability of the source data. With increased computational
power, data that truly capture living, dynamic processes at the cell- and tissue-scales
have only become a reality in recent years. While visualizations of whole-cell models
are now possible, this is still an extremely challenging area, and the difficulty is com-
pounded when we increase biological complexity to modeling tissue-scale dynamics
and interactions. Although multiscale models exist in some contexts, e.g., angiogene-
sis from the molecule- to organ-scale [411], corresponding visualization approaches are
either non-existent or available only in unlinked forms with limited interaction facili-
ties. This is an enormous opportunity and challenge for visualization research. Addi-
tionally, as part of their exploratory process many experts wish to visualize the raw data
alongside any derived visual information. Research incorporating these data alongside
multiple linked interactive views that furthermore incorporate tools for quantifying un-
certainty is another valuable direction.

Communication Lacking. Although high-level task distribution differs slightly
across all four scales in our report, communication-oriented works are consistently
limited relative to exploratory or analytically-focused works, as shown in Fig. 3.4. The
majority of works we came across are motivated by expert collaborators who work with
specific data types and have concrete task requirements that are more often exploratory
or analytical. These data are often cutting-edge, and domain experts first need support
in understanding the data themselves before sharing or presenting these data. They
reach out to visualization researchers to understand these data in a new or different
light beyond their standard approaches. A second possibility for the lack of commu-
nication works is that the data are often inaccessible. This inaccessibility can be due
to patient- and research subject-related protections. Alternatively, those datasets that
are available, e.g., omics data packages, often require extensive processing efforts that
hampers their usability. Finally, visual communication of complex, multifaceted phys-
iology is simply hard, requiring a high level of understanding from the content author
to distill this information into a clear message. This is an instance where drawing from
other disciplines, such as biomedical illustration, can help bridge gaps in data accessi-
bility or availability to show salient points at a higher level of abstraction. This finding
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inspired our further work on visual communication that Papers D and E detail.

Application Domain Use. Many visualization approaches have yet to fully permeate
the application domain. These approaches are often highly-specific techniques or algo-
rithms, while those that are widely adopted in the application domains are usually more
generally applicable, designed for ease of use, and have dedicated support teams to en-
sure stable production releases. Across all scales, visualization methods in the appli-
cation domains are relatively restricted to direct visualization of time-lapse sequences
of imaging data, as in light microscopy or medical imaging, e.g., fMRI. Depending
on the data, approaches may extend to volume rendering and surface mesh creation
with limited features for exploration and analysis [9, 131, 476]. Similarly across all
scales, standard visualization approaches such as scatter or bar plots are common for
analytical tasks such as identifying the frequency or distribution of features of interest.
These are easily created in tools such as Microsoft Excel. Such visualizations often
exhibit limited interactivity, e.g., brushing, and rarely link across multiple views. En-
suring greater adoption of advanced visualization techniques can occur in a variety of
ways. Coordinated efforts with funding agencies can help in establishing initiatives for
broader deployment and access to cutting-edge visualization techniques. Furthermore,
visualization researchers may consider developing advanced approaches as plugins to
established domain tools rather than stand-alone solutions. This could increase domain
accessibility and mitigate the resources that would typically need to be expended for
continued tool support.

3.2 Exploratory Analysis of Multifaceted Data

From the challenges and opportunities that we identified in our report on visualization
for physiology, we now focus on two areas that stand to benefit from further visual-
ization research. These areas fall within the context of expert users who wish to make
discoveries about their data. The task combination that we target in these works is
termed exploratory analysis, which integrates human interactions for organic explo-
ration with computational analysis. This combination leverages the relative strengths
of humans and computers that are particularly interesting in the context of visualiza-
tion. Our contributions in this space go beyond a standard approach to the visualiza-
tion of physiology and encompasses non-spatial visual analysis of different types of
complex cohort data. The first area we examine is data-specific: magnetic resonance
spectroscopy data. Our second area is broader and explores a method for exploratory
analysis of multifaceted cohort data, such as data acquired from clinical routine.

3.2.1 Exploratory Analysis of MRS Data

The identification of biomarkers can lead to early diagnosis and assessment of numer-
ous diseases and disorders of the central nervous system. For example, a brain tumor
diagnosis is among the worst of all malignancies, and early detection is key to an im-
proved prognosis. This in part has inspired clinical research into acquisition modalities
such as magnetic resonance spectroscopy (MRS), an in vivo non-invasive technique
used to estimate changes in concentrations of certain biomolecules, i.e., metabolites,
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Figure 3.6: Plot of the typical visual output for spectral quantification by LCModel [408],
with processed data in black and model fit in red. Structural localization and annotations of
key metabolite peaks have been added (from Paper B).

in a tissue region [517]. However, while recent technological advances in MRS acqui-
sition have enhanced data quality and resolution [525], the visualization of MRS data
remains largely unexplored.

MRS produces a considerably different readout than magnetic resonance imaging
(MRI). While MRI captures the spatial distribution of atomic nuclei at a high spa-
tial resolution to produce a greyscale image of recognizable anatomical structures over
many voxels, MRS trades spatial resolution for detailed chemical information using the
same device. It acquires an abstract spectrum per single voxel, as shown in Fig. 3.6.
This means that, while MRI may be used to roughly identify the extent of a tumor,
MRS can support identifying the type of tumor [190]. However, translating MRS data
into clinically useful biomarkers is an open challenge with limited attention from the
visualization community.

MRS Data Characteristics & Task Abstraction. MRS produces a spectrum of sig-
nal intensity as a function of frequency for each measured voxel, as shown in Fig. 3.6.
A chemical shift describes an intensity peak at a given resonance frequency. These
chemical shifts, expressed in parts per million (ppm), arise from the different nuclear
properties of the measured biochemical structures and denote metabolites in the ac-
quired voxel [513]. A metabolite may consist of single or multiple intensity peaks.
The most commonly measured signal comes from hydrogen atoms, i.e., proton MRS
(1H-MRS). This technique can detect metabolites in concentrations 50,000 times lower
than fat or water as imaged in conventional MRI.

Most tools quantifying single-voxel spectral data produce only rudimentary visual
output, such as the spectral graph in Fig. 3.6. Recognizing the metabolites that cor-
respond to these graphs is challenging. Although it is critical to see the spectrum
for quality assurance, metabolite concentrations are the most clinically relevant out-
put from this method. These concentrations are typically depicted in a simple table
in standard domain tools, which does little to advance interpretation, understanding,
or comparison between acquisitions. MRS presents an opportunity to leverage visual-
ization to identify metabolite patterns that could be indicative of early-stage diseases
or disorders [489]. Ratios are the most clinically useful way to present these data,
but existing approaches exclude ratios entirely or permit a only limited number for si-
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Figure 3.7: Typical task flow for MRS data analysis. Users begin with data discovery (A)
to review spatial voxel position, associated spectral graphs, and relevant acquisition param-
eters. (B) continues with data selection and filtering, where spectral voxels of interest are
selected and divided into groups. Data production (C) calculates all possible ratios of selected
metabolites. In (D) ratios are compared and summarized for different patients or different
brain regions. Each of theses steps may be revisited (from Paper B).

multaneous visualization and comparison. Our method described in Paper B crucially
supports simultaneous exploration and comparison of all metabolite ratios in a study.
These can be examined according to spatial location, individual, time point, and brain
activity state. We developed our visual approach for exploratory analysis of MRS data
over one year through weekly meetings with collaborators in radiology and medical
physics.

We frame user tasks in the context of Brehmer and Munzner’s multi-level task ty-
pology [66]. These abstracted tasks form the workflow shown in Fig. 3.7. The first
step, data discovery, supplies an overview of the data inputs and initiates a user’s line
of inquiry. Users then select and filter the data to identify groups for further analysis.
This step produces new artefacts, i.e., the set of all selected metabolite concentrations
as ratios. These new artefacts are then summarized and their values can be compared
to learn how metabolite concentrations vary between or within study groups or identify
new sources of variation, e.g., a particular brain region.

Metabolite Visualization. The core of our method in Paper B is our novel visualiza-
tion of metabolite concentrations. We do this at three levels of detail: (1) metabolite
concentrations selected for a study session, (2) concentration ratios of pairwise metabo-
lites, and (3) acquisition metadata.

On the first level, we depict the concentrations of those metabolites selected for
an analysis session. These concentrations are the output of a pre-processing step. An
analysis session may include up to two groups at a time, where each group contains
either all metabolites or only a subset of metabolites that the user has selected. Since
each MRS spectrum is essentially a multivariate set, where each metabolite is a vari-
able, each metabolite in the spectrum has its own set of unique statistical information.
In each group, we calculate the mean for each metabolite. We calculate median, mini-
mum, and maximum when a group contains two or more spectra, and, for five or more
spectra, we also calculate the interquartile range.

For each group, we plot metabolite concentrations along a common axis [90] in en-
codings that vary according to the number of spectra within that group. We use bars to
encode metabolite concentration when metabolites from only one spectra are added to a
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Figure 3.8: Box and bar plots encode metabolite concentrations (tier 1 visual encoding). (A)
employs bars where height encodes the concentration of each metabolite for a single spectral
input. (B) is used for two to four spectral inputs on an axis, where height encodes the median
value and whiskers encode the minimum and maximum metabolite concentration values, re-
spectively. A box plot (C) is employed for five or more spectral inputs on a given axis (from
Paper B).

group, shown in Fig. 3.8A. In a group with two or more spectra, the median concentra-
tion maps to bar height, and whiskers encode the minimum and maximum metabolite
concentrations, as in Fig. 3.8B. Statistics for groups with five or more spectra map to a
box plot [556] as inspired by Blumenschein et al. [52], shown in Fig. 3.8C.

These metabolite concentrations are the inputs to the second visualization level,
which is the set of all combinations of pairwise metabolite concentrations, presented
as a ratio. These ratios are shown in aggregate and filtered according to key attributes
of interest. We calculate aggregate ratios by dividing a metabolite’s mean concentration
in one group into the mean concentration of each metabolite in the opposite axis group.
We show these ratios using a heatmap metaphor calculated from the metabolite groups
along the input x- and y-axes, as shown in Fig. 3.9. Each cell shows the aggregate ra-
tio of the metabolite on the x-axis position to the corresponding y-axis metabolite. The
ratio value maps to a diverging red-blue colormap [185]. This strategy is intended for
similarity assessment, where subtle differences in ratios are important to track, as well
as for large difference assessments such as those seen in tumor studies, or in research
cases, where echo time is varied. Red indicates a higher x-axis metabolite input while
blue indicates a higher y-axis metabolite input. Equivalent inputs map to white. If an
input value is 0, i.e., the metabolite was not detected in the acquisition, we map the
cell color to dark grey. We initially thought to exclude such values from the visualiza-
tion, but on further discussion with our collaborators felt these were useful to preserve
context.

Metabolite ratios can be filtered according to four key data attributes: (1) spatial
region, (2) individual, (3) time point, and (4) brain activity state. The spatial region in-
dicates the voxel sample location. Individual refers to a given subject in the study. Time
denotes the multiple recorded samples within a single session, as in a time-resolved
MRS study, or the number of acquisitions performed on an individual over a study pe-
riod, as in a longitudinal study. Finally, brain activity state denotes if the subject was
in an active (task-explicit) state or resting (task-negative) state during the acquisition.
For each pairwise metabolite ratio we determine ratios for each of these key attributes,
when available, in a nested fashion that mirrors the preferred order of user analysis: the
ratio for each spatial region (using the average of all individuals for this region), each
individual (using the average of all states for the given individual in a given region),
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Figure 3.9: A heatmap matrix visualizes the ratio of metabolites in the x-axis voxel group
against the metabolites in the y-axis voxel group. Ratios with higher x-axis metabolites are
red, while higher y-axis metabolites are blue.

each state (using the average of all time points for a given state of an individual from a
given region) and each time point, as shown in Fig. 3.10.

Because a majority of the studies conducted by our collaborators are small, proof-
of-concept studies, we use glyphs inspired by the ATOM grammar [390] to represent
each of the four attributes with limited concern for issues with display and perceptual
scalability. Inspired by Ward et al. [542, 543], we designed a system of nested glyphs
that could satisfy the 16 possible use cases that our method must cover. This nesting
approach maintains context during analysis and mirrors our collaborators’ preferred
order of analysis. The left columns of Fig. 3.11 and 3.12 depict each of these use
cases, which are created from a synthetic dataset containing up to 3 spatial regions, 20
individuals, 3 time points, and both active and resting brain states (360 voxels in total).
Our glyph design is summarized as follows. We map spatial region to a rectangular
glyph with rounded corners, which distinuishes the attribute from the sharp-cornered
heatmap cell. We create one rectangular glyph for each spatial region in a study, e.g.,
three regions for one individual in Fig. 3.11, case 5. Individuals are depicted as circles
which nest inside their relevant spatial glyph, as shown in Fig. 3.11, case 9. When
time series data are present, these circles expand to rounded squares to provide more
room for the time points that we visualize as spark lines [341]. An example of this is
shown in Fig. 3.11, case 3 for a single individual with three time acquisitions. In studies
with a single individual over multiple spatial regions, the spark line nests instead inside
the rectangular spatial glyph, as in Fig. 3.11, case 7. In studies where different brain
activity states are measured, we divide the glyph for the indvidual in half horizontally,
as in Fig. 3.11, case 2 for a single individual sampled from one region. If there is a
single individual sampled in multiple regions, we instead divide the rectangular glyph,
as in Fig. 3.11, case 6.
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Figure 3.10: Nested metabolite ratio calculations for spatial region, individual, brain state, and
time (from Paper B).

We conducted a preliminary evaluation to validate our glyph design with three ex-
perts for all 16 basic use cases. For each case, we assigned a basic task and asked
experts to rank the interpretability of the design on a scale of 1–10 [558] for their abil-
ity to complete the stated task. The right columns of Fig. 3.11 and 3.12 describe each
of these tasks and the experts’ rankings. While brief, this feedback ensured that our
approach is usable for the study sizes we expect to use in our method and application.

At the third level, we present metabolite metadata important for context and se-
lection that are unnecessary to encode explicitly as glyphs in the visualization: gender,
age, and acquisition settings, e.g., echo time, can have varying impacts on the resulting
concentrations and ratios of metabolites [475, 568]. We depict this information in a ta-
ble below the heatmap (Fig. 3.13G).

SpectraMosaic Application. The result of our design study (Paper B) is SpectraMo-
saic, a novel application for the visual exploration of magnetic resonance spectroscopy
data in ratio form. SpectraMosaic consists of two main views, as shown in Fig. 3.13:
the left supports spectral inspection and customized group creation while the right
serves as the spectral analysis interface in the form of a heatmap matrix. The gen-
eral workflow of this application is as follows: after an offline processing step, data
are loaded into the web tool (Fig. 3.13A). Data of interest for analysis can be explored,
selected, and added (Fig. 3.13B-D) to a spectral ratio heatmap for deeper inquiry and
hypothesis verification (Fig. 3.13E). A legend provides information on the encodings
used in the tool (Fig. 3.13F). A table below the heatmap summarizes salient acquisition
information (Fig. 3.13G).

SpectraMosaic Case Study. The following describes an exploratory workflow with
SpectraMosaic for a Giardia single-voxel study, where we walk through an expert
user’s exploration of possible neuroinflammation in three different brain locations com-
pared across two different patients.

Following data preprocessing and quantification in an offline routine, the expert
loads study data into the application using the drag and drop window feature.
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Case
No. Example No.

Voxels Task Interpretability

1 1 What is the ratio of Ins/TCho for patient X 
in the precuneus region? 

A: 10
B: 10
C: 10

2 2

How does the ratio of Ins/TCho differ for 
patient X when acquired on the same date 
in a resting state versus in an active, i.e., 
task-positive, state in the precuneus 
region?

A: 10
B: 10
C: 8

3 3
How does the ratio of Ins/TCho compare 
for patient X acquired in the precuneus 
region, acquired pre-op, post-op, and in a 
long-term follow-up? 

A: 10
B: 10
C: 9

4 6

How does the ratio of Ins/TCho compare 
for patient X acquired in the precuneus 
region, acquired pre-op, post-op, and in a 
long-term follow-up?  How does this ratio 
differ between active and resting brain 
state acquisitions?

A: 9
B: 9
C: 8

5 3
How does the ratio of Ins/TCho compare 
for patient X between the precuneus, 
prefrontal, and hippocampal regions?

A: 10
B: 10
C: 10

6 6
In patient X, how does the ratio of Ins/-
TCho compare between active and rest-
ing states for each of 3 regions: precune-
us, prefrontal, and hippocampal regions? 

A: 8
B: 10
C: 8

7 9

What time acquisitions contributed the 
most to the difference in Ins/TCho seen in 
the leftmost spatial region (hippocampal) 
relative to the other two regions (prefrontal 
and precuneus) in patient X?

A: 9
B: 10
C: 9

8 18

How does Ins/TCho vary between active 
and resting brain states between spatial 
regions (hippocampal, precuneus, pre-
frontal) in patient X? Are there outliers in 
the time acquisition that contribute to 
these differences?

A: 8
B: 8
C: 8

Figure 3.11: SpectraMosaic Detail Case Scenarios 1–8
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Case
No. Example No.

Voxels Task Interpretability

9 20 How does Ins/TCho vary between 20 
patients in the precuneus region?

A: 10
B: 10
C: 10

10 40
What patients show a marked difference 
between active and resting state Ins/TCho 
in the precuneus region?

A: 10
B: 10
C: 10

11 60 Do patients show variation in time acqui-
sitions in the precuneus spatial region? 

A: 8
B: 6
C: 8

12 120

Do any patients show a difference in their 
active and resting states over the three 
different time acquisitions in the 
precuneus region?

A: 10
B: 10
C: 9

13 60
How does Ins/TCho vary between 20 
patients in each of the three spatial 
regions acquired (hippocampal, prefrontal, 
precuneus)?

A: 10
B: 10
C: 10

14 120
What patients show a marked difference 
between active and resting state Ins/TCho 
in the three spatial regions? Which state 
seems to vary the most between regions?

A: 10
B: 10
C: 10

15 180
In which brain region(s) is there the most 
variation in Ins/TCho over time? In higher 
variation patients is it just one time point, 
or all, that contribute to the outlying ratio?

A: 10
B: 10
C: 9

16 360
In which spatial region do we see patients 
with the most variation between active 
and resting Ins/TCho values over time?

A: 10
B: 10
C: 10

Figure 3.12: SpectraMosaic Detail Case Scenarios 9–16
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Figure 3.13: SpectraMosaic application overview (from Paper B).

These data remain linked semantically in the application to ensure continuity between
voxel location, its spectral output, and patient-specific information.

The expert next can inspect the input data. In the patient selector panel on the
left side of the interface, radial buttons allow the display of one patient with associated
acquisition data at a time. The vertical axis to the left of the structural data image shows
the set of voxel regions acquired for a selected patient. The horizontal axis below the
image indicates the number of different time acquisitions performed for this voxel. In
this study the expert is interested in comparing all spatial voxels of each patient for
only one time acquisition. Hovering over or selecting each voxel node calls the spectral
graph for the voxel below the image (Fig. 3.13B2), as well as additional information
such as voxel ID, and echo time used in the acquisition protocol (Fig. 3.13G).

To compare metabolites, the expert can either select an automatically-created group
immediately from the metabolite selector panel, (Fig. 3.13D) or can first create a more
customized group for analysis using the voxel group overview panel (Fig. 3.13C). This
view enables creation of a custom group whose membership can be updated as desired
throughout an analysis session. Group membership is updated automatically in the
bottom right table (Fig. 3.13G).

Once a group of metabolites have been added to each axis, a heatmap matrix is
drawn onscreen (Fig. 3.13E1). The matrix size is determined by the number of metabo-
lites added as inputs. Users can select a subset of metabolites to review, or all metabo-
lites at once (Fig. 3.13E). The visualization updates as the inputs are changed. The
height of the metabolite bar encodes, in the case of these two groups, the median con-
centration, with whiskers extending to indicate the input value range (Fig. 3.14).
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Figure 3.14: Following overview of the metabolite ratios between the individual patients, the
expert inspects Lactate (Lac)/Total creatine (TCr) ratio between two patients for all three re-
gions at TE 35 ms. They note a high lactate measurement for the female patient relative to the
other measured regions (A). Subsequent inspection of spectral metadata (B), the spectral graph
(C), and the brain region in which this measurement was acquired (D) help establish reasons
for this difference (from Paper B).

The expert is then interested in seeing detailed metabolite ratio information for a
given cell. They inspect individual ratio variation for Lactate (Lac) against Total Crea-
tine (TCr), since Lac is often elevated in giardia infection (Fig. 3.14A). On expansion
of a cell, hovering over glyph elements highlights linked patient spectra, voxel loca-
tions, and voxel metadata in the other views to provide additional information on the
metabolite ratio in question (Fig. 3.14B-D).

Through the similar hues of the color map, both patients are quite similar between
the prefrontal and precuneus voxels, but the hippocampal region shows a large differ-
ence, indicating that Lac and TCr have strongly differing levels in this area. This arises
from the female patient, since the male patient had no recorded Lac as indicated by the
grey color of the circle glyph. The whiskers on the bars also confirm that the large input
range for Lac causes this variation. However, the red tooltip indicates that the model fit
for this metabolite to the raw spectrum may not be reliable, and needs further investi-
gation. Subtleties like this would be difficult to understand through visualization of the
spectral graph or through statistical measures alone. The expert can reset the heatmap
matrix view to its initial state at the bottom right of the interface, or clear it for a new
line of inquiry with new group inputs by clicking the button at the bottom left of the
view. This enables an iterative, exploratory analysis workflow for MRS data.

From SpectraMosaic we move beyond the focus on a particular type of data to look
more broadly at ways to enable users to explore and visualize interesting relationships
in multifaceted data.
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Algorithm 1: Dimensional bundle creation for two or more dimensions
1 initialize pool = all dimensions in dataset
2 do
3 mark all dims in pool as possibly contributing
4 initialize new bundle
5 perform FAMD on pool
6 for all dimensions in pool
7 if PC1 loading ≥ contribution threshold
8 move dimension from pool to new bundle
9 else

10 mark dimension as non-contributing
11 while pool contains dimensions marked as non-contributing
12 for all bundles
13 perform FAMD on bundle
14 store PC1 and PC2 for bundle

3.2.2 Exploratory Analysis of High Dimensional Clinical Cohort Data

Dimensionality reduction techniques can reduce the complexity of high-dimensional
data through projection to a lower-dimensional space. However, these techniques can
emphasize strong, uninteresting patterns in the data and hide variations when used alone
and monolithically.

Clinical efforts investigating biomarkers for early disease diagnosis require exten-
sive analysis of multifaceted clinical cohort data. Analysis of these data can be over-
whelming. Many items are missing, and the data are both heterogeneous and high-
dimensional. While visual analysis approaches that incorporate dimensionality reduc-
tion methods can make analysis more manageable, the risk of such methods is that sub-
tle and interesting patterns may be lost in the process. The DimLift approach that we
summarize here and in detail in Paper C uniquely handles complex, multifacted data in
a way that preserves these subtleties in the data for subsequent exploration. We do so by
combining an iterative dimensionality reduction method with user interactions to edit
and inspect groupings of dimensions, so-called dimensional bundles, which contribute
similarly to the overall variance of the dataset. This avoids a monolithic treatment
and instead produces hierarchical bundles of dimensions that retain the expressitivity
of the original dataset. Demonstrating with the simple synthetic dataset in Fig. 3.15,
smoking (b3) is an important clinical indicator of cardiac risk (o2). However, a stan-
dard dimensionality reduction process may not easily show this relationship. It instead
buries these dimensions in all five principal components (Fig. 3.15, left). In contrast,
our approach (Fig. 3.15, right) extracts subsets of similarly-contributing dimensions.
For example, our approach places the lifestyle-related dimensions education level (b1),
workout frequency (b2), and smoking (b3), together with the similarly-contributing
variable cardiac risk (o2). We furthermore visually retain data provenance to allow
clinical researchers to identify original dimensions for further analysis. Our approach
is intended as an early exploratory analysis step prior to a more detailed investigation
in SPSS or similar.
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Figure 3.15: We contrast our iterative algorithmic approach (right) with a standard ap-
proach (left) using a synthetic ten dimensional health and lifestyle dataset comprised of four
quantitative [height (a1), weight (a2), waist circumference (a3), BMI (o1)] and six qualitative
[education level (b1), workout frequency (b2), smoking (b3), gender (c1), eye color (c2), and
cardiac risk (o2)] dimensions. A standard approach contains all ten dimensions in each prin-
cipal component (PC), e.g., cardiac risk (o2) is present in all PCs. In contrast, our approach
produces a pair of dimensional bundles (A: body measurement, B: lifestyle) containing only
dimensions with similar variance contributions, where cardiac risk is bundled into B. Dissim-
ilarly contributing dimensions, i.e., c1 and c2, remain unbundled (from Paper C).

Create Dimensional Bundles. In the following, we briefly describe our approach to
creating dimensional bundles, which is also described in pseudocode in Algorithm 1.

To create dimensional bundles, we use factor analysis of mixed data (FAMD) [289],
a dimensionality reduction technique that is applicable to complex, mixed-type data,
to extract and bundle dimensions that meet a contribution threshold in the first princi-
pal component [394] of each algorithm run from a main pool of dimensions (line 7 of
Algorithm 1; Fig. 3.15, right). These extracted dimensions are the inputs to a dimen-
sional bundle. We run the FAMD algorithm again on these extracted dimensions to
create the bundle components (line 12). In the bundle components, we retain the first
and second principal components (PC1 and PC2) to describe the overall variance and
to give context to the variation that the bundle captures. We additionally include the
original contributing dimensions in the bundle. We continue iterating and extracting
contributing dimensions from the main pool until the contributing variance for the pos-
sible bundle falls below the variance contributed by any of the dimensions alone [575].
These dimensions remain unbundled.

Our method can furthermore handle data with missing items and mixed types, e.g.,
continuous and categorical, as are common in clinical routine data. We impute missing
data through one of four options (mean, hot-deck, multiple imputation of chained equa-
tions, or principal components), with MICE [554] as the default after discussions with
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Figure 3.16: Parallel coordinate axes (A) map to the first or second principal component
(PC1, PC2) of a dimensional bundle. Glyphs (A1) provide feedback on variance contribu-
tion, missingness, and composition. View interactions (A2) allow users to pan (D) through
the dataset, swap axes between PC1 and PC2, drill-down into a PC1 vs. PC2 score plot (B),
or drill-down further to the dimensional bundle component dimensions (C) and their relation-
ships (C1). A chart at the bottom right (E) provides an overview of all dimensional bundles
and unbundled dimensions, a subset of which are visualized as plot axes (from Paper C).

our collaborators and a short study on the results of the different imputation approaches.
We briefly discuss the effects of the different imputation methods in the context of a
cerebral small vessel disease dataset at the end of this section.

Explore Dimensional Bundles. Projecting to a lower-dimensional subspace in dimen-
sionality reduction often creates a disconnect from the source data [235]. We solve this
issue by preserving and mapping the semantics of the dimensional bundles directly to
visual elements. We echo the natural hierarchy produced through data aggregation in a
visual aggregation step with a parallel coordinates plot as the basic metaphor, with fa-
cilities for dynamic user interaction to explore and recompose dimensional bundles to
pursue a line of inquiry.

Parallel coordinates are a common technique to visualize relationships and cor-
relations in multifaceted datasets [189]. Our modified parallel coordinates plot sup-
ports three layers of visual analysis within and between each dimensional bundle, as
displayed in Fig. 3.16. Each parallel coordinate axis represents a dimensional bun-
dle (Fig. 3.16A) or an unbundled dimension (Fig. 3.16C1). The stroke widths of
the axes are set according to the number of dimensions they contain [18]. By de-
fault, a bundle axis represents the first principal component of a dimensional bundle.
Items are plotted along the axes according to their scores. A second layer expands
a secondary axis from the main axis to show a scatterplot of PC1 versus PC2 item
scores (Fig. 3.16B), which is inspired by earlier similar approaches [187, 207, 226].
An innermost third level consists of all dimensions contributing to the dimensional
bundle (Fig. 3.16C) and plots the original item values. This representation is inspired
by Andrews et al. [18]. Rectangular filled glyphs, positioned above each axis, provide
details on bundle composition and variance contribution (Fig. 3.16A1), including the
eigenvalue and explained variance, amount of non-imputed, data, and the contributing
dimensions with their respective loadings. In the lower right, a donut glyph (Fig. 3.16E)
provides an overview of the total number of dimensions and bundles that have been cre-
ated. It shows the bundles in purple and unbundled dimensions in grey.
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Figure 3.17: DimLift view interactions allow iterative exploration of dimensional bundles
(from Paper C).

Navigation facilities enable experts to explore the contents of dimensional bundles,
as illustrated in Fig. 3.17. These controls are mainly accessible through the options be-
low each bundle (Fig. 3.16A2). Panning through the parallel coordinates plot allows
the user to explore correlations between all bundles. Brushing over a bundle axis se-
lects a subset of items, which is adjustable in an adjacent panel. Drilling down to a plot
of PC1 vs. PC2 item scores shows item spread or clustering within a bundle. Drilling
further to the contributing bundle dimensions allows assessment of correlations within
a bundle. Swapping the bundle axis from the first (PC1) to the second (PC2) principal
component provides a different perspective on the variance captured in the bundle.

Modify Dimensional Bundles. Automatically-created dimensional bundles may not
always be conducive to a user’s analysis goals, or the user may find that the bundles still
bury features that they find interesting. Structural interactions allow for recomposition
of dimensional bundles on-the-fly. Bundles can be created from scratch based on inter-
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Figure 3.18: DimLift structural interactions allow for the creation or modification of dimen-
sional bundles. Using our synthetic health dataset we create a new bundle combining smok-
ing (b3) with gender (c1); a resulting eigenvalue above 1 shows a fair grouping with equal
dimension contributions. The left diagram provides a conceptual overview of this process
(from Paper C).
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Figure 3.19: (a) In the analysis of a synthetic health dataset we may suspect gender (c1), to
have interesting correlations with the lifestyle-related bundle, i.e., education level (b1), work-
out frequency (b2), cardiac risk (o2), and smoking (b3). We add gender (c1) to this bundle
and observe that gender shows no contribution (loading = 0) to the bundle variance. (b) We
inspect a dimensional bundle comprised of lifestyle dimensions, e.g., education (b1), workout
frequency (b2), smoking (b3), cardiac risk (o2), and gender (c1). We suspect a correlation be-
tween cardiac risk (o2) and gender (c1), so then lift these dimensions to better target and test
our hypothesis by removing all other dimensions from this bundle. With an eigenvalue above
1 and changes in contributions/loadings indicated by hue at the bottom of the axes, we note
a subtle correlation that was previously undetectable. This is conceptually illustrated on the
left (from Paper C).

esting groupings by descriptive statistics from an accompanying dimension overview
scatter plot [351], as shown in Fig. 3.18, or by searching directly for dimensions of
interest to combine into or remove from a bundle, as in Fig. 3.19.

During the analysis a user may wish to visualize the degree that a group of dimen-
sions that relate conceptually, e.g., all lifestyle input variables in our synthetic health
dataset, are correlated. Similarly, dimensions that do not seem to be conceptually-
related may exhibit similar descriptive statistics, e.g., similar mode or diversity mea-
sures, that would be interesting to apply dimensionality reduction to for detailed corre-
lation assessment. Fig. 3.18 demonstrates the workflow for creating a new dimensional
bundle based on similar descriptive statistics. Rather than creating a new bundle, the
user may also modify an existing bundle and either add (Fig. 3.19A) or remove dimen-
sions in place (Fig. 3.19B). After running the FAMD on the selected set, the bundle
is created or updated in the parallel coordinates plot for subsequent exploration and
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Figure 3.20: In exploring a clinical cohort dataset for cerebral small vessel disease (CSVD) in
the DimLift application, experts select a bundle of primarily imaging data for closer examina-
tion and drill-down to observe two distinct clusters. Swapping the axis to PC2 allows subset
creation of the top cluster; this corresponds to selection of non-imputed items within the bun-
dle. Addition of APOE-related dimensions to the bundle allows for correlation assessment of
these interesting dimensions within a single bundle (from Paper C).

possible further modification. These structural modification tools empower the user to
flexibly reconstruct the dimensional hierarchy to suit their discovery goals. With feed-
back on their suitability in the parallel coordinates plot, users may quickly gain insights
into their data by lifting interesting dimensions from their original bundles.

DimLift Application & Case Study. We next briefly demonstrate our Dimlift applica-
tion workflow for the exploratory analysis of a clinical cohort dataset for cerebral small
vessel disease (CSVD), which was part of a two-expert case study including our clinical
collaborators. Responsible for one in five strokes worldwide, cerebral small vessel dis-
ease is the most common cause of vascular cognitive impairment in the elderly, and the
identification of new biomarkers for this disease is of key interest to neuroscience re-
searchers. The study consists of data from 307 patients collected from clinical routine.
The data are mixed, consisting of 168 dimensions containing laboratory, education,
demographic, and lifestyle information. Twenty-four additional dimensions describe
the volume of 24 brain structures, e.g., caudate and hippocampus, as derived from
T1-weighted magnetic resonance imaging data. As is common with this type of data,
approximately 76% of entries are missing because of, e.g., missed appointments or the
fact that not all patients require the same tests.

On an initial overview, experts discover two notably interesting bundles generated.
One bundle includes lacunes and microbleeds together, while another combines nico-
tine, intracerebral hemorrhage, and enlarged perivascular spaces. Undetectable in their
standard analysis approach, this generates a new hypothesis regarding the correlation
of these dimensions that requires further analysis.

For closer inspection of a bundle containing primarily imaging data, experts can
swap the axis and then drill down into this bundle to note two distinctive clusters in
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the principal component score plot, as displayed in Fig 3.20. Experts further note
in PC2, which is now the dominant axis in the parallel coordinates plot, that the
Boston/STRIVE criteria dimension is shown as one of the more influential dimensions
in this bundle. This is an interesting find, since Boston/STRIVE criteria taken together
are known biomarkers for CSVD.

Experts add APOE, another known biomarker for CSVD, to this bundle to explore
possible correlations between these biomarkers. Swapping the axes allows for rapid
subset selection of the top group. Subsequent exploration of correlations within this
subset shows non-imputed items for Boston/STRIVE criteria, sex, and group, a consis-
tent range for white matter and CSF volume values, and consistent APOE values that
merit further investigation.

User-Adjusted Imputation in Cerebral Small Vessel Disease Case Study. To better
understand the effects of different imputation methods on our DimLift approach, we
additionally conducted a small-scale study of four different imputation methods in the
context of the cerebral small vessel disease study just presented. Our goal for this
small study was not to identify the most accurate or best method of imputation. This
determination is not possible without a ground truth, and for the clinical study we
tested this was unavailable. Our goal instead was to establish the degree to which our
bundling approach is preserved in spite of different imputation methods, and to explore
the semantic relevance of differences that did occur in the bundling process.

We narrowed down to the following four imputation methods after reviewing the
state-of-the-art in data imputation approaches [108, 438] and discussions with our clin-
ical collaborators. Each of these imputation methods are implemented and available
for use in our application:

• Overall mean value for quantitative data/“not defined” for qualitative data [387,
438]

• Hot-deck imputation [19]
• Multiple imputation of chained equations (MICE) [554]
• Principal components imputation [28]

Although we initially investigated cold-deck imputation [19] as well, this was not
possible with our clinical study since there was no suitable dataset to which we had
access to for comparison.

We show the top-level bundle results from each imputation method in Fig. 3.21.
Bundles are sorted by their order of extraction from the main pool of dimensions. We
can see that each method produces 10-11 bundles. The hot deck and MICE meth-
ods produced ten bundles, while overall mean and principal components methods pro-
duced 11 bundles. The bundles generally maintain the broad semantic themes of tests,
lifestyle, and measurements. The main difference between the four imputation methods
is in the granularity of their bundling.

For example, the first extracted bundle is generally consistent between imputation
methods. It consists mostly of lacune and microbleed measurement dimensions from
different regions of the brain. This bundle shows only 17% complete data, demon-
strating a solid use case for the robustness of our bundling with different imputation
methods. As an example of the difference in bundling outcomes with the different im-
putation methods, we observed that the dimension classifying smoker/nonsmoker is
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Figure 3.21: Visual output of top-level dimensional bundles produced with each of the four
imputation methods tested: overall mean, hot deck, principal components, and MICE.
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bundled differently in each method. However, after discussions with our collabora-
tors about this, each of these bundles still make semantic sense. This dimension has
myriad effects on other dimensions, and in each bundle its relations to its companion
dimensions present interesting lines of further inquiry. For example, the MICE and
principal components methods bundle smoking with alcohol. However, hot deck impu-
tation leads to a bundling of smoking and alcohol along with education level, gender,
and blood pressure or cholesterol measurements. In overall mean imputation, smok-
ing is bundled with enlarged perivascular spaces (EPVS), which presents an intriguing
connection that our clinical collaborators noted for further inquiry.

This brief qualitative assessment of the effects of different imputation methods
found that our approach generally preserves bundle patterns. Nuanced differences are
apparent in each imputation method. However, these still make semantic sense on in-
spection. No imputation method is ever entirely ideal. Its utility is highly dependent
both on the specifics of the data and the goals of the analyst. However, our findings
indicate that our DimLift approach may flexibly accommodate the results of different
imputation methods with a degree of robustness that presents an interesting area for
further research.

3.3 Visual Communication of Physiology

While expert exploration and analysis of physiological data is crucial to establish un-
derstanding, communication of these data both between experts and to non-experts,
e.g., the general public, is imperative to the scientific process. However, visualization
research efforts tend to focus more on exploratory and analytical tasks, and commu-
nication tasks are often fulfilled by other discplines such as biomedical illustration.
Motivated by the lack of communication-oriented works in our report in Paper A, we
conducted two studies to understand the interplay of visualization and biomedical il-
lustration techniques in visual communication for physiology. The first was a two-part
exploratory study that we detail in Paper D. The first component of this study exam-
ined the practice of creating visualizations to communicate physiology. The second
component explored the criteria that audiences use when evaluating a physiological
process visualization targeted for communication. This study introduced several inter-
esting questions, one of which we followed up on in a short study and call to action
on the value of establishing guidelines for semantically-meaningful color palettes in
molecular visualizations. This is described in detail in Paper E.

3.3.1 Practice & Preferences for Experts and Non-Experts

Designed over a series of expert interviews and focus groups, our interdisciplinary
study detailed in Paper D focused on common communication scenarios of five well-
known physiological processes and their standard visual representations. Feeding into
these scenarios was a set of visual assets we developed that captured the range of stan-
dard practices by biomedical illustrators and visualization researchers when crafting a
visualization of a particular topic, e.g., blood flow. We framed these scenarios in a sur-
vey with participant expertise spanning from minimal to expert knowledge of a given
topic. We summarize our process in Fig. 3.22. Our goal in this study was to gain
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Figure 3.22: Three-phase study pipeline. Setup: define the design space, create audience
scenarios and visual assets, and recruit survey participants, Survey: deploy survey asking par-
ticipants to rank, quantify, and describe their top and bottom asset selections for each scenario,
and Results: review survey results for patterns in selection abstraction space, scores, attribute
rankings, and frequent keywords (from Paper D).

insights into how visualization and biomedical illustration techniques are used and as-
sessed by differing audiences for visual communication, and to identify opportunities
for further growth and convergence of techniques.

Setup. The first part of our study setup involved defining and constraining the de-
sign space according to (1) representation types and (2) physiological topics. We relied
on discussions with with practicing visualization resarchers, biomedical illustrators, re-
viewed online biomedical illustration galleries and resources from the Association of
Medical Illustrators1 to establish the constraints in these respective areas. We limited
the space of representation types to only color media that are either still or animated,
and that are typical representations for a given topic. We excluded interaction or annota-
tions, with the except of arrows in a few instances, to maintain a reasonable scope. Our
five selected topics span the micro- to macroscale and include patho- and physiologi-
cal processes that are frequently depicted in visualization and biomedical illustration.
These serve as a proxy for the large space of representations of physiological processes.
Our microscale topics include (1) signal transduction, a normal process whereby a sig-
nal is relayed along a chain of molecules in the body, and (2) constitutive activation,
a process where one or more molecules in a signal chain is always switched “on” to
create a looping signal relay. At the mesoscale, we selected (3) normal blood flow and
(4) an aneurysm. Our macroscale topic is (5) tumor metastasis. This focuses on the
movement of tumors from their origin site to other organs. This is in essence a mul-
tiscale topic as well, since metastasis can occur as a result of constitutive activation at
the microscale and tumors are carried through the bloodstream.

We designed communication scenarios and assets for each topic with input from
expert focus groups, following in part the framework for creative visualization-
opportunities workshops described by Kerzner et al. [249]. This helps control the
design space and provides important in-depth insights into discipline-dependent visu-
alization practices. Each group consisted of three to four biomedical illustrators and/or
visualization scientists. Providing a scenario is an effective means to capture specific

1https://ami.org/
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goals and research questions in a domain [278]. These scenarios drive comparison and
selection of assets in our survey. For each topic, we created an expert and a non-expert
scenario, which are detailed in Tables 3.1 and 3.2. Our asset production pipeline in-
cluded the Adobe Suite (Illustrator, Photoshop, AfterEffects) [5], Blender [51], Par-
aView [9], and 3D Slicer [250]. We produced animated assets as short, looping
GIFs. Our full asset library is available at https://github.com/lauragarrison87/
Biomedical_Process_Vis/tree/main/2-assets. The same set of assets are used for
both expert and non-expert scenarios for a given topic.

Table 3.1: Expert Audience Survey Scenarios

Topic Scenario

Signal
Transduction

An immunology researcher is publishing in an immunological venue on the newly-
discovered pivotal role that a ligand plays in a signaling pathway. Their goal is to
communicate the specificity of the activation pathway and its location in the cell
with a visual supplement to their publication.

Constitutive
Activation

An oncology researcher would like a visual supplement that demonstrates to the
readership of an immunology journal the mechanism of disease in which a key
molecule in the signal transduction chain is constitutively activated, which pro-
duces an unregulated positive feedback loop.

Blood Flow A researcher studying vascular flow would like a visual to supplement their pub-
lication that explains the variation of laminar flow (i.e. smooth movement of fluid
with no swirls), in normal hemodynamics (i.e., blood flow behavior).

Aneurysm A researcher publishing in a medical venue would like to include a supplementary
image or animation to describe the final shape of an aneurysm, resulting from
abnormal hemodynamic forces (i.e., blood flow in helical or swirling patterns) and
morphological properties of the vessel wall.

Metastasis A radiation oncology researcher publishing in an oncology journal is focused on
describing the metabolism and movement of metastatic tumors as the basis of val-
idation for their novel radiation therapy approach.

Our target survey participants included biomedical illustrators, visualization re-
searchers, clinicians, and domain scientists familiar with the five topics. We were also
interested in responses from non-experts, i.e., participants unfamiliar with the topic and
lacking formal training in this area.

Survey. We followed Tory’s [504] principles for a comparative survey design, and
organized topics so that a healthy/normal physiological topic precedes a corresponding
pathological topic. This format provides the necessary pathological context.

We collected basic personal information and asked participants to self-rate their
expertise on each topic. We used this self-rated expertise to divide participants into
expert (4 or higher) and non-expert groups (3 or lower).

For each topic scenario, participants were asked to rank their top three and bottom
three choices. The bottom choices were useful to capture, as this encouraged partic-
ipants to explore negative aspects of a visualization that can be illuminating. For the
top- and bottom-most choices we asked participants to quantify their selections accord-
ing to four attributes: aesthetics, scientific accuracy, visual clarity, and communication
success. Our use of these attributes was inspired by the work of Abdul-Ramen et al. [2]
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Table 3.2: Non-Expert Audience Survey Scenarios

Topic Scenario

Signal
Transduction

An introductory biology student is studying for an upcoming exam. Their goal is
to understand how a “message” is relayed through a series of messengers inside a
cell.

Constitutive
Activation

The same introductory biology student is tasked with identifying where in the sig-
naling pathway a molecule is constantly activated when it should not be. This
causes the entire signaling pathway to be always switched “on.”

Blood Flow A person with little/no prior knowledge on the topic is interested in learning more
about their body. They visit a popular health and well-being website, e.g. WebMD,
to understand how blood moves and delivers nutrients throughout the body.

Aneurysm A person has recently been diagnosed with a cerebral aneurysm. Their doctor
shows them a visual to communicate what aneurysms are and why they must be
closely observed.

Metastasis A patient recently diagnosed with cancer has been told by their doctor that their
cancer may metastasize, meaning that the cancer may spread to a different part of
the body from where it began. To help them understand this concept, their doctor
shows them a visual.

and by the Association of Medical Illustrators (AMI) juried salon judging criteria2. We
also asked participants to select keywords describing the relative strengths and weak-
nesses of their chosen assets. We drew these keywords from the previously mentioned
AMI salon judging criteria. New keywords could also be entered manually. Finally, we
included an option to add freeform comments. For further details on this survey design,
we refer to Appendix D in this thesis.

We conducted a pilot study with five participants to test our survey design, and ad-
minstered the final result via Typeform [349].

Results. To create a common foundation for comparing audience preferences within
and between the five topics, we applied two abstraction constructs, model and visual
abstraction, to every asset as depicted in Fig. 3.23. These draw from the terminology
and definitions of abstraction by Viola et al. [530]. Model abstraction describes the
relative knowledge precision, i.e., the creator’s mental model, of the input data and its
temporality. Visual abstraction describes the relative visual simplification of the model.
The abstraction spaces and asset scores (described below) for each topic are shown in
Figs. 3.24, 3.25 and 3.26.

Asset scores are weighted such that final score = 3s1 + 2s2 + s3, where s1, s2, and
s3 indicate the summed counts for an asset selected as the 1st, 2nd, or 3rd choice for a
given scenario. We show these scores in the corners of each asset in Figs. 3.24, 3.25
and 3.26, and demarcate assets within the top 20th percentile for expert top (dark blue),
expert bottom (dark red), non-expert top (light blue), and non-expert bottom (pink)
choice selections.

A meaningful visual abstraction eases visual processing and reduces cognitive
load [530]. Our findings indicate that both audiences preferred a middle space of visual
and model abstraction. They dislike either extreme realism or extreme abstraction. An-

2https://github.com/lauragarrison87/Biomedical_Process_Vis/blob/main/4-Judging-Form-General.pdf
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Figure 3.23: Conceptual abstraction space. Model abstraction spans the relative knowledge
precision, i.e., the creator’s mental model, of the source data and its temporality, while visual
abstraction encompasses the relative visual simplification of the model (stars denote animated
assets) (from Paper D).

imated assets were often preferred to static representations, although in alignment with
prior research we can see that the added value of dynamic visualizations is variable and
highly dependent on audience and communication goals [232, 402]. We furthermore
note that particpant backgrounds likely unavoidably influence their selections, as peo-
ple may be more likely to select what feels most familiar to them. This is especially
noticeable for the expert top choices in the blood flow topic, shown in Fig. 3.25. Here,
the top left group of illustration selections were predominately made by clinicians or
biomedical illustrators, and the lower right grouping of streamtubes and streamribbons
visualizations were more often chosen by visualization or domain scientists.

Fig. 3.27 shows the average attribute rankings, i.e., aesthetics, scientific accuracy,
visual clarity, and communication success, for expert (upper row) and non-expert sce-
nario (lower row) top and bottom choices for all five topics. Attribute rankings are
similar for the top- and bottom-most choices across all topics, and are relatively sim-
ilar between audiences. Scientific accuracy is the natural exception to this point, as
non-experts cannot easily judge the accuracy of a topic that they do not know. An in-
teresting exception, however, is the expert ranking for the aneurysm scenario. This has
similar rankings for both top (Fig. 3.25, C12) and bottom (Fig. 3.25, C4) selections.
This supports the point that communication success holds more weight than aesthetics
in the selection of a visualization.

Participant keyword choices, as shown in Fig. 3.28, indicate different selection cri-
teria for bottom choices, but similar selection criteria for top choices. This aligns with
our observation that top choices overlapped more extensively than the bottom choices
between the two audience groups. This suggests that participants may place an equally
high priority on positive visual clarity and communication-related factors, i.e., infor-
mative, easy to read, clear. However, their criteria for a poor visualization differ, as
does their concept of what constitutes confusing. Experts consider simplification con-
fusing, while a non-expert audience finds overly distracting or excessive visualizations
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(b) Constitutive activation abstraction space

Figure 3.24: Assets are arrayed in the space by degree of model (y-axis) and visual abstraction
(x-axis). Animated assets are denoted with a star glyph to the right of the asset name. Values
in the four corners of each asset represent a weighted score for its selection frequency as the
first, second, or third choice for an expert or a non-expert audience scenario. Encircled regions
indicate assets with scores in the 20th percentile of each scenario (from Paper D).
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(b) Aneurysm abstraction space

Figure 3.25: Assets are arrayed in the space by degree of model (y-axis) and visual abstraction
(x-axis). Animated assets are denoted with a star glyph to the right of the asset name. Values
in the four corners of each asset represent a weighted score for its selection frequency as the
first, second, or third choice for an expert or a non-expert audience scenario. Encircled regions
indicate assets with scores in the 20th percentile of each scenario (from Paper D).



3

3.3 Visual Communication of Physiology 55

0

0

0

0

Expert
top score

Expert
bottom score

Non-expert
bottom score

Non-expert
top score

C1Asset

Expert top
Expert bottom

Non-expert bottom
Non-expert top

How to read this chart:

Low

Low

Med

Med

High

High

Visual abstraction

M
od

el
 a

bs
tra

ct
io

n

C11 C5 C2C8

C4 C1C7C10

C6C9 C3C12

C16 C15 C18 

C13 C14 C17C19

04

343

10

03

00

05

00

711

07

236

252

01

71

00

80

00

00

41

198

00

62

00

72

00

00

31

119

09

01

61

03

20

04

30

00

05

05

22

Figure 3.26: Metastasis abstraction space. Assets are arrayed in the space by degree of model
(y-axis) and visual abstraction (x-axis). Animated assets are denoted with a star glyph to the
right of the asset name. Values in the four corners of each asset represent a weighted score
for its selection frequency as the first, second, or third choice for an expert or a non-expert
audience scenario. Encircled regions indicate assets with scores in the 20th percentile of each
scenario (from Paper D).

confusing. This makes sense anecdotally, as without sufficient background or explana-
tion, an audience can become easily lost in a visualization.

Detailed Preferences Per-Topic. Finally, while not part of the core contribution of this
work, we additionally created finer-grained visualizations of participant preferences on
a per-topic basis using Tableau Public that are intended for communicating and easily
sharing our results to a broader audience. Selected screenshots of these visualizations
are shown in the lower right quadrant of Fig. 3.31.

Study Summary. Our findings from this study show frequent overlap in abstraction
preferences between expert and non-expert audiences, with similar prioritization of
visual clarity and the ability of an asset to meet a given communication objective. Aes-
thetics is not always a desirable attribute for experts, especially if the asset fails to
meet the stated communication objective. We also found that some illustrative conven-
tions are unclear, e.g., glows have broadly ambiguous meaning, while other approaches
were unexpectedly preferred in some scenarios, e.g., biomedical illustrations in place
of data-driven visualizations. Our findings suggest numerous opportunities for the con-
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Figure 3.28: Word cloud of keywords chosen to describe top and bottom choices for expert
and non-expert scenarios for all topics (from Paper D).
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tinued convergence of visualization and biomedical illustration techniques for targeted
visualization design. Semantically-meaningful use of color in guidelines developed
with stakeholders in both fields and in other relevant application domains is one such
direction, which we summarize in the next section and detail in Paper E.

3.3.2 Color Semantics in Molecular Visualization

Visualization and biomedical illustration techniques can provide a window into com-
plex molecular worlds that are difficult to capture through experimental means alone.
Biomedical illustration techniques frequently employ color to tell a molecular story,
e.g., to identify a key molecule in a signaling pathway. Visualization techniques
can apply color in illumination models to cue structural features on molecular sur-
faces [195, 490] or to draw attention to structures of interest across multiscale molec-
ular visualizationss [256, 535]. However, color assignment to molecules on the whole
is largely arbitrary, and often chosen based on cultural factors, the client, or the content
author’s personal taste.

Molecular biology is still a relatively young field, with some stakeholders arguing
that establishing color guidelines would throttle the field’s growth. Instead, content
authors are free to choose an aesthetic supporting the type of story they wish to tell.
However, this creative freedom comes at a price. Color design is challenging, par-
ticularly for those without training in color theory. Varied color palettes for the same
structures dilutes their semantic meaning, which can negatively impact a visualization’s
interpretability and effectiveness. For example, COVID-19 spike proteins have been il-
lustrated in a variety of colors. However, it is unclear if a blue spike protein is still
immediately recognizeable relative to the red used in the well-known version produced
by Alissa Eckert and Dan Higgins for the CDC3. If such structures are not easily rec-
ognizeable, how does this impact the success of, e.g., public health communications?

The CPK coloring convention [92] is a well-known and widely used standard for
coloring atoms. The cellular-scale also exhibits fairly established coloring conven-
tions, where red for red blood cells is perhaps the most obvious example. Immune
cells are also often depicted in cool tones that echo the soothing blue color popular in
medicine. Molecules can similarly be classified according to their various structures
and functions. With an established standard for coloring atoms, and an informal se-
mantic coloring practice for cells, it is reasonable to consider guidelines for semantic
coloring of molecules.

In this final contribution of the thesis, we first discuss some factors that contribute to
this array of color palettes. Next, we provide a brief sample of color palettes employed
in the industry and research sectors. Finally, we suggest considerations for developing
guidelines for color palettes applied to molecular visualization. A detailed discussion
of these points can be found in Paper E.

Drivers of Palette Choice. Several factors influence a molecular color palette. The
pharmaceutical industry is a major driver of the development of molecular visualiza-
tions. These companies often request palettes that adhere to corporate branding or
convey a particular mood. Visualizations generated for academic or educational sec-

3https://phil.cdc.gov/Details.aspx?pid=23311
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Figure 3.29: 20 sampled molecular visualization color palettes. (a) 2021 AMI Online Salon
color palettes. (b) 2021 VIZBI Protein poster color palettes. Rule abbr: SC: split complemen-
tary, DSC: double split complementary, A: analogous, T: triad, S: square (from Paper E).

tors may use color to engage viewers and use colorblind-safe colors to reach a broader
audience. Culture is also a significant driver of color selection, where different cultures
may have different color-mood associations. Many molecular visualizations incorpo-
rate blue, or a similar color, into their palette for the calm, comforting emotions that
are often associated with this color [4, 37, 96]. North American biomedical illustrators
often use red to indicate abnormal molecular activity, e.g., constitutive activation. This
choice is not necessarily obvious to other cultures. However, the most likely factor for
color choice in molecular visualizations is the content author’s personal tastes and aes-
thetic preferences.

Color Palettes in Practice. We conducted a small study to demonstrate the broad
use of color in contemporary molecular visualizations. We extracted the color palettes
from 20 molecular visualizations that were produced in the last year to ensure that our
sampling captures recent color design trends.

Since such works may be created by bioinformaticians, biomedical illustrators,
structural biologists, and visualization researchers [148], we sampled ten palettes from
each of two venues that attract these professions. The Association of Medical Illustra-
tors (AMI) is a global society of biomedical illustrators which hosts an annual juried
salon. The ten palettes we sampled from this salon included works where molecules
are the main focus, either in static images or animation stills. Visualizing Biological
Data (VIZBI) is an annual meeting bringing together diverse professions to discuss re-
search advances in the visualization of biological data. Each meeting includes a poster
session that is divided into categories. We sampled ten palettes from the 2021 Proteins
poster category. While VIZBI is advertized as an international venue, we note a North
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Primary

60% 30% 10%
Secondary Accent

Split Complementary Harmony Rule
Base color: purple

Figure 3.30: Example of 60-30-10 rule used in a biomedical illustration. Explorable color
palette at https://color.adobe.com/color-name_LG-color-theme-19646985/ (from
Paper E).

American bias in our sampling of biomedical illustration work from the AMI, as this
organization is primarily oriented to North America.

We used Adobe Color [6] to generate color palettes from each molecular visual-
ization. This tool enables semi-automatic extraction of a color palette from an image,
which is then stored as a “custom” color harmony rule. Our intervention was neces-
sary to manually match this custom palette by eye to the closest harmony rule. The
results are shown in Fig. 3.29. This figure shows split complementary as the most com-
monly used rule, employed in 11 palettes across both groups. Two additional double
split complementary palettes, which is closely related to the split complementary rule,
are used in the AMI group. Palettes using an analogous rule are the next most abundant
(five), and occur more frequently in the AMI group.

In both groups, molecular coloring is consistent for structural elements within each
visualization, e.g., molecules comprising a cell membrane are all colored the same or
analogously. However, the semantics of the color choices are often unclear, except in
the case of the red COVID-19 spike protein in b2, b6, and b9. Focusing attention or
creating a visual hierarchy to drive a narrative appear to be the primary motivations
in color application. Across all samples, the coloring of particular types of molecules,
e.g., ligands, is only sporadically consistent. However, a stronger trend may be revealed
in a larger sample.

Considerations for Best Practices. Aesthetics can crucially draw and guide atten-
tion within a molecular visualization. The 60-30-10 rule of thumb, borrowed from
interior design, is useful to guide the balance of color in a molecular visualization.
Exemplified in Fig. 3.30, 60% of a visualization should use a primary color, 30% a
secondary color, and 10% an accent color. Molecular visualizations following ba-
sic perceptual principles and defined color harmony rules can be more aesthetically-
pleasing, and furthermore easier for audiences with different degrees of expertise to
interpret [231, 239, 561].

Color is an important element in a molecular visualization’s interpretability, or
readability. It can be used as a device to focus audience attention to salient features of
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the visualization, which may ultimately lead to a more effective visualization. Although
different cultures or contexts may associate different semantic meanings, saturated,
light value, or warm colors tend to draw attention, while desaturated, dark value, or cool
colors often recede, especially when used with, e.g., warm colors [222]. This perceptive
feature can facilitate the interpretability of a molecular visualization by using color
to draw attention to the principal elements of a visualization. Importance functions
may be useful in developing rule-based methods that could assign an appropriate hue,
saturation, and lightness values to elements in a molecular visualization.

Finally, a molecular visualization is effective if it is correctly read by the intended
audience. Just as a general audience may not know precisely, for example, the structure
or function of a red blood cell in the body, through its color assignment they can rec-
ognize some of its basic properties and relate it to the flow of blood in our bodies at a
larger scale. We argue that this strategy can be extended to the molecular-scale by col-
oring hemoglobin red. Molecules may also be colored according to the class of pathway
that they are involved in, e.g., a signal transduction versus a gene expression pathway.
This coloring may expand to include the use of glow or fresnel effects to show ab-
normal pathway activity. Alternatively, molecules may be assigned color familes and
harmony rules based on their structure, e.g., the secondary or tertiary structures of a
protein. Establishing guidelines that retain the flexibility for creative expression and
innovation is challenging and requires further research and stakeholder discussions.
However, with the increasing prevalence of molecular visualization in mainstream cul-
ture, the implementation of semantically-meaningful coloring guidelines can improve
public understanding of molecules.

3.4 Research Replicability

The final and often-overlooked step of any research project is making data and code
publicly available for other researchers to attempt to replicate experimental results, and
to enable other works to build from these data and code. In some instances, data confi-
dentiality makes this step impossible. However, when possible in this thesis we made a
concerted effort to make our code publicly available, to document the steps necessary
to set up and run our code locally, and/or to make available the source data used for our
case studies in validating our approaches (Fig. 3.31). Ensuring that visualization re-
search is both available and replicable for domain experts to more easily use is one way
to bridge the data accessibility gap that we often face in visualization for physiology.

The Graphics Replicability Stamp Initiative (GRSI)4 is an organization that certi-
fies the replicability of code and results from data for sharing in and beyond the visual-
ization community as a non-commercial resource. Our source code for SpectraMosaic,
available at https://github.com/mmiv-center/spectramosaic-public, and DimLift,
available at https://github.com/lauragarrison87/DimLift, have both been certified
through this process. In open-sourcing and certifying the replicability of both of these
applications, we hope to enable scientists from the application domains that these works
target to be able to use these tools for visual exploration and analysis of their own data.

4http://www.replicabilitystamp.org/
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Figure 3.31: Our two applications contributions, SpectraMosaic and DimLift are certified
through the GRSI. Our STAR literature visual explorer and database (upper right) is also open-
sourced. We used Tableau Public to create easily adjustable and shareable visualizations of the
results from our survey on the practice and preferences of visual communication of physiolog-
ical processes (lower right).

We also assembled a data package comprising the results of our exploratory study
on the practices and preferences of domain experts and non-experts for the visual
communication of physiological processes. Our main database stores expert and non-
expert preferences and feedback for five different topics that are commonly visual-
ized in physiology: signal transduction, constitutive activation, blood flow, aneurysm,
and metastasis in expert and non-expert scenarios in each topic. The data package
furthermore contains all visual assets created for the study (75 in total). Their use
is permitted through a Creative Commons CC-BY-NC 3.0 License5, meaning that
they can be freely shared and adapted for non-commercial purposes. We also in-
clude screenshots of each page of the survey for other researchers interested in re-
producing our survey design in their work. The complete data package is available at
https://github.com/lauragarrison87/Biomedical_Process_Vis. Part of this work
includes a set of publicly-available visualizations of the data using Tableau Pub-
lic https://public.tableau.com/app/profile/biomedsurvey2021). These visual-
izations are freely editable and customizable for other users, and can be embedded
onto other pages to share the results of this research.

Lastly, we have open-sourced the code and database for our STAR Literature Visual
Explorer tool, available at https://github.com/lauragarrison87/star.web. Inter-
ested visualization and application domain researchers can follow the documentation
to set up and run this tool locally, or run from the github server directly. The database
can optionally be updated with new literature with a pull request, giving this tool the
possibility to be a living repository rather than a snapshot of the state-of-the-art at the
time the literature was collected.

5https://creativecommons.org/licenses/by-nc/3.0/
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Chapter 4

Discussion & Outlook

The future is already here — it’s just not
evenly distributed.

William Gibson

The myriad interconnected biochemical processes that contribute to physiology are
complex, yet necessary, to understanding life. Data-driven research has introduced
a new paradigm where researchers first acquire physiological data in ever-increasing
resolution and volume and then try to ask questions of the data. Increasingly multi-
disciplinary teams are necessary to solve challenges in exploring, analyzing, and com-
municating these data, and visualization plays an integral role in identifying and solving
these challenges.

This thesis brings a cross-disciplinary perspective to visualization for physiology
for expert and non-expert user profiles and their according high-level tasks over mul-
tiple spatio-temporal scales. Our work contributes to the areas of theory, empirical
findings, method, application, and research replicability. We began with a broad dis-
cussion of the landscape of visualization for physiology spanning the visualization as
well as application domains, which we classified in a two-level system according to task
and spatio-temporal scale. Using this classification we identified two important task ar-
eas for further investigation: exploratory analysis and communication. In the area of
exploratory analysis we started narrow with a specific under-visualized data type, mag-
netic resonance spectroscopy. We conducted a design study that extensively reviewed
data characteristics, user tasks, and contributed a novel method and application for ex-
ploratory analysis of these data. Our work then broadened from a specific data type to
multivariate, mixed clinical cohort data and developed a method and corresponding ap-
plication enabling discovery of subtle patterns in these data, and briefly explored the
effect of imputation on missing data in this context. Moving from expert-oriented tasks
we pivoted to visual communication for experts and non-experts. Curious about the
overlap in techniques between biomedical illustration and visualization, we conducted
a survey of the practice and preferences of communicating a subset of processes in
physiology to expert and non-expert audiences. Part of this work included the develop-
ment of a visual asset library that capture standard approaches to visually communicate
these processes from both disciplines. The findings of this work led to our proposal
for the development of best practices for inclusive and semantically-meaningful color
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palettes in molecular visualizations. Finally, all application code and study results are
open-sourced and available for reuse by the scientific community and public.

The work presented in this thesis is not comprehensive in its coverage and discus-
sion of visualization for physiology. To do so within a manageable scope would have
been impossible. Instead, our work turns to representative topic areas in an effort to
capture the visualization opportunities and challenges this field represents. The studies
conducted in our work are also predominately qualitative, with relatively small sample
sizes. While the results are sufficient to draw preliminary conclusions, particularly in
narrow fields such as magnetic resonance spectroscopy research, a clear opportunity for
further work is building on these studies with larger and more demographically-varied
cohorts. This is particularly true in the case for developing guidelines for semantically
meaningful palettes in molecular visualizations. Beyond conducting larger studies to
further validate the ideas we propose, we see a number of exciting opportunities for fu-
ture research directions from our work, some of which we highlight in the remainder
of this chapter.

Core to what makes a visualization “effective” is its ability to put information in
front of people so that they can understand and make decisions from this information1.
This is true whether the high-level goal is to explore, analyze, and/or communicate facts
about the data being visualized. The use of visualization technique is thus driven by the
user’s main goal for the data, and is further impacted by their expertise or background
knowledge. The methods that we developed for multifaceted exploratory analysis of
physiology data are developed for experts in a research setting. However, our ultimate
goal, which is shared by many who develop visual methods for medical data, is to see
our work realized in clinical routine where clinicians and patients can see an immedi-
ate and positive impact on health management. While our heatmap matrix display with
nested glyphs for metabolite exploration is useful for spectroscopy researchers who al-
ready possess a degree of experience in spectral data interpretation, this method inside
SpectraMosaic is too time-consuming and unwieldy for clinicians to use effectively in
their daily work. Given the immense value of MRS in assisting diagnostics, contin-
ued work on visual solutions for clinical interpretation of MRS is an exciting research
direction. The same is true for our DimLift method—while designed as an upstream
approach for e.g., clinical researchers to identify new biomarkers for disease, contin-
ued work that explores adapting this method for clinicians to use opens a new line of
inquiry that can be of enormous help to clinicians who are buried in diagnostic data.

Framed in the context of the user’s tasks and goals, we have learned that the scale
of the process in question also has an impact on the visualization technique. Processes
occurring over broad scales, whether spatial, temporal, or both, present extra visual-
ization challenges that require the visualization designer to carefully balance insights
with complexity. This is particularly challenging and necessary for molecular dynam-
ics simulations, or any data that capture molecular activity in situ in cells, tissues, or
even organs. These data are the future of understanding the body, and visualization
plays a crucial role in facilitating our understanding of these data.

Dimensionality reduction strategies are common with a number of physiology data
types, and the ongoing visualization challenge is ensuring that the user can relate the
results back to the original data. Our state-of-the-art report on visualization for physi-

1Ben Fry, VIZBI 2022 Keynote
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ology found that many researchers in the application domains often find it necessary to
review the raw data as part of their analysis, e.g., time-lapse imaging of cellular dynam-
ics. Fully automatic solutions are not that desirable, as they can crucially inhibit user
trust and understanding of the results of any data derivations. Semi-automated systems
that allow the user the flexibilty to steer their own inquiries if they find something in-
teresting in the data are beneficial to continue exploring, building on the concepts we
presented with, e.g., our DimLift method. Such approaches may be effective for experts
with mainly analytical goals, but are often too abstract for non-expert users. This intro-
duces a delay in the sharing of information that might be critical to, e.g., public health.
As a community we need to consider how our bespoke approaches for a certain type
of expert can be adapted or shared with other communities, as well as to the general
public. Additional studies building on the findings in our survey on the practice and
preferences for communicating physiological processes may help identify strategies to
adapt complex visualization approaches for experts in a target domain to experts in a
different domain, or to the general public.

A broad range of methods and modalities capture physiological data. The majority
of methods and modalities are limited to a particular spatio-temporal range in physiol-
ogy, e.g., metabolite concentration detection or changes in vascular diameter through
imaging. This limited range correspondingly limits the availability of visualization
techniques that can still accommodate a given visualization task for a certain level of
expertise. Furthermore, some methods and modalities have received little attention
from the visualization community, many of which we identified in our state-of-the-art
report, e.g., hierarchical phase-contrast tomography (HiP-CT) [536] and nascent chain
tracking (NCT) [105]. This will continue to be the case as hardware and software ad-
vances continue to yield new paradigms for data acquisition. The development of visual
approaches that facilitate not only initial exploration and analysis of these data, but ul-
timately communication of these data to various stakeholders, is critical for advancing
public health and health literacy in our global society. The research presented in this
thesis provides a valuable foundation for developing visual methods for exploratory
analysis and communication of multifacted physiological data.

“Time is the substance I am made of.” —Jorge Luis Borges, Labyrinths
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Abstract

Combining elements of biology, chemistry, physics, and medicine, the sci-
ence of human physiology is complex and multifaceted. In this report, we
offer a broad and multiscale perspective on key developments and chal-
lenges in visualization for physiology. Our literature search process com-
bined standard methods with a state-of-the-art visual analysis search tool
to identify surveys and representative individual approaches for physiology.
Our resulting taxonomy sorts literature on two levels. The first level cate-
gorizes literature according to organizational complexity and ranges from
molecule to organ. A second level identifies any of three high-level visu-
alization tasks within a given work: exploration, analysis, and communica-
tion. The findings of this report may be used by visualization researchers to
understand the overarching trends, challenges, and opportunities in visual-
ization for physiology and to provide a foundation for discussion and future
research directions in this area.

This article will be published in Computer Graphics Forum, vol. 41(3), pp. 609-643, 2022.
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A.1 Introduction

Human physiology describes the functions and mechanisms of the human body that
make it a living being. Forming the link between the basic sciences (biology, chemistry,
and physics) and medicine, human physiology is multiscale in that it integrates the in-
dividual functions of molecules, cells, tissues, and organs into a whole organism [180].
Physiology is an important aspect of systems biology, which has been characterized
as an approach to understanding multiscale interactions in a biological system [259].
While systems biology tends toward data-driven and quantitative methods, an integra-
tive physiology approach emphasizes concepts through experiments and observation
across multiple scales [164]. The multiscale nature of physiology allows us to, for ex-
ample, link how signaling events at a molecular level lead to the normal, i.e., healthy,
contraction of cardiac muscle in a normal heartbeat. An understanding of the normal
processes and functions of the body allows us to recognize those that are abnormal,
such as in atrial fibrillation, a heart problem where the upper chambers of the heart do
not follow a regular beating pattern. With recent advances in hardware and software,
as well as in experimental and imaging modalities, it is now possible to model many of
these processes across several scales. Consequently, it is time for a discussion of visu-
alization techniques for multiscale physiology. This survey provides a broad overview
of common approaches and highlights research opportunities in visualization for phys-
iology across multiple scales.

Modern clinical workflows involve a battery of tests and imaging protocols related
to physiology. These are used to guide therapy, monitor disease progression or treat-
ment response, and identify new biomarkers for medical research. Improved tech-
nology and hardware capture an unprecedented volume and diversity of data through
models and simulations, e.g., advanced numerical simulations of blood flow, as well as
through various acquisition techniques, e.g., fluorescence lifetime imaging microscopy
(FLIM). Data range from 2D to 3D images, from static to time-dependent, from scalar
to vector to tensor fields, and are often multivariate. The visualized physiological
processes range spatially from nanometers to full body length and temporally from
femto-/nanoseconds up to hours, months, and, in some cases, even years, as shown
in Fig. A.1. However, these data are often specific to a particular and relatively nar-
row spatio-temporal scale, and establishing links between these multimodal data types
from the nano- to macroscale has been described as a grand challenge for many years
from the perspective of systems biology [375, 378], visualization [159, 385], and in a
multidisciplinary 2018 Dagstuhl Seminar [7]. Linking these data requires multidisci-
plinary teams to develop analytical models and visualization approaches that can bridge
the range of spatial and temporal scales. The Physiome/Virtual Physiological Human
and affiliated subprojects [30, 137, 211, 498, 527] have aimed to model processes that
range from the molecular to organ scales, and beyond, to understand the multiscale in-
terplay of physiology. The National Institutes of Health’s Human BioMolecular Atlas
Program (HuBMAP) aims to comprehensively map the human body at single-cell res-
olution from both a structural and functional perspective [208]. Numerous works have
blossomed from these initiatives, such as OpenCMISS-Zinc [63], a library for building
multiscale models and visualizations of physiological processes.

Despite the wealth of collected and simulated data for physiology, not all of this in-
formation can be, or is optimally, visualized through data-driven means. Hand-crafted
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Figure A.1: The general spatial and temporal ranges of human physiology, partitioned accord-
ing to scale. Bold text indicates areas of focus in this survey, with example processes labeled
in each scale.

medical illustrations are an alternative or supplement to data-driven visualization for
representing physiology. Illustration remains ubiquitous when communicating infor-
mation to a broad audience where simplification and abstraction of concepts are es-
sential [168, 180, 239, 427, 434]. More generally, illustrations are invaluable in com-
municating abstract concepts, theories, and models. In this sense, illustration can pro-
vide a source of inspiration for abstraction in data-driven visualization. Paired with
computer-supported solutions, an illustration can be brought to life through interactiv-
ity and adaptability to different scenarios. However, the time and labor cost for cre-
ating such illustrations prevents their use for, e.g., patient-specific data visualization.
Throughout this report, we highlight select illustrative works to demonstrate opportu-
nities where illustration can inspire or augment data-driven approaches.

Physiology has received extensive attention from the visualization community but in
a fragmented, unevenly distributed form across subtopics, data sources, and visualiza-
tion techniques. Few of these works extend their focus beyond one or two scales, e.g.,
only molecular [267], molecular and cellular scales [169], or organ [287]. This paints a
limited picture of the true multiscale nature of physiology. Similarly restricted in scope
are surveys on a particular data type, e.g., PC-MRI by Köhler et al. [260]. Technique
surveys, such as by Bach et al. on space-time cubes [33], McGee et al. on multilayer
network visualization [331], or Preim et al. [401] on medical animation, may span mul-
tiple scales, but physiology is often only one application area of many under discussion
and is not the primary focus. Still others have explored the multiscale challenges in vi-
sualizing biomedical data from a high-level perspective [10, 79, 245, 330, 523], though
without a specific focus on physiology. While our survey does not go into the level of
detail that these surveys visit for their respective areas, the novelty of our work is in pre-
senting a unified overview across multiple scales. We do so by discussing the coverage
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of these surveys alongside representative individual works that contribute to the same
scale. We intend this report as an introductory resource for the space of challenges
and opportunities for visualization research applied to physiology. Our framing for the
work we survey additionally provides a different perspective than related work. We em-
bed each article in a spatio-temporal context and draw from Brehmer & Munzner [66]
to discuss its contribution according to the high-level user task(s) that it addresses.

Perhaps closest to our survey in terms of the scales of biological organization cov-
ered, Secrier & Schneider [452] discuss general visualization techniques from the
bioinformatics domain for physiology from the molecular to population scale, but this
review is brief and high-level. O’Donoghue et al. [376] review the use of omics and
imaging data in biomedical research from molecule to population level for the pri-
mary purpose of exploration. However, their discussion is from a systems biology and
bioinformatics perspective and mainly focuses on the visualization of molecular data
to understand multiscale physiology. Our work covers a broader set of data types and a
wider range of physiological processes.

To our knowledge, this work is the first of its kind to broadly overview the space
of visualization for physiology that covers a scope similar to Lipşa et al.’s survey of
visualization for the physical sciences domain (astronomy, chemistry, etc.) [305]. Our
main contributions include:

• This is the first literature survey paper of its kind that provides a view into mature
and open opportunities in visualization research for physiology. Our work surveys
both within and beyond the core visualization venues.

• We focus the content of our survey on physiology topics that are highly-
researched and cited both within the visualization community and in related phys-
iology domains.

• We introduce a novel taxonomy that addresses these different topic areas and their
respective opportunities by embedding works within a spatio-temporal context
according to the high-level visualization task that they address.

In the following, we provide a brief background on physiology in Sec. A.2, fol-
lowed by a discussion of our survey methodology (Sec. A.3) and classification structure
(Sec. A.4). Sections A.5–A.8 are each dedicated to a spatio-temporal scale in our tax-
onomy, in order of increasing biological complexity. In each section, we first introduce
the necessary background information and relevance of the physiological processes dis-
cussed at the given scale. We then provide an overview of visualization conventions and
trends that we observe in the related literature according to task. A brief discussion of
the mature and open challenges in visualization concludes each scale before transition-
ing to the next section. Fig. A.2 provides an overview of our organizational approach
for these sections. Readers interested in a specific topic, e.g., molecular pathway visual-
ization for exploration, may easily navigate to the part of the paper that is most relevant
to their interests and needs. Section A.9 provides an overview of true multiscale vi-
sualizations uncovered in our search and leads into a discussion of the challenges and
research outlook on visualization opportunities for physiology (Sec. A.10–A.12).
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Figure A.2: Our approach for Sections A.5–A.8 organizes physiology topic areas in order of
increasing spatio-temporal scale, with detailed per-scale and per-process points for each topic
area (when relevant.)

A.2 Physiology Background

Normal human physiology requires a careful balancing act, known as homeostasis,
of numerous processes that occur over a broad span of time and space, as shown in
Fig. A.1. The smallest entity in the human body with the functional characteristics to
sustain life independently is the cell. The cell itself contains molecules, such as water
and ions, and organic molecules, such as proteins, that participate in processes neces-
sary for its survival. Genes are the basic unit of heredity in cells that are made up of
DNA and which encode the synthesis of RNA, which directs protein synthesis. Genes,
proteins, and other molecules interact in sequences of reactions and interactions that
are described as pathways. These pathways form networks and contribute to specific
cellular functions. Molecular structures fall generally in the range of nanometers, and
molecule-scale processes over a broad temporal range from femtoseconds, e.g., bond
vibration between atoms in a molecule, to seconds, e.g., global motions or reaction se-
quences in a molecular pathway [193], to minutes and hours in the case of pathways
involved in metabolism, gene expression, and signal transduction [31].

Human and other eukaryotic cells contain specialized cellular structures called or-
ganelles that participate in and facilitate the molecular pathways that keep the cell func-
tioning. The mitochondrion is one type of organelle known as the energy powerhouse
of the cell, while the nucleus is another organelle that provides the housing for our
genes. A cell has the ability to communicate and exchange nutrients with its envi-
ronment through its semipermeable membrane. This membrane contains specialized
molecules, known as receptors, as well as channels and other structures that facilitate
communication and exchange. Cell-scale processes relate to cells that average in the
range of tens of microns in size, and with a temporal range of milliseconds, e.g., ac-
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tion potential generation, to minutes, e.g., mitosis, to a day for a complete cell cycle in
humans.

Human cells differentiate into specialized cells with shared properties that group to-
gether to form tissue, which is classified into four different types: muscle, epithelial,
connective, and nerve tissue. The physiological properties of these different tissues re-
flect the function that they serve. Cardiac muscle tissue, for instance, is responsible for
the periodic contraction of the heart. Skeletal muscle tissue moves our limbs, while
smooth muscle tissue moves food through the digestive system. Abnormal tissues oc-
cur where the comprising cells take on different characteristics than normal tissue. For
example, cancerous tumors have completely different tissue features than the surround-
ing tissue in which they occur. Tissue-scale processes span hundreds of microns to
millimeters and temporally range from milliseconds, e.g., signal propagation, to weeks
or even months, in the case of tissue growth and development.

Organs are composed of different types of tissue and perform major physiological
processes according to their location, form, and composition. For example, one of the
functions of the heart is to pump blood that contains life-giving oxygen and nutrients
to the body’s cells. Organ-scale processes that we consider in this report tend to
fall within a narrow spatio-temporal window: organs like the heart measure in the
range of centimeters, and the temporal range of a complete heartbeat or a complete
breath cycle is in the range of seconds. Organs with similar functions are grouped
into systems. For example, the cardiovascular system consists of the heart and blood
vessels that are responsible, among other tasks, for carrying oxygen and nutrients to the
body’s cells. Our organ systems are interdependent. The cardiovascular system cannot
function without the respiratory system, which includes the lungs, because the lungs
handle blood re-oxygenation. The healthy functioning of an organism is dependent
upon the systems of the body working in concert.

A.3 Scope and Methodology

This survey sketches out trends and opportunities in visualization for physiology across
multiple scales, with an emphasis on human physiology. Fig. A.3 provides an overview
of our methodology.
Thematic Topics in Physiology. We restrict our survey to timely, highly-cited the-
matic areas in human physiology to ensure that our survey presents a relevant research
agenda. For this, we used Web of Science’s “hot papers” and “highly cited” filters
with the keyword “physiology.” A “hot paper” is any paper published in the past two
years that has received enough citations to rank in the top 0.1% of papers in its field.
A “highly cited” paper ranks in the top 1% of cited papers for its field and publica-
tion year. To get a sense of the diversity of topics, we took the top 20 papers from
each of these filters and excluded works that did not relate to humans or other mam-
mals. We keyed these papers to topical area of physiology, e.g., molecular pathways
or heart function, following standard medical physiology textbooks [180]. For a com-
plete list of these papers and their topical areas, we refer the reader to Tables 1 and 2 in
Appendix A.
Search Criteria. Our survey focuses on visualization research works for understand-
ing physiology. We excluded pure methods works, meaning that the visualization lit-
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Figure A.3: Our literature search process included both traditional search methodologies and
vitaLITy [361]. VitaLITy’s UMAP visualization allowed us to identify two main groupings of
physiology-related visualization literature: (A) contains molecular-scale visualization litera-
ture, while (B) contains cell, tissue, and organ-scale works.

erature we included must have a clear discussion of the domain science as a possible
application for the proposed method. We excluded works where the main visualization
goal is to understand structure, although we included limited examples of instances
where a physiological process is used to visualize a structure, e.g., 4D PC-MRI data to
describe vessel boundaries [40]. We focused primarily on input data that is either itself
dynamic, or is being used to capture snapshots of a dynamic process. We excluded
purely longitudinal studies. We limited our search and discussion of works in areas
that have already been well-covered in visualization and looked more comprehensively
in less well-covered areas. In summary, we included application-oriented papers that
center around a key topic area we identified from timely and highly-cited physiology
research and that apply visualization in a novel way for the topic domain.

We focused our literature search on core visualization publication venues: IEEE
TVCG, CGF, C&G, BioVis, VIZBI, and VCBM. The domain sciences may adapt vi-
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Figure A.4: Distribution of works (excluding surveys) according to publication year.

sualization techniques in a novel way to interpret their data. We did not extensively
review work published in domain-specific venues, but included a selection of works
relevant to our included physiology subtopics to show visualization’s use from this per-
spective. These domain-specific works contributed to approximately 46% of the total
works collected.

Search Process. We conducted our initial search using a combination of Google
Scholar, PubMed, and IEEE Xplore based on keyword search [physiology topic] AND
visual*. The literature search was divided between two coauthors.

We used vitaLITy [361] to complement our search, a recent visual analysis tool that
allows for serendipitous discovery of academic literature. The vitaLITy database at the
time of this writing consists of 59,000 literature items from 38 computer science venues
that include our core venues listed above. These are searchable in a standard table that
includes paper title, abstract, keywords, and authors, as well as a similarity search and
a 2D UMAP visualization of the embedding space for the entire collection. For details
on these tool features, we refer to Narechania et al. [361]. In the UMAP visualization,
we identified two main groupings of literature, shown in Fig. A.3, that helped focus our
search: (A) groups works for visualizing molecule-scale processes: molecular dynam-
ics, interactions, and pathways, while (B) includes works for visualizing cell, tissue,
and organ-level processes. Within each of these groupings, we searched for existing
surveys and state-of-the-art reports to identify saturated topics. For example, since a
number of reports have been written on visualizing different topics at the molecular
scale, we devote less space to discussing this scale in our work and focus more com-
prehensively on scales and physiology topics with less coverage. UMAP exploration
also helped us to identify relevant individual papers. We used works found in vitaL-
ITy to seed our more traditional search approach and vice versa. This allowed us to
perform a more complete literature search that accounted for terminology differences
between domains.

Refining Process. In a second detailed pass of our collected works, we reviewed
titles, abstracts, and figures to determine topical fit for our survey. At this stage, we
used the publication year as a secondary check for our search coverage. If necessary,
we revisited vitaLITy for topic areas that had a publication gap and resampled papers
from this publication time frame.
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erature are sorted by molecule, cell, tissue, and organ scales. This chart counts literature only
once, according to the scale to which they contribute most. Right: Works are visualized in
terms of density over spatio-temporal space, encoded by darkness. The x-axis shows tempo-
ral scale in units 10nseconds, while the y-axis describes spatial scale in units 10mmeters. The
dark region at the upper center indicates an abundance of works to visualize organ-scale phys-
iology over the range of seconds, e.g., one heartbeat. The dark region at the right corresponds
to works visualizing gene expression data.

Collection Summary. Our complete literature set includes 366 works, 61 of which
survey or provide an outlook on an aspect of physiological data visualization. Approxi-
mately 1/3 of these works have been published in the last five years, with 2/3 of the total
set published in the last ten years. Fig. A.4 shows the distribution of works by publica-
tion year. The peak in publications in 2010 is a point we discuss in Sec. A.10. Follow-
ing literature collection, we classified all papers according to a two-level taxonomy to
help identify challenges and opportunities in this domain. Due to limitations in space,
we discuss a subset of these works in this paper, with the full library available in supple-
mentary material and at https://lauragarrison87.github.io/star.web/vis_tool.

A.4 Taxonomy and Overview

Physiology spans the basic sciences and medicine, requires diverse domain knowledge,
uses myriad data types, and employs a wide range of visualization techniques. Classi-
fication by domain, e.g., biology, chemistry, physics, or medicine, may seem the most
obvious approach. However, these sciences are tied into each process and are difficult
to classify separately, especially at the molecular scale. Molecular reactions are dic-
tated by biology, chemistry, and physics and are core to disease diagnosis in medicine.
In addition, different domains often adopt slightly different terminologies and classifi-
cation systems. For example, biology works from gene, protein, tissue, organ, system,
body, while neuroscience follows a neurochemical, neuronal, region/network, and brain
classification scale. This creates more confusion when organizing literature according
to domain.

Although classification by data source may feel most natural in the context of the
visualization pipeline, this does not provide a unified axis for the scales we survey.
Simulations and models may span the molecule to organ scale but tend to be heavily
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Figure A.6: Left: Distribution of literature according to scale and high-level task, the latter
of which is adapted from Brehmer & Munzner [66]. Right: Many visualization approaches
support a combination of exploratory, analysis, and communication task(s). Darkness and size
dually encode the number of works that are categorized with a given task combination within
each triangle.

focused on particular topics, e.g., heart function [29] or lung function [251]. While new
imaging technologies, such as hierarchical phase-contrast tomography that maps organ
to cell level, have come closer to realizing this possibility [536], no unifying technol-
ogy yet bridges from the molecule up to the organ scale from a general physiological
perspective.

A.4.1 Spatio-Temporal Organization

To minimize semantic collisions or confusion, we classify literature into scales along
a spatio-temporal axis that is roughly discretized according to biological complexity:
molecule, cell, tissue, and organ. This discretization is inspired by the organization of
physiology textbooks [180]. Fig. A.5 (left) shows the distribution of non-survey works
we collected that are categorized according to this scale. Works that span multiple
scales are counted once for each scale, e.g., a work that we classify as both molecule
and cell scale is counted in both the molecule and cell groupings.

We bundle temporality into this scale discretization based on the fact that, as struc-
tures increase in physical size, they tend to be involved in more biologically-complex
processes that take more time to complete. This relationship between increased struc-
tural size/complexity and time has been discussed elsewhere in different domain con-
texts [106, 170, 452, 472]. We can observe this phenomenon in Fig. A.5 (right), which
represents collected works classified in a range according to the scale that the input
data spatially and temporally resolve to and up to the spatial and temporal scale of the
structure and process of interest, e.g., the whole brain. For example, while EEG mea-
sures neural activity, we cannot visualize individual neurons with this modality, and
that is not the intent of conducting these types of studies–visualizations of EEG data
fall in the organ scale. The relationship between space and time is not perfectly linear,
as reflected by the dark groupings in the upper center and right regions of the chart.
The upper corresponds to organ-scale processes that occur over the range of seconds,
such as a heartbeat or a full breath cycle, while the right corresponds to the time for the
expression of a single gene [344].

Our classification system does not formally extend beyond the organ scale for a few
reasons. First, restricting the scales we examine keeps the scope of this survey manage-
able. In addition, our preliminary searches found limited visualization works that exist
purely at the system– or organism–level, and the tasks and visualization techniques im-
plemented are similar to those observed at the organ scale. We briefly review examples
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of works beyond the organ scale, as well as selected works that use true multiscale ap-
proaches, where the visualization aims to facilitate a task at three or more scales, in
Sec. A.9.

Although an enormous range of physiological processes occur at all scales of the
body, we focus our survey on a few categories of processes at each scale that are timely
for the physiology domain. Processes occurring at the molecule scale include molec-
ular dynamics, e.g., the motion of atoms and molecules, reactions between molecules
where electrons and/or atoms are exchanged, and molecular pathways, which describe
a chain of molecular reactions. Cell-scale functions that we highlight include cell dy-
namics and interactions, such as how the cell develops and communicates with its en-
vironment. We include the dynamics of the cell’s organelles at this scale, such as mito-
chondrial activity. Tissue-scale functions consider the behavior of aggregates of cells
of the same type and include tissue dynamics, such as growth, and tissue interactions,
such as signal propagation in neural tissue. At the organ scale we consider processes
related to blood flow as well as the functioning of the heart, brain, and lungs. The body
of visualization literature at this scale is large in correspondence to the maturity of data
acquisition techniques available and the ease at which these processes may be captured
or simulated.

Non-human studies present an issue in this measurement-based classification sys-
tem. For example, a visualization of the neural pathways in a fruit fly brain exists in
micrometers, while a human brain measures in centimeters. While the focus of this
survey is on human physiology, there is immense value in considering model organ-
ism physiology. These experiments tend to be more innovative, with correspondingly
greater likelihood of exciting visualization opportunities. In cases where we include
model organism physiology visualizations, we map the organism’s scale up to the hu-
man. Following this logic, we classify, e.g., a visualization of fruit fly brain activity, at
the organ scale.

A.4.2 High-Level Visualization Task

A subsequent layer categorizes the literature according to any of three high-level vi-
sual tasks: exploration, analysis, and communication, as illustrated in Fig. A.6.
These tasks are drawn from Brehmer & Munzner’s typology of abstract visualization
tasks [66]. We chose high-level, rather than low-level, tasks to provide a clear pic-
ture of the broad needs and challenges users face in visualizing physiology and how
this compares across scales. We first considered categorizing works according to vi-
sualization technique, e.g., direct visualization. However, since task ultimately drives
the chosen visualization technique, we feel that this is a more meaningful classification
mechanism that furthermore has been the basis of classification in other surveys.

Exploration tasks often arise when the user is unsure of what the data contain. In
the context of the data visualization pipeline, the user typically wishes to minimally
abstract the data and produce a visual mapping that is as close as possible to reality.
They do this to explore what the data actually contain. This is often a preliminary step
in a larger analytical process. Analysis tasks occur when the user may be more sure
of the intrinsic characteristics of the data, but now want to extract meaning from these
data. Analysis often relates closely with exploration, where a user may begin with an
exploratory approach to generate a hypothesis, then perform low-level analytical tasks
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alongside statistical methods to follow up on their hypothesis. In the visualization
pipeline, analysis involves production of new artefacts through data transformation,
derivation, and abstraction [10]. Although important for any task, audience is a key
part of a communication task, where a visualization is created to underline key con-
cepts of data for presentation, education, or enjoyment to a particular group, whether
to peers or to a broader audience. Visualizations developed for this task are often fur-
ther abstracted from the data than in analysis- or exploration-oriented tasks, and can
incorporate cinematic or storytelling elements to convey the author’s interpretation of
the data. While nearly all publications include figures to communicate scientific re-
sults, for this survey, we identify uses of visualization for communication beyond what
is achievable with standard, out-of-the-box tools.

Many visualizations cannot be defined through strictly one of these tasks and rather
are often generated to meet a combination of tasks. A work created to explore the data
may also specify a visual analysis task. For example, ZigCell3D [101] visually explores
simulations of cellular functions while also providing tools for the visual analysis of
the underlying simulation. The same data may be visualized for a communication
task if the data are more visually abstracted or if annotations or glyph overlays are
added to tell a story about the underlying information. This may also summarize key
findings from, e.g., a visual analysis session for a broader audience. We apply weighted
categorizations to each work, excluding surveys that cover many works. This produces
vector of three values between 0 and 1 for exploration, analysis, and communication
task, respectively. We then use this vector to position a work in a barycentric coordinate
space, which allows us to compare and contrast between similar works within and
between different spatio-temporal scales.

We array works graphically within a triangle where each of the three points corre-
spond to a high-level task, as shown in the left of Fig. A.6. Exploration resides at the top
of the triangle to reflect that, when exploring data, we are in a position of knowing the
least about what we are looking for and/or the data are in their least abstracted form.
Moving clockwise to the right corner is analysis, where we usually know something
about the data and what we are looking for. Communication resides at the left corner,
where data are highly abstracted and summarized in order to present, communicate, or
serve data for enjoyment. The set of four triangular glyphs in Fig. A.6 summarizes our
visual taxonomy. Each triangle represents a single scale space, where the three triangle
points represent the three respective visualization tasks. Circles indicate the position
of each work as encoded by its balance of exploration, analysis, and communication
tasks. Circle darkness and size dually encode the number of works with a given task
categorization that we collected in our survey.

Literature Overview. The scale and task categorizations for each literature item col-
lected for our survey can be browsed in the References section. Scale is labeled with
a grayscale color tile, and related surveys are labeled with a black tile. Individual cat-
egorized works include a miniature bar graph that indicates the task(s) addressed, i.e.,
exploration (yellow), analysis (magenta), and communication (blue), from a range of
0 to 1. An interactive overview of the complete literature collection is available at
https://lauragarrison87.github.io/star.web/vis_tool.
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A.5 Molecular Function

All physiological processes depend on events that occur at the molecular scale.
Molecules are the smallest units of a chemical compound and are themselves made
up of atoms. Molecules in living organisms are known as biomolecules. Large
biomolecules, known as macromolecules, include DNA, RNA, proteins, and lipids,
while small biomolecules include metabolites [267]. Molecules are dynamic, flexi-
ble structures that interact and react with nearby molecules or ions. These individual
reactions link into pathways with cascading effects at larger spatio-temporal scales.

Data. A number of data types can be used to characterize molecular function. Omics
data, which is an umbrella term that includes genomics, proteomics, metabolomics,
and transcriptomics data, are used experimentally to characterize and quantify molecu-
lar patterns and behaviors that scale up to the behaviors of cells, tissues, and entire or-
ganisms [154, 176, 447]. Some of these data may be utilized as structural data sources.
These include nuclear magnetic resonance (NMR), x-ray crystallography, cryo-electron
microscopy [267], and mass spectroscopy [325]. High resolution microscopy tech-
niques, such as fluorescence lifetime imaging microscopy (FLIM), may also be used to
visualize dynamic signaling events between proteins and their specific locations in liv-
ing cells [485]. Molecular dynamics simulations commonly pair with these structural
data to describe conformational changes and reactions between molecules [461].

Related Surveys. Various aspects of molecular function have received considerable
attention from the visualization community with a strong focus on visual exploration
and analysis tasks. The main challenge with these large, multifaceted datasets is to
balance insight with complexity. The BioVisExplorer tool by Kerren et al. [248] is a
useful starting point to explore the space of methods for molecular data visualization
according to data type, data properties, and data tasks. Alharbi et al. [12] contribute
a brief survey of surveys of molecular visualization of computational biology data,
where the main focus of many of the surveys included is on either structural aspects of
molecules, or on visualizing molecular dynamics and interactions from simulations and
structural data [199, 267, 377]. Visual analysis tasks for molecular interactions related
to molecular cavity structure and dynamics have received considerable attention [272,
466]. More recent surveys that include discussions of methods to visualize molecular
dynamics and interactions of structural data include those by Schatz et al. [440] and
Martinez et al. [326]. Johnson & Hertig provide a communication-oriented guide for
the visualization of molecular structural data with a short discussion on visualizing
molecular dynamics [239].

Surveys centered around visualizing processes from omics data from a systems bi-
ology and bioinformatics perspective similarly emphasize the challenges balancing in-
sight with complexity for visualizing these data, often with a focus on analysis of the
data with a secondary focus on exploration [154, 393, 433, 447, 484]. These works pro-
vide an overview of data types, visualization tools, and methods for large-scale omics
data. Their focus is on tools and methods for molecular interactions and pathways
with the goal of understanding and interpretation, generally by experts. Approaches
for using multilayer network graphs to visualize omics data are explored in McGee et
al. [331]. From the pharmacology domain, Csermely et al. provide a comprehensive
review of analytical tools for molecular interactions, pathways, and networks for the
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purpose of drug discovery [95]. Visualization approaches highlighted are limited to
node-link diagrams with abstract glyph representations of molecular entities.

A number of works target the visualization of genomic data, where understanding
patterns of gene expression is an important facet [370]. Nusrat et al. survey the tasks,
techniques, and challenges for visualizing genomics data, of which gene expression and
interactions are an aspect [374]. They emphasize the need for tools that allow for ex-
ploration for hypothesis generation and follow-up analysis. Works by Goodstadt [170],
Yardimici et al. [574], and Ing-Simmons & Vaquerizas [214] highlight several visual-
ization methods that incorporate the 3D nature of gene organization in chromatin and
chromosomes into the visual analysis of gene interactions and expression, which is of
particular interest to experts in recent years.

In the following subsections, we review a selection of visualizations for three cate-
gories of processes that themselves increase in temporal and spatial scale: molecular
dynamics, molecular interactions, and molecular pathways.

A.5.1 Molecular Dynamics

Molecules are flexible and dynamic structures that frequently transition between con-
formational states. These structural dynamics are due to interactions between a
molecule’s atoms, with nearby atoms from their environment, and environmental con-
ditions like temperature and pressure [419]. Molecular dynamics are characterized by
the time scale of their conformation fluctuations (kinetics) and the amplitude and di-
rectionality of the fluctuations (structure). These fluctuations form a multidimensional
energy landscape. Local fluctuations typically occur over nanoseconds, while global
fluctuations can span microseconds to seconds. These global fluctuations are big con-
formational changes that signify protein-protein interactions, or reactions that initiate
a molecular pathway, e.g., signal transduction [193]. Domain researchers are particu-
larly interested in this energy landscape as it applies to understanding mechanisms of
disease and for drug design.

Visualization approaches that target the flexibility of molecular structures often use
nonphotorealistic visualization techniques that show molecular surfaces at atomic reso-
lution. Ball-and-stick and ribbon visualization representations are also commonly used.
Color is often assigned to highlight differently-flexible regions. In addition, many vi-
sual analysis methods incorporate simple graphical elements, such as glyphs or pathline
visualization techniques.

Approaches that are mainly exploratory in nature are intended to allow researchers
to browse and familiarize themselves with the results of a molecular dynamics simula-
tion. These approaches tend to use minimal abstraction and encodings that are familiar
to the domain [177, 304]. This also includes tools like VMD [210] or PyMol [450],
which are widely adopted in the application domain. Visual elements may be used to
draw out features within the data for exploration, such as pathlines to indicate atomic
paths that drive changes in overall molecular shape [97].

As researchers become more familiar with the data, they may switch from explo-
ration in an overview to analysis of a particular region of a molecule or molecular com-
plex. Visual abstraction methods that exploit the hierarchical structure of molecules
are useful to facilitate toggling between exploration and more focused identification
and comparison tasks [279].
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Figure A.7: MoleCollar [78] enables the visual analysis of protein tunnel dynamics and bio-
chemistry in large ensembles of molecular dynamics simulations. Reproduced with permis-
sion.

Analytical approaches tend to incorporate interactive techniques and/or statistical
methods. These allow researchers to identify and compare specific information about
how parts of the molecule are moving in relation to one another. These approaches are
of particular interest for researchers in drug development and protein engineering. A
structural visualization of the molecule is usually important alongside 2D plots show-
ing, e.g., trajectory [172]. For example, Fioravante et al. [138] use principle component
analysis to cluster molecules that have correlated motions, while Schmidt et al. [444]
derive mean shape conformations from the data to allow researchers to identify and
compare metastable conformations. Other methods incorporate additional visualiza-
tions, such as time curve plots and heatmaps, to help researchers identify particular
shape changes or constraints of interest [98, 500]. Interactive filtering techniques also
help researchers identify particular movements of interest [209].

Conformation changes of a molecule affect not only its outer shape but also the
shape of cavities or tunnels in the molecule. The shape of these tunnels affects the
ability of a ligand, i.e., a signaling molecule, to travel to its binding site within a molec-
ular cavity or tunnel [180]. These approaches usually include a mix of direct 3D vi-
sualization methods alongside heavily abstracted methods to accommodate a specific
goal, e.g., to understand how the shape of a tunnel changes over time. Visual analysis
methods include aggregating a molecular dynamics time sequence to a single contour
plot [76]. Heatmaps to show variation in tunnel properties, such as tunnel centerline
length, amino acid composition, and bottleneck size, can also be paired with direct
visualization of a molecule [78, 178], as shown in Fig. A.7. More extensive visual ab-
straction from the original molecule shape can be used to understand dynamic structural
changes and energy landscapes without occlusion [265, 271, 295].

Limited visualization research is dedicated to the communication of molecular dy-
namics, as much of this work comes from collaborations with domain experts with
specific exploratory or analytical goals. Communication-oriented works use graphical
elements, such as arrow glyphs, to illustrate molecular flexibility [73]. Tools geared
towards medical illustrators, such as Molecular Maya (mMaya) [89], allow artists to
animate molecular motions.
Summary. Most of the works visualizing molecular dynamics are targeted at domain
experts for a combination of exploratory and analytical tasks. The time scale over
which molecules change shape ranges over at least nine orders of magnitude. This
presents a yet–unsolved visualization challenge to provide exploratory and analytical
tools to experts to review and identify movements of interest in a vast temporal space.
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A.5.2 Molecular Interactions

Molecular interactions can lead to an (ir)reversible reaction between two molecules [116].
This can change the properties of the input molecule(s), synthesize a new molecule,
e.g., polymerization, or destroy a molecule. Enzymes speed up the rate of a specific
chemical reaction within a cell. Ligands form a complex with another molecule, often
a protein, at a binding site [180]. This binding initiates a series of reactions. The time
scale of molecular interactions is large, ranging from nano- to seconds, which presents
a similar visualization challenge as we discussed in Sec. A.5.1.

Similar to molecular dynamics, visual approaches to molecular interactions are
strongly spatial and tend to focus on exploratory and analytical tasks for domain ex-
perts. Experts are often interested in exploring a simulation of interactions between
molecules and in analyzing those interactions, e.g., protein-ligand interactions, that
could lead to binding events that trigger a molecular reaction. Multi-view visualiza-
tion approaches are ubiquitous, where at least one view typically uses surface models
and nonphotorealistic rendering techniques to visualize the molecule(s) of interest at
atomic resolution. Coloring of the molecule(s) is often according to biochemical prop-
erties or measures of uncertainty. Standard information visualization techniques, e.g.,
line, bar, and scatter plots accompany the spatial view to describe interaction energies
and other important simulation parameters.

Key research questions relate to positional relationships between the protein and lig-
and, which influence the likelihood of binding. In some instances, the researcher wishes
to observe such interactions in living cells, as Kerppola’s work demonstrates [246]. De-
tailed position and interaction information from structural and simulation data can be
shown on a per-atom basis through direct visualization of structural and simulation
data. Glyphs and color-coding on molecular isosurfaces often enrich the visualization
with additional information [499, 512].

Works that target the identification of important interaction and binding events in-
corporate multiple data sources, e.g., simulation and mass spectrometry [325], often
in interactive views with some level of guidance. Aggregation of trajectory data to
aid the analysis process is common. In addition, navigational techniques help experts
locate features of interest in these often large and highly complex datasets. Such tech-
niques can allow users to reveal different levels of detail on-demand [13], incorpo-
rate focus+context techniques, as in the CLISD view of protein-ligand interactions by
Schatz et al. [439], allow filtering of subsets of trajectories [242], and allow users to
jump to different parts of the simulation timeline [114]. Visual abstraction of the hi-
erarchical structure of molecules may also be exploited for the analysis of different
configurations of protein complexes [147]. Many works visualize 3D molecular struc-
tures alongside interaction energies and other important molecular parameters. These
parameters may be represented by glyphs as by Hermosilla et al. [194], or using scatter-
and box-plots as by Furmanova et al. [146].

Works that emphasize the broad scale of space and time over which such interaction
events can occur use adjustable aggregation measures to manage spatial and temporal
complexity [77, 388, 528]. Other works eschew 3D structural information entirely in
favor of abstracted graphics to visualize pairwise interactions of interest [445, 524,
578].
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Figure A.8: The Compressed Ligand Interaction Sequence Diagram (CLISD) [439] provides
an overview of protein-ligand interactions over the course of a simulation, with unimportant
residues visually de-emphasized and important residues and related parameter values given
greater visual emphasis through size and color cues. Reproduced under Creative Commons
CC BY license.

Tools and techniques from medical illustration and animation can be used to ex-
plore and share possible hypotheses in modeling environments, such as AutoDesk
Maya [363], or to communicate molecular interactions between experts or to other
stakeholders. Approaches that give users tools to create molecular interactions through
rule-based frameworks enable exploration and sharing of the resulting simulation
data [179, 368]. Guided, interactive exploration through a rule-based simulation to
track interactions in a molecular environment allows users to see the direct output
of the simulation results or understand the spatial context of reaction events between
molecular structures. Some of these methods employ illustrative techniques, such as
focus+context, that are approachable for education and outreach [355], and incorporate
multiple temporal scales into the visualization [266]. Visual complexity of molecular
interactions scenes is an ongoing challenge, but research has shown that oversimplify-
ing the crowded environments in which such interactions take place can be counterpro-
ductive to learning [232].
Summary. Exploring and analyzing molecular interactions is valuable for experts to
understand and identify features and behaviors that can be used for pharmacological re-
search. The main challenge to visualization is to continue researching effective meth-
ods that allow experts to understand the massive simulation datasets that are generated.
This can be achieved via interactive tools to enable the identification of reaction events
that occur very briefly within a temporal space that spans several orders of magnitude.

A.5.3 Molecular Pathways

Reactions between molecules create small changes in their immediate environment that
trigger other reactions. This chain of reactions describes a molecular pathway [180].
Metabolism, signal transmission, and gene regulation and expression pathways are es-
sential to life. Metabolic pathways describe the sequence of chemical reactions that
occur in our bodies, such as the process for a cell to break down food into energy, or a
pathway that builds a new molecule. Signal transduction pathways move a signal from
the exterior to the interior of a cell with the help of proteins embedded in the cell sur-
face known as receptors. Gene regulatory pathways turn genes on or off. When a gene
is turned on, this allows the process of gene expression to occur, which transcribes and
translates DNA instructions to create, e.g., a specific protein [217]. Pathways do not
exist in isolation and interact together in larger networks.
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Figure A.9: Selected visualization approches from Gosling, a grammar-based toolkit for scal-
able and interactive genomics data visualization [311]. Reproduced with author permission.

Understanding the participants, sequence, and timing of molecular pathways is key
to understanding physiology at larger scales. Given the complexity of the input data,
visual methods to address these goals tend to target expert user exploration and analysis
tasks. These incorporate varying degrees of abstraction and interactivity. 2D informa-
tion visualization techniques dominate, with networks being the most common tech-
nique, to show a sequence of steps in a pathway. Heatmaps, line plots, chord diagrams,
and histograms are common for the visualization of gene expression.

The most straightforward visual methods allow experts to explore and identify the
sequence of actors that participate in a given pathway(s) use node-link diagrams. Per-
haps one of the most well-known pathway exploration tools, Cytoscape [460], uses
node-link diagrams to visualize complex pathways and networks for users to explore
and query. Such diagrams show entities in highly abstracted glyphs, often indicate reac-
tion direction, and can indicate the location where the pathway takes place [243, 290].
Brushing and linking [176], filtering [299], comparison [448], and focus+context [237]
techniques for detailed analysis are often supported. Numerous works have explored
different layout algorithms to reduce crossover and clutter of these complex and often
crowded visualizations [62], and implement graphical representations using, e.g., a sub-
way map metaphor [297], that are approachable to broader audiences [81, 254]. Visual-
izations of pathway simulations can be abstracted in 2D as line charts or heatmaps [458]
to help experts to better understand the timing of pathways. An entirely different path-
way simulation approach by Le Muzic et al. [356] employs an agent-based approach
with 3D molecular structures to tell a multi-temporal scale story that provides insights
to both experts and broader audiences alike.

Identifying and comparing levels of gene expression can provide valuable infor-
mation to researchers on the activity of a given pathway, while studying gene co-
expression can provide understanding of patterns and similarity of certain expression
pathways. Gene expression and co-expression data are most commonly displayed in
heatmaps, parallel coordinates, and chord diagrams, as shown in Fig. A.9 [311]. Tools
like Caleydo [300] enable the exploration and analysis of large-scale pathway data
alongside gene expression data, using node-link diagrams and heatmaps in a 2.5D lay-
out, while OmicsTide [183] uses clustering with profile plots in a Sankey diagram to
compare trends from gene expression and proteomic data. Some tools capture the mul-
tiscale nature of gene expression in visualizations that span the scale of individual
nucelotides to entire chromosomes [340]. Gene expression is a dynamic and fluctu-
ating process. Other tools allow for exploration and analysis of temporal patterns of
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these fluctuations [341], and in some cases use clustering methods to facilitate pattern
identification [94].

Researchers are similarly interested in identifying and comparing concentrations of
metabolites in specific locations of the body. This information provides another per-
spective on the activity of certain pathways. Tools for visual exploration and analysis
of metabolite concentrations are useful to understand metabolic profiles of diseases at
a molecular level [372]. Such approaches can use basic statistical methods alongside
heatmaps [149], violin [228], or star charts [229].

Strong communication-oriented approaches to visualizing molecular pathways of-
ten draw inspiration from medical illustration and use cinematic elements to convey
pathway information, such as Berry’s animations showing the process of DNA tran-
scription in real-time [45]. In this way, the molecular dynamics and reactions between
molecules at key steps in the pathway can be visualized in a larger context. Large
charts showing pathway elements, when mainly used for communication, usually rely
on abstraction of visual elements to create a scene that balances accuracy with read-
ability [74, 148].
Summary. Similar to molecular dynamics and interactions, the majority of visual-
ization research works focus on expert-centered exploration and analysis tasks. The
extraordinary complexity and volume of these data often necessitate guidance in in-
teractive methods, and many approaches use statistical methods to reduce the analysis
space alongside minimalist graphical elements. Further research into methods that fa-
cilitate a greater degree of exploration for hypothesis generation of these data, while
managing the volume of information present, is an ongoing visualization challenge and
opportunity for all molecular processes. Visual communication research for pathways
is also important to develop further. Giving the public better tools to understand how
diseases work, such as in COVID-19, can improve adherence and trust in public health
protocols. Understanding physiology at this scale is essential, as these molecular dy-
namics, interactions, and pathways work in concert to trigger behavioral and physical
responses that form the foundation of cell physiology.

A.6 Cellular Function

The cell is the structural and functional unit of life in humans and many other or-
ganisms. Cells are self-contained, bounded by an outer membrane holding several sub-
structures (organelles) that perform specific functions and facilitate molecular pathways
that keep the cell alive and within balance [491]. We acknowledge that the distinction
between cell scale processes and molecular scale pathways can be blurry, particularly in
the case of large-scale molecular networks that themselves define cell physiology. We
categorized each work according to the scale that is most relevant to the user’s interest.
In cases where interest is primarily in understanding whole-cell behaviors, we catego-
rized the work in this scale, while if user interest is primarily in the various molecules
that form a pathway or network, we categorized corresponding works in the molecular
section.
Data. Input data to visualize cellular function can be acquired experimentally, often
through different time-lapse optical microscopy methods on living cells and most com-
monly through fluorescence microscopy. This technique allows researchers to tag cells
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with specific proteins that fluoresce under the microscope, allowing for visualization
of specific cellular structures and behaviors. For a complete overview of live cell mi-
croscopy methods, we refer to Jensen et al. [234]. Electron microscopy, which kills the
cell, is often used to supplement live microscopy methods to visualize ultrastructure
details inside the cell [160]. Biomechanical methods to experimentally determine the
effects of different forces on cells and their organelles include atomic force microscopy
and tweezing [38, 200]. Omics data, e.g., single-cell RNA sequencing (scRNA-seq)
data, which provides the molecular expression profiles of live individual cells, can also
provide detailed information on cell function and behavior [358]. Because a cell is a
self-sufficient entity, it is often a natural starting point for physiological models of cell
behavior [472]. The CellML repository, maintained by the Human Physiome Project,
is a rich repository for cell behavioral models [309]. Stochastic simulations are also
useful to simulate complex biological pathways and networks within the crowded and
dynamic environment of the cell and its surroundings [532].

Related Surveys. Surveys covering the visualization of cell dynamics and interactions
are sparse relative to the molecular scale. Pretorius et al. [406] identify six classes of vi-
sualization techniques: spatial embedding, space-time cubes, temporal plots, aggregate
plots, dimension reduction, and lineage diagrams in their survey of visualization for live
cell imaging. These techniques remain common in our report at this scale. Goodsell
et al. [169] provide a review of visualization methods that combine experimental data
from microscopy, structural biology, and bioinformatics to build structural models of
entire cells, mainly through nonphotorealistic visualization techniques. These models
include details of molecular behaviors and interactions that contribute to cell dynamics.
Feig & Sugita review models for visualizing whole-cell dynamics at the resolution of
the myriad molecular interactions that occur within a cellular environment [132, 133].
Their work highlights the use of surface, ribbon, and ball-and-stick molecular models
at atomic resolution.

In the following, we discuss visualization trends and challenges for cellular dynam-
ics, which essentially are processes that affect the cell itself, and cellular interactions,
which are processes that involve a cell interacting with its neighbors.

A.6.1 Cellular Dynamics

The dynamics of a cell are dictated by molecular pathways and by behaviors of its or-
ganelles, which are themselves modulated by molecular pathways. These pathways
drive the dynamics of a cell’s organelles, the ability of a cell to move in its environ-
ment, the suite of internal mechanisms that dictate a cell’s growth, and that lead to cell
division and death, to name a few processes. We also discuss visualizations for whole
cell models.

Organelles participate in and facilitate the network of pathways that drive the over-
all behavior of a cell. Visualization tasks related to organelles are often exploratory in
nature, e.g., to observe the effects of an experimental condition under microscopy. Vi-
sualization methods from the domain often show time-lapse imaging data unmodified
or surface renderings. This can help users to understand the shape changes a cell nu-
cleus undergoes in response to experimental conditions [449], the movement of cellular
vesicles [414], or the compaction of chromatin in the nucleus over different phases of
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Figure A.10: Visualization of vesicle formation from molecular dynamic simulation
data [398]. Reproduced under Creative Commons CC BY license.

the cell cycle [386]. Analysis-oriented approaches often color-code regions of interest
on volume-rendered segmented data or raw data slices to identify and compare features
that indicate the functioning of underlying pathways [160, 236]. Glyphs are used to an-
notate features of interest on imaging data as a process occurs [552], and heatmaps can
quantify interactions between organelles over the course of an experiment [515].

Simulations using 3D surface models can help answer questions about how or-
ganelle structures move and behave. For example, Waltemate et al. [537] visualize
membrane dynamics at molecular resolution in small “patches” of the cell membrane.
More recent works visualize microtubule dynamics [256] or dynamics of mitochondria
and cell transport vesicles [398], the latter of which is shown in Fig. A.10. Such visual-
izations are adaptable for use in education environments, with systems like LifeBrush
designed to explore mesoscale environments, e.g., the mitochondrial membrane, at
molecular resolution in VR [99]. Even further toward communication are hand-crafted
animations, such as the ground-breaking Inner Life of the Cell [54], which shows the
interplay between various organelles and molecules within the cell using cinematic
techniques and visual abstraction to focus the narrative.

The individual dynamics and interactions of organelles influence and facilitate the
cell’s response to input from its environment and internal mechanisms that push the cell
through its life cycle of growth, division, and death. Visualization of cell movements
in 2D or 3D to discover and understand behaviors under experimental conditions is
common in the domain, e.g., to understand cell cycle progression [196, 431].

Researchers may be interested in localizing subcellular structures and interactions
through direct observation of imaging data [26] or may supplement imaging output
with histograms, time plots, and similar aggregate visualizations to quantify features
of interest [569]. Approaches may also use such aggregate visualizations to visualize
results of classifications based on live microscopy alongside gene and protein expres-
sion data [35]. Dimensionality reduction methods, such as tSNE and HSNE, are useful
methods to characterize and compare different cell behaviors and types from high-
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Figure A.11: WholeCellViz [292] modeling framework to explore and analyze simulations of
cellular dynamics Reproduced under Creative Commons CC BY license.

volume experimental data. Visualizations can map the results of these methods to a
scatter plot, with color encoded to cell type according to an expression marker [203],
and include guidance methods to more easily explore and analyze the data [204]. Oth-
ers deal with these high-volume data by identifying exemplar cells, either automatically
or through user specification, to track specific derived attributes, such as growth, in re-
sponse to drug treatments for cancer research in a multi-view visualization [281]. Sim-
ulations allow researchers to manipulate cellular parameters for exploration and anal-
ysis. Simulations of parts of the cell cycle can be queried and explored for hypothesis
generation in tools like CellCycleBrowser [58], which uses an interactive multi-view
visualization containing heatmaps, line, and scatter plots to show the results of param-
eter changes to the system.

Whole-cell physiology is naturally multiscale, with limited works addressing visu-
alization and specific user tasks at both molecular and cellular scales. These works
enable experts to better understand intracellular functional and structural relationships.
Highly abstracted approaches, similar to node-link network diagrams used to repre-
sent molecular pathways, can be used to visualize the multiscale interactions that occur
within the cell [410] that can be explored or queried. Visualizations of whole-cell sim-
ulations in 3D are useful to put molecular pathways into context, such as the effects
of signal transduction on the cell’s function [125, 126] or the conditions and events
that lead to cell death [124, 127, 446]. WholeCellViz [292] and ZigCell3D [101], the
former of which is shown in Fig. A.11, are whole-cell modeling frameworks. These
frameworks allow researchers to explore and analyze cellular simulations in a biolog-
ical context, from the molecular scale to the entire cell. They include pathway infor-
mation as maps, as well as animation. ZigCell3D also incorporates imaging data and
3D models. A recent structural model of a whole Mycoplasma cell [322] provides an



A

A.6 Cellular Function 91

Figure A.12: sci-Space measures patterns of gene expression over time to understand patterns
of cell differentiation and migration in neural tissue [474] Reproduced with permission.

unprecedented means for researchers and the general public to explore and understand
the structural and functional relationships of entities within the cell.
Summary. The visualization of cellular dynamics puts molecular pathway information
into a cellular context and enables understanding of overall cell behavior. Experts are
often interested in exploring and quantifying these data directly from imaging meth-
ods, with analysis of key features in aggregated plots. Further research into more in-
teractive methods to facilitate analysis that allow experts to move away from simple
rendering of microscopy data is a possible direction to explore. Very few works, es-
pecially from the visualization community, support expert study of organelle dynamics
and behavior. This is an open space for visualization research. Multiscale visualization
becomes truly meaningful at this scale to connect molecules with cellular behaviors.
While numerous methods allow for exploration of whole-cell physiology, analysis of
such models remains relatively limited, and this is another future research opportunity.
Finally, in some contexts, communication-oriented approaches can serve both experts
and a broader audience equally, as cells are less conceptually-abstract entities than
molecules. Research into such approaches, particularly with regards to public health
and in facilitating conversations on the mechanisms of disease, is an exciting challenge.

A.6.2 Cellular Interactions

In reality, cells do not exist in isolation. Their physiology is strongly influenced by their
interactions with their environment and neighboring cells. In this section, we discuss
works that focus on the behavior and fate of individual cells, where understanding the
environment and neighboring cell interactions are key to the user task.

As in previous topics, many visualization works are born out of collaborations with
domain and mainly address exploratory and analytical tasks. These methods allow re-
searchers to browse experimental, imaging, or simulation data to understand cell com-
munication, lineages, and migratory patterns.

Direct visualization of live cell imaging data provides an overview of cell division,
adhesion, signaling, and movement patterns within different environments, e.g., tumor
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microenvironments [118]. Clustering methods can facilitate user exploration of inter-
cellular communication networks from single-cell transcriptional data. COMUNET
classifies and clusters cell types according to ligand-receptor pairs and visualizes these
communication patterns in node-link diagrams [467]. Migration patterns of differenti-
ating cells can be understood by visualizing, e.g., spatial transcriptomics data, as in sci-
Space [474] (Fig. A.12), where heatmaps of gene expression patterns are measured over
pseudotime to capture cell differentiation and migration patterns in a tissue context.
Clustering methods can classify cells according to their migratory and other behaviors
from microscopy data, which is valuable for comparative analysis [130]. Simulations
with simplified 3D spherical models to represent individual cells provide information
and control on per-cell properties of division, adhesion, and other environmental vari-
ables in an in vitro environment [156, 389].

Cell lineages contain valuable information on patterns of cell division, growth, dif-
ferentiation, and death over generations of cells. This is particularly important with
stem cells, which have unique regenerative abilities that have massive implications in
cancer and other areas of medical research. Statistical methods to make sense of these
patterns, in combination with the branching tree structures of lineage diagrams, help
researchers identify and compare factors that influence cellular genealogies [162, 405].
These approaches can include visualization of cells within a spatial context, with navi-
gational tools to observe how cells divide and where they migrate, e.g., to neighboring
blood vessels [432, 534]. Uncertainty due to segmentation of microscopy data when
tracking cell aggregation is a challenge. Tools like Uncertainty Footprint [539] attempt
to visualize and quantify these uncertainties for domain experts.

A growing interest in public science education has led to the development of tools
like Bioty [544], a real-time programming environment that visualizes cell interactions
for non-experts. As for other topics, hand-crafted medical illustrations are used to edu-
cate audiences on cellular interaction processes, such as the communication between a
neuron and muscle cell [166].
Summary. Visualizing cellular interactions adds a degree of complexity to cellular
function visualizations, as these leave the self-contained environment of the cell to in-
clude external parameters that increase the complexity of the system. Collaborations
with experts provide a means to explore and analyze data acquired either experimen-
tally or through simulation, where gaining an understanding of the data through ex-
ploration is equally important to more targeted analysis tasks. Developing methods
to facilitate exploration and analysis of cellular microscopy and lineage information
through visual abstraction while retaining expert trust is one research opportunity. We
found few works visualizing cellular migration and adhesion, particularly from within
the visualization community. Given the importance of these behaviors in normal devel-
opment and disease, this is yet another research opportunity.

A.7 Tissue Function

At the tissue scale, we see groups of cells of the same type that perform a specific func-
tion. These form tissue, which allows for coordinated behaviors to accomplish tasks
impossible for single cells to perform. A tissue region also includes a container, known
as an extracellular matrix, that holds the cells together and provides structural stabil-
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ity [472]. Each of the four main tissue types in the human body serves a specific role:
(1) epithelial: covers and lines body surface and cavities; (2) connective: protects and
supports body structures, i.e., organs; (3) muscle: coordinates movement; and (4) ner-
vous: facilitates communication of nerve cells through electrical signaling. The visual-
ization works we discuss in this section aid user tasks where the goal is to understand
the overall behavior or dynamics of cells in aggregate, rather than individual cells. One
process that we highlight includes tissue growth, also known as morphogenesis. This
process drives the development of, e.g., blood vessels or tumors. We also discuss meth-
ods for visualizing perfusion, the delivery of nutrients to tissue via small blood vessels
called capillaries, and the propagation of electrical signals through tissues.

Data. Spatially-resolved gene expression data can characterize the overarching physi-
ology and behavior of tissue [358]. These methods may pair with imaging methods, as
in seqFISH+. For a comprehensive discussion of specific experimental methodologies,
we refer to Waylen et al. [545]. Imaging methods for perfusion are well-established.
These include positron emission tomography (PET), single-photon emission com-
puted tomography (SPECT), computed tomography (CT), Doppler ultrasound, dy-
namic contrast-enhanced magnetic resonance imaging (DCE-MRI), dynamic suscep-
tibility contrast MRI (DSC-MRI), phase-contrast MRI (PC-MRI), ASL (arterial spin
labeling), and optical methods such as widefield or fluorescence microscopy. Conven-
tional widefield microscopy is common for visualizing tissue histology, although this
requires fixing cells to a slide that not only kills the cells but can damage their spatial
organization. Simulations and models often describe signal propagation within ner-
vous or cardiac muscle tissue. Imaging data at the resolution to visualize individual
neurons involved in signal propagation typically come from microscopy. The state-of-
the-art techniques for imaging brain tissue are confocal laser point-scanning (CLSM)
and spectral precision distance microscopy (SPDM) for their high resolution, improved
signal-to-noise ratio, and removal of out-of-field fluorescence. For further reading on
these techniques, we refer to Tröger et al. [507].

Related Surveys. Visualization works that cover tissue-scale physiology are lim-
ited and generally motivated by the needs of experts in the medical domain. Preim et
al. [403] survey methods for the visual exploration and analysis of perfusion data. The
authors highlight cine-movies, subtraction images, and color-coded parameter maps
on a single slice as basic visualization techniques. Advanced visualization techniques
covered include multiparameter visualizations, e.g., colored height fields, combining
structural information with dynamic perfusion data, or extracted features, e.g., tempo-
ral curves. Schlachter et al. [441] survey visual computing methods for radiotherapy
planning, which include detailed visual analysis of the metabolic profiles of tumors that
can be acquired through perfusion data. Volume visualization techniques that fuse mul-
tiple data sources into a single image through overlays and color-coding are common
in this area, particularly within the application domain. More advanced visualization
techniques enable exploration and analysis of uncertainties in segmentation, or analy-
sis of perfusion parameters in parallel coordinates, scatter, and star plots, among oth-
ers. Qutub et al. [411] review modeling efforts for angiogenesis from an application
domain perspective, some of which include molecular and cellular-level processes in
the resulting visualization that we discuss further in Sec. A.9. Visualization techniques
used to illustrate these models include node-link diagrams, line plots, and histograms to
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Figure A.13: Compartment diagram and parameters for tumor growth [313]. Reproduced
under Creative Commons CC BY license.

describe and analyze model parameters. Spatial visualizations include algorithmically-
generated surface models and stacked image slices. Color maps to model parameters,
e.g., tissue oxygenation or upregulation of a particular pathway.

In the following, we provide an overview of visualization approaches and challenges
for tissue dynamics, or the behavior of aggregates of cells in a given tissue type. We
then discuss tissue interactions, including the delivery of nutrients and the passage of
electrical signals through specialized tissue.

A.7.1 Tissue Dynamics

Tissue dynamics refers to the behavior of aggregates of cells in a given tissue type. Vi-
sualizing tissue dynamics simulations allows researchers to explore the general mech-
anisms of tissue growth and development under changing environmental conditions.
Understanding spatial relationships at this scale is particularly important, and many
visualizations represent simulation data as 3D surface models to capture the develop-
ment of blood vessels (angiogenesis) [411], liver tissue regeneration [201], embryonic
limb [88] and organ development [86, 115], and in a non-human case, wing develop-
ment [65]. Exploring changes in skin tissue as a response to aging in 3D is also of
interest [212], with the ability to change parameters to simulate the impact of disease
or dehydration. In addition to visualizing normal processes, simulations are valuable
sources to visualize pathologies related to tumor growth under changing environmental
influences [501, 502].

Although we have discussed gene expression data previously for the analysis of cel-
lular interactions, this family of methods is useful for tissue-level visual exploration and
to identify biomarkers in cell aggregates when performed in situ and paired with imag-
ing data. These cell aggregates are often identified through clustering methods [468],
and can then provide molecular and cellular resolution maps of the body, e.g., of em-
bryonic tissue development in the first trimester [41]. Subsequent exploration of such
tissue maps provides an opportunity to discover emergent properties at this scale. Mul-



A

A.7 Tissue Function 95

teesum [339] exemplifies this interplay between exploration and analysis, where com-
paring similar expression profiles of aggregates of cells allows researchers to form hy-
potheses about gene relationships and location. Numerous domain approaches also use
visualization mainly to confirm hypotheses, e.g., the direct visualization of digital his-
tology slide data to quantify the progression of liver tissue damage in fibrosis [306].

Communication-oriented visualizations of tissue dynamics may take the form of
adjustable simulations with easy-to-use interfaces and simple graphics that appeal to
both researchers and a broader audience [563]. Animation of 3D models is also useful
as an educational tool for showing the process of organ development, e.g., of the de-
veloping heart [442]. Lastly, hand-crafted illustrations that describe models of tissue
growth, as shown in Fig. A.13, are invaluable to clearly and succinctly share models
with peers [313].

Summary. Visualization of tissue dynamics is often geared first towards exploration
to familiarize oneself with the data, as data at this scale are typically complex and
high-dimensional. Comparison tasks between groups are then common, where experts
wish to identify parameters or biomarkers that define certain tissue behaviors or func-
tions. Tissue dynamics are challenging to visualize in vivo, with approaches often using
underlying processes such as gene expression or the presence of other biomarkers to
characterize tissue functional properties. Simulations provide the means for visualiz-
ing truly dynamic growth processes in healthy and disease conditions. However, they
often are abstracted from reality, with visualizations that expose only the final part of a
multiscale story that is rooted in the molecular scale and with limited interactivity. De-
vising methods to enable fully interactive exploration and analysis of tissue dynamics,
whether purely at the tissue scale or extending across scales, is a grand challenge and
opportunity in visualization research.

A.7.2 Tissue Interactions

In this section, we focus on the interactions between different tissue types that allow
for the passage and exchange of nutrients, as in tissue perfusion, or for the passage of
electrical signals, as in signal propagation.

The function of blood flow on the microscopic scale is to supply, or perfuse, tissues
in the body with oxygen, nutrients, and hormones and to transport waste products away
into the appropriate "recycling" centers such as the lungs, kidneys, and liver. Different
tissues have different perfusion rates, and visualization can be a powerful tool in pro-
filing tissues based on these data. Perfusion data are particularly useful in identifying
the extent, composition, and metabolic profiles of tumors.

Most use cases to visualize tissue perfusion are highly clinically-motivated with a
particular set of analysis questions already in mind, although many methods incorpo-
rate a degree of exploration. These approaches incorporate structural visualizations of
tumors and the surrounding tissue to provide context, and use derived multi-parametric
imaging data to classify and visualize key physiological parameters. Approaches use
simple color overlays with parameters mapped to color channels [22] to quickly quan-
tify values, or allow for user interaction and exploration that incorporate time intensity
curves [161, 319, 382], radar plots [347] as shown in Fig. A.14, and scatter plots with
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Figure A.14: Paraglyder is a tool for the visual analysis of tumor metabolic profiles [347].
Image provided by the authors and reproduced with permission.

glyphs encoding further information [348] that allow experts to identify and compare
features of tumor physiology.

In the human central nervous system, information is processed by signal transmis-
sion and propagation between neurons, where the extracellular space plays an important
role in transmission and signal propagation.

In visualizing signal propagation, particularly in simulations, experts wish to un-
derstand the mechanism, path, and timing of these propagation events. Straightforward
visualizations that plot spikes in signal propagation are relatively common in the do-
main literature, such as in Rhodes et al. [416]. Microscopy data often provide a struc-
tural foundation for visualizing simulations of signal propagation between neurons or
in a multi-neuron network [68, 283]. We show an example of a multineuron simu-
lation network from BioDynaMo in Fig. A.15 that is realized through procedurally-
generated surface models. Dimensionality reduction methods can facilitate exploratory
visual analysis of signal data, and allow users to identify patterns that signify, e.g., key
points of a behavioral task [69]. Abstracted 2D plots, such as L-plots proposed by
Dunin-Barkowski et al. [113], allow experts to observe and compare neural signaling
patterns. Signal propagation is influenced by several factors, e.g., the distribution and
density of glycogen around a synapse, which is the space where two neurons meet. Ab-

Figure A.15: Agent-based simulation of large-scale pyramidal neuron cell growth with the
BioDynaMo platform [68]. Reproduced with author permission and under Creative Commons
CC BY license.
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stractocyte [345] is mainly designed for the visual analysis of astrocyte structure and
distribution around neurons, but its pipeline includes glycogen distribution analysis.

Simulations of signal propagation are not limited to neural tissue. Visualizing sim-
ulations of the electrical conduction system in cardiac muscle tissue is of interest for
experts to understand the timing and rate of signal propagation in different phases of
the cardiac cycle [36, 181].
Summary. Unlike perfusion of tissue, the majority of work we found for spatially
visualizing signal propagation comes from simulation data. As hardware and software
continue to advance and support more complex simulations, there will be a correspond-
ing increasing need to provide visual methods to explore, analyze, and communicate
these data to various stakeholders. In tissue perfusion, visualization research that fur-
ther supports exploratory analysis to identify complex biomarkers is an ongoing chal-
lenge. Visualization approaches for both tissue perfusion and signal transduction tend
to have strong analytical components, especially in the case of perfusion, where clinical
diagnostic improvements are the driving need for these applications. Communication-
oriented research works are limited at this scale. The clinical motivation for under-
standing physiology becomes even more apparent at the organ scale, which deals with
the interplay between different tissue types on a larger scale.

A.8 Organ Function

The last scale that we review is that of visualization for organ-scale processes. Organs
are discrete units in the body that perform a function or a group of functions [472].
In the following, we cover visualization for four areas that are well-known in medical
visualization: the dynamic properties of blood flow (hemodynamics), and the func-
tioning of the heart, lungs, and brain. We also include a brief discussion of other
visualized organ functions to give a sense of further opportunities at this scale, e.g.,
skeletal muscle function.
Data. Typical data inputs for visualization of physiological data at this resolution
include a host of imaging modalities that can be time-resolved alongside, or separate
to, simulation data. In many instances, structural data provide context to the visu-
alized dynamic process. Information about anatomical structures can also be based
on measures of physiology. For example, while diffusion-weighted and diffusion ten-
sor imaging (DWI/DTI) methods use the diffusion of water molecules to capture the
fiber architecture of the brain, these data are primarily used to probe white matter mi-
crostructure [399]. As such, the visualization of DWI/DTI data alone is out of the
main scope of this work. The same is true for other such structurally-focused modal-
ities. 4D computed tomography (CT) and a range of MRI sequences, e.g., dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI) and phase-contrast MRI
(PC-MRI) [260], are frequently used to assess various organ functions. Specialized
ultrasound (US) methods are adapted to capture particular processes, e.g., Doppler ul-
trasound for hemodynamics, or electrocardiography [567] and echocardiography [317]
for heart function. Computed tomography angiography is useful in assessing hemody-
namics and heart function [334]. For a discussion of the strengths and weaknesses of
these modalities in hemodynamics imaging, a hot topic in visualization research, we
refer to Jennings et al. [233], Markl et al. [323], and Sengupta et al. [455]. Typical
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imaging modalities measuring brain function include electroencephalography (EEG),
functional magnetic resonance imaging (fMRI), and PET. We refer to Pfister et al. [399]
for a detailed discussion of each of these modalities. Electromyography (EMG) [44]
and motion capture data are common sources for assessing muscle function.

A number of these modalities alone have insufficient spatial and/or temporal reso-
lution to capture an organ process of interest. These are often augmented with simula-
tions, or simulations are developed from these imaging data. The purpose of simulation
can also be to correct issues with the acquisition, such as motion-related artifacts. Ap-
proaches include computational fluid dynamics (CFD) for blood flow [420], statistical
heart and lung motion models, and large-scale simulations of signal propagation for
brain function.

Related Surveys. Surveys that discuss aspects of organ physiology on a broad level
are typically motivated by the medical domain. Preim et al. survey the use of med-
ical animations for organ-level processes [401] that tend to focus on communication-
oriented tasks. Birkeland et al. survey works that fit in the ultrasound visualization
pipeline [50], where the end-user task often is to explore the data and to identify spe-
cific features within the data related to, e.g., blood flow and heart function. Many visu-
alization approaches at this scale combine modalities to overcome individual modality
limitations. Lawonn et al. [287] provide an extensive discussion on multimodal visual-
ization. Tory et al. provide a brief overview of methods for MRI in combination with
dynamic SPECT data [506]. In general, visualization tasks at this scale focus on giving
experts, whether in medical research or more directly in the clinic, tools to explore and
analyze physiological features for improved diagnosis and treatment.

A.8.1 Blood Flow

While we previously looked at blood flow from the lens of how it supplies nutrients to
tissues (Sec. A.7.2), researchers often are interested in the dynamics of blood itself as it
travels through the heart and vessels of the body. Understanding patterns of blood flow
can help researchers and clinicians make better decisions about patient health, such as
when to operate on an aneurysm.

Related Surveys. This is a mature area with several surveys and state-of-the-art
reports available. For further details on visualization techniques and challenges for
this topic, we refer to reports by Markl et al. [324], van Pelt et al. [521], Vilanova et
al. [529], and Stankovic et al. [477]. For further reading on visualization methods spe-
cific to PC-MRI blood flow, see Köhler et al. [260]. Most recently, Oeltze-Jafra et
al. [384] survey trends and challenges in visualizing medical flow data, where the pri-
mary focus is on blood flow data. These surveys highlight a mix of exploratory and an-
alytical visualization tasks, where tasks are highly motivated by domain experts’ needs
to locate and identify flow features that impact patient health. General flow visualiza-
tion techniques are commonly used, e.g., glyphs, textures, integral curves, line integral
convolution (LIC), colored cut planes, extraction to surface models, e.g., streamlines.
Contextualization of blood flow dynamics using image slice or volume rendering of the
surrounding anatomy is key in nearly all blood flow visualization scenarios. Advanced
visualization techniques often incorporate multiple interactive views with facilities for
validation, filtering of key parameters, and uncertainty analysis.
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Figure A.16: Method of aorta straightening for occlusion-free comparison of flow over time
[20]. Reproduced with author permission.

Exploratory tasks generally aim at obtaining an overview of flow patterns and often
precede a quantitative workflow. These may visualize simulation data [371, 420], use
techniques that combine different modalities to create the visualization [53, 139, 397],
or use single imaging methods [71]. The containing structure of interest, e.g., a vessel
or the heart, is useful to preserve for context. The paths and direction of flow data
can be presented as pathlines [102], streamlines [49], arrows [206], and pathlets [21],
which can also be used for analysis. Newer approaches have experimented with effects
like smoke or dye to better visualize time-varying flow patterns with indications of
uncertainty [104]. Interactive elements, such as virtual probes [519], aid in expert
exploration of flow patterns prior to quantitative analysis.

Although illustrative techniques are often associated with communication-oriented
tasks, most illustrative techniques employed for this topic are aimed at experts to fa-
cilitate exploration of flow data. These approaches can, e.g., reduce occlusion from
vessel walls through adaptive surface visualizations [152, 286] or focus+context flow
lens treatment [151]. Other illustrative approaches facilitate exploration of wall thick-
ness relative to flow properties [285].

Many analytical approaches from the domain are limited in interactivity. These ap-
proaches again include a structural context, with similar visual representations for flow
data as for general exploration. Visual representations also often use heatmap overlays
and/or glyphs of the same styles mentioned for exploration, e.g., streamlines, arrows,
to indicate flow velocities at particular points. This allows for feature quantification di-
rectly from imaging data [206, 492]. Experts also often wish to quantify and compare
flow rates in simulations relative to time-resolved imaging data [282].

Analytically-focused tools and methods developed from collaborations between do-
main experts and the visualization community often take more experimental or ab-
stracted approaches to aid analysis tasks. For example, Angelelli et al. [20] flatten
3D tubular flow to 2D to compare flow patterns over time, as shown in Fig. A.16.
Semi-automatic classification and clustering methods are also common to aid expert
identification and comparison of vortices and shapes in the data [123, 335, 381, 383].
Interactive linked views, particularly when including simulated and acquired data, can
help experts better evaluate hemodynamic patterns and model accuracy [296]. Multi-
view visual analysis tools often rely on an interplay between exploration and analysis
for users to get a sense of the data and browse interesting regions before identifying
and comparing features to understand, e.g., aneurysm rupture risk [337, 338].



A

100 A

Approaches from the research community to present blood flow for education for a
more general audience are limited. These methods may hint at the original flow data
through animation but instantiate red blood cells to indicate to a broader audience what
the flow represents [148], or employ more fanciful metaphors to show the passage of
blood in a cardiac cycle [91].

Summary. Despite the extensive work on hemodynamics, further challenges and op-
portunities remain. The ultimate aim of many of these works is to make visualization
of hemodynamics available in a clinical setting to aid in rapid and accurate identi-
fication of life-threatening flow behaviors. Studies that assess the possibility of real
adoption of these techniques in clinical routine are an interesting avenue to explore.
Communicating these data then to patients, in a way that is both understandable and
minimally-alarming, is essential and remains an open challenge in visualization.

A.8.2 Heart Function

Heart function is well-characterized in physiology and visualization research. In this
section, we focus on visualization related to the (1) mechanics of the heart as a pump
and (2) the cardiac conduction system of the heart, which is an electrical network that
controls heart rate and rhythm [180]. Diseases related to these aspects of heart function
include (1) myocardial ischemia, where the heart tissue does not receive enough blood
from its supplying arteries, (2) heart failure, where the heart is unable to pump blood
effectively, and (3) atrial fibrillation, a dysfunction of the cardiac conduction system
that leads to irregular heart rate and rhythm. These diseases provide strong clinical
motivation and drive many of the visualization use cases in this topic.

Related Surveys. Nazir et al. survey the visualization of various aspects of heart
function from the medical domain, focusing mainly on analysis for use clinical rou-
tine [364]. Walton et al. [538] provide a broad overview of the methods and challenges
in visualizing cardiovascular magnetic resonance imagery for clinical research before
presenting a prototype approach for visualizing this type of data. Generation of surface
models and volume renderings of the heart, paired with time-lapse video to describe
deformation, are key visualization techniques for this topic. Heatmap visualizations
commonly indicate parameters of interest, and the bull’s eye plot is ubiquitous for the
visual analysis of perfusion data to understand heart function.

Exploration-centered visualizations provide an overview to experts of general fea-
tures and parameters related to shape changes, e.g., for specific chambers, valves, or
the entire heart, in a cardiac cycle. These works visualize phases of the cardiac cy-
cle from simulations on surface models (which typically are abstracted from acquired
data), such as the LFX Virtual Cardiac Model [238] or the constrained Multi-linear
Shape Model [218]. Patient-specific approaches visualize models in combination with
acquired data [29, 562], or only acquired data. Some works build predictive models,
and preserve links between the simulation and the original data to understand the map-
ping procedure [486]. Although we discuss blood flow extensively in Sec. A.8.1, for
completeness, we note that several approaches visualize patterns of blood flow to ex-
plore questions related to heart function, e.g., Kulp et al. [276].

Approaches geared towards a combination of exploration and analysis, or focused
more purely on analysis, often favor colormaps applied to mesh or imaging data to
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Figure A.17: Visual analysis for quantification of septum motion from real-time cardiac
MRI [494]. Reproduced with permission. © 2017 The Author(s). Eurographics Proceed-
ings © 2017 The Eurographics Association.

quantify parameters of interest. Rainbow colormaps are common, especially in the
medical domain. These works often use multiple interactive views to link simulation,
imaging, and derived statistical information. The main purpose of the visualization is
to evaluate particular parameters, e.g., strain rate [188, 391]. Evaluating the movement
of particular landmarks can be aided by additional plots, such as parallel coordinates
and heatmaps, to compare different motion parameters [494], as shown in Fig. A.17.

Perfusion data, which we visited previously in Sec. A.7.2, are often used as a basis
to determine heart functionality. Most use cases are tied to experts with a need to
identify and quantify particular tissue properties in the context of a pathology, and
while exploration is a component, it is usually not the main task. Many approaches
incorporate a bull’s eye plot in cases related to myocardial ischemia, where heart tissue
does not receive the blood and nutrients it needs to function. This visualization is
familiar to clinicians to quantify the extent of the damage to the heart tissue, often
alongside structural representations of the coronary arteries [380, 425, 496, 497]. The
bull’s eye plot can be further adapted for targeted visual analysis of the motion of the
left ventricle of the heart over time [462]. Approaches are often interactive to provide
an exploratory element for the user. Glyphs can be incorporated, as by Meyer-Spradow
et al. [342], to quantify local tissue perfusion across the whole heart. Statistical, e.g.,
PCA, and aggregate measures may be used to reduce the complexity of the data [379]
and include representations of uncertainty [425].

Visualization is also used to evaluate the accuracy of simulations against acquired
data, where heatmaps [334] or juxtaposed line plots [182] indicate shape prediction
accuracy. Other methods focus heavily on patient-centered care and outcomes [566],
such as simulations of surgical procedures, e.g., mitral valve clipping, with quantitative
evaluation with heatmaps to help predict patient outcomes [317].

Some heart simulations have been developed, not only for expert exploration, but
for use in education and surgical training. These include Dayan et al.’s 3D animation of
the dynamics of a simulated mitral valve [100] and the virtual reality (VR) simulation of
radio frequency ablation by Pernod et al. [396]. Pernod et al.’s approach uses a heatmap
to show membrane propagation potential, a tissue-scale process, on the heart surface.
VR has also been used for patients in a biofeedback scenario to manage stress [171].
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Figure A.18: A coupled model of tissue deformation and network airflow that enables predic-
tions of dynamic flow properties [251]. Reproduced with permission.

Summary. While full cardiac models of heart function for detailed exploration and
analysis are of high interest to the medical community, visualization research efforts
to aid these tasks are relatively limited in comparison to the efforts dedicated to blood
flow. In the analysis of perfusion data for whole-heart pathologies, a higher volume
of works focus on solving tasks for clinicians. However, studies on their actual adop-
tion and utility in a clinical setting are limited. Communication-focused works that
visualize heart function, while numerous in the field of medical illustration, remain a
comparatively limited topic in visualization. A number of recent works to visualize
heart function rely on multiscale models. We discuss these works in Sec. A.9.

A.8.3 Lung Function

The main function of breathing, i.e., respiration, is to provide oxygen to the tissues in
the body and to remove carbon dioxide [180]. We focus here on the in- and outflow of
air from the lungs and on limited cases where research includes other organs affected
by lung movements.

Experts interested in learning about features of lung deformation during breathing
often rely on simulations, commonly from statistical modeling, to visualize this pro-
cess [119, 258, 435, 487, 564]. These generally integrate with imaging data to provide
spatial context, often via surface modeling or volume rendering techniques. More re-
cent approaches have used neural networks to reconstruct lung deformations as surface
meshes from 4D CT data [541].

Experts are also interested in understanding patterns and features of dynamic air-
flow. Interest may be in visualizing airflow patterns within bronchial tubes [469] or
on a larger scale. Kim et al. present a coupled model of tissue deformation on the
level of the whole lungs alongside network airflow, enabling predictions of various dy-
namic flow properties [251]. The model is multiscale, but, as shown in Fig. A.18, does
not necessarily provide spatial visualization of cell-level air exchange and lacks visual
interactivity. Wiechert et al. [555] couple tissue- and organ-scale processes to allow
visual exploration of tissue regions locally and the whole lung and airway system glob-
ally.

In more analytically-focused cases, visualization enables the comparison of move-
ments of an object of interest against an acquired signal [293]. Similar to heart function,
visualization is also used to evaluate model accuracy against acquired data and to assess
and compare the magnitude of lung deformation using heatmaps [359].
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Respiratory visualization models, in addition to parameter exploration, may also be
used to compare characteristics of air flow in healthy versus diseased patients [251].
In other instances, experts use lung function to indirectly provide information in the
analysis of other organs. For example, breathing exerts force on the kidneys. The
degree that the kidneys are compressed during the breath cycle can be used to evaluate
kidney fibrosis [483].

Summary. The bulk of literature we found from visualization and domain research fo-
cuses heavily on expert exploration of airflow and lung deformation over breath cycles,
with limited tools for analysis and even more limited work in visualizing lung func-
tion for communication. These works primarily come from outside the visualization
community and represent an open opportunity to develop visual methods to support ex-
perts in better understanding and analyzing lung function. These tasks are particularly
important with the advent of COVID-19, as experts work to understand the long-term
effects of this disease on lung function.

A.8.4 Brain Function

The brain is part of the central nervous system that contains more than 100 billion
neurons. It is the primary seat of control for any process occurring within our bodies.
Understanding brain function provides a key to understanding human behavior as well
as neurological diseases and disorders. While our discussion of signal propagation in
Sec. A.7 focused on the propagation of action potentials between cells, we now discuss
signal propagation and functional neural connections over the entire brain. This is
known as functional connectomics, where the brain is modeled as a network [473].

Related Surveys. Margulies et al. [318] and Pfister et al. [399] provide an overview
of ways that the human connectome, both structural and functional, can be visualized
for different exploratory, analytical, and communication tasks. Node-link diagrams,
scatter plots, dendrograms, and heatmaps are common techniques in the application
domain to visualize synchronous activity between brain regions. Structural models
often provide spatial context for functional connectivity and can be depicted as image
slices, surface models, volume renderings, or, in the case of DTI data, through ad-
vanced techniques that include ellipsoid or brush-stroke glyphs [277] and superquadric
glyphs [252].

Experts are interested in learning how different regions of the brain functionally
connect and in exploring patterns of brain activation in response to the presence, or ab-
sence, of certain stimuli. This represents a broader-scope view of the questions experts
have when studying signal propagation. Heatmaps superimposed onto imaging data or
derived surface models to show activation regions is a common approach that allows
experts to explore and evaluate functional imaging data [134, 426, 550]. Interactive ex-
ploratory methods include dynamic querying for structural and functional connectivity
using DTI and fMRI data [463].

Visual analysis methods help experts identify functional parameters and connec-
tions of interest. Standard methods often use a correlation matrix to identify functional
connectivity [399]. Interactive analysis approaches often incorporate linked views that
incorporate structural data alongside plots containing additional functional informa-
tion, e.g., time plots [227, 310] or radar plots [320]. Color-coded isosurfaces from
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Figure A.19: Approach for classifying brain networks based on extracting contrast subgraphs,
i.e., a set of vertices whose induced subgraphs are dense in one class of graphs and sparse in
the other [280]. Reproduced with author permission.

structural imaging, with network and scatter plots to show functional connectivity and
correlations [107], are another example of interactive visual analysis interfaces. These
interactive, multi-view approaches may facilitate hypothesis generation in addition to
confirmative analysis and integrate several data types and plots [241]. Clustering meth-
ods can group structural fibers from DTI data into to functionally-meaningful bun-
dles. These can then be color-coded to aid identification and comparison of functional
groups [153], or to identify and compare resting state networks that are again color-
coded [516]. Other classification approaches to aid analysis use contrast subgraphs,
shown in Fig. A.19, as a primary means to compare between groups [280].

While the bulk of visualization research for brain function is targeted at experts,
some works that use illustrative techniques can be used for communication to a broader
audience. The work by Jainek et al. [225] exemplifies such an instance for their use of
glows and a soft, harmonious color palette to show brain activity.

Summary. Visualizing brain function is challenging. This is owed to the high compu-
tational power needed to simulate activity over an entire brain, and the fact that many
visualizations of brain activity are driven by imaging data that only indirectly indicate
brain activity and function. An additional challenge is that functional networks and
structural connections do not always overlap. Visualization research to depict these un-
certainties can aid neuroscience researchers. Furthermore, tools tend to focus on tasks
related to exploration and analysis for domain experts. The development of visual
methods targeted toward clinical rather than research use to identify aberrant patterns
of brain function is an ongoing challenge. Finally, as previously discussed, further
research into communication-oriented approaches that facilitate doctor-patient com-
munication and patient understanding are essential for raising the bar of health literacy
and public health. For example, data-driven approaches can communicate public safety
stories, such as the impact of alcohol on brain function when driving a vehicle.
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A.8.5 Other Organ Function

Although we focus our survey mainly on blood flow and functions related to the heart,
lungs, and brain, we briefly highlight other organ functions that are representative of
further opportunities in visualization research for physiology.

Skeletal muscle plays a crucial role in body movement and defining anatomical
shape. Lee et al. [291] review visual approaches, which often use 3D surface models,
for modeling muscle deformation and simulation of skeletal muscle functions at this
scale. Experts are chiefly interested in understanding the shape deformation that skele-
tal muscle undergoes during contraction and relaxation [44]. Visualizations represent
muscles at different degrees of abstraction to serve different objectives in a simula-
tion, e.g., a single action line to show the axis of movement [365] or reconstructing and
simulating a subset of muscle fibers that capture the overall shape of the muscle as it
deforms [263, 264, 423]. Visual analysis approaches are often interested in quantifying
muscle properties during contraction, such as muscle stiffness [464] or muscle speed in
contraction [25]. These data can be captured in multi-view visualizations that combine
structural models with line plots that describe displacement, velocity, and acceleration
over the course of the simulation [573].

The stomach and liver are part of the gastrointestinal system whose main functions
are (1) to take in food and liquids and break them down into a usable form and (2)
to remove waste from the body. The stomach is a highly elastic organ that serves as
a temporary holding place for food and is responsible for its initial breakdown. To
understand the stomach’s changing dimensions over time, Gilja et al. [158] present a
multi-view system that includes a planar map of a region of the stomach for experts to
better understand these temporal changes. The liver is the centerpiece for many essen-
tial bodily functions, including blood and nutrient storage, with a complex physiology
that could greatly benefit from visualization. Lin et al. [302] visualize fluid transport
through the liver and its vasculature at the organ and tissue scales, using simulations in
combination with imaging and animation techniques. Their aim is to understand how
the liver absorbs and metabolizes substances.

Metabolic activity, as discussed in the context of molecular pathways in Sec. A.5.3,
can be visualized on the organ level to assess for normal organ function. Approaches
can be analytically-focused, as in Nguyen et al.’s method to visualize uncertainty from
PET kinetic modeling [369]. Ropinski et al. [424] exemplify a more exploratory ap-
proach to visualizing organ-level metabolic activity. Their approach is also designed
to facilitate doctor-doctor communication through interactive closeups, whereby users
can adjust view layout and composition to best fit their communication agenda.
Summary. Organs function as the result of a chain of processes that begin at the
molecular level and extend through the cell and tissue scales. While blood flow, heart,
and brain function are especially well-covered in visualization research, the lungs and
other organs that we briefly highlighted in this section have received less attention,
although experts clearly benefit from visualization tools to aid their exploratory and
analytical questions. As in other scales, we observe a comparative lack of visualiza-
tion research oriented to communication tasks. This represents an open opportunity
for future work. Furthermore, while visualizations of organ-scale processes are often
highly clinically-motivated, relatively limited research investigates visual methods to
aid practicing clinicians which are usable in a time-crunched environment.
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A.9 True Multiscale and Beyond

Cakmak et al. define multiscale visualizations as those that allow users to present,
navigate and relate data across multiple abstraction scales [79]. In this section, we
highlight examples and trends of true multiscale visualization for physiology, where
the spatial and temporal representations and associated user tasks span three or more
scales within our taxonomy.

The Visible Human Project is one of the earliest multimodal data initiatives to visu-
alize the human body in its entirety. Although the project mainly focuses on anatomical
structures, one of its key goals is to link structural image data with text-based physio-
logical data [3]. Mathematical modeling initiatives to simulate multiscale human phys-
iology like HumMod [197] are a rich resource for physiological models. The HumMod
Browser, built from empirical data from peer-reviewed physiology literature, relies on
grouped word clouds to allow experts to explore hierarchical and causal relationships
of whole body physiology [565].

Works that are similarly exploratory, but include spatial information in their visual-
ization, include Insley et al. [216]. They present a multiscale, multiphysics simulation
spanning cell to organ scale of the formation of a blood clot within a cerebral aneurysm.
Their method allows the visualization of individual red blood cells, platelets, and sol-
vent particles. It expands further to visualize large-scale flow patterns with streamlines,
enables the observation of platelet aggregation along the aneurysm wall, and shows this
phenomenon in the context of the surrounding vasculature. Miller et al. [343] present
a multiscale, although primarily structurally-focused, brain map that spans molecule
to tissue scale. They include functional information from spatial transcriptomics data
to describe pathological Tau proteins as well as signal propagation information. Leg-
gio et al. [294] present MorphoNet, an open-source online tool allowing users to in-
teractively explore the anatomy and dynamics of biological entities from molecule to
whole-organism scale. It furthermore allows for genetic data to be overlaid onto these
models. Primarily focused on developmental processes, this tool uses 3D color-coded
surface models and is targeted at research and education, as shown in Fig. A.20.

Qutub et al. [411], whose work we briefly discussed in Sec. A.7.1, present a review
of multiscale modeling approaches, from molecule to organ scale, for angiogenesis.
Although many of these models are multiscale, the visualization result is often not
multiscale. An exception to this, although still limited and not interactive, includes
Mac Gabhann et al.’s [312] multiscale muscle model. This model includes muscle
fibers (muscle cells), the microvascular bed that supplies oxygen to these cells and
tissues, and the associated molecular pathways for angiogenesis.

While several truly multiscale models for the heart range from the level of ion chan-
nel opening to the heart’s contractions over a full cardiac cycle, the visualization output
often is limited to an organ-scale mesh representation. A heatmap then encodes elec-
trical activity mapped to the surface mesh and static, non-interactive charts display
the changes that occur at the cellular, molecular, or tissue scales [29, 175, 430]. Gil
et al. [157] expand on this typical representation by incorporating myocardial fibers,
extracted from DTI data, with simulation data to understand ventricular muscle tissue
structure and connectivity. Chabiniok et al. provide a review of multiscale cardiac mod-
eling methods with an eye toward their integration for analysis in clinical practice [84].
This shows a clear interest in understanding such models from the domain.
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Figure A.20: MorphoNet is an open-source online tool to explore and communicate the
anatomy and dynamics of biological entities from imaging and genetic data [294]. Repro-
duced under Creative Commons CC BY license.

Some multiscale lung function models span the molecular to organ scale, such as
those by Burrowes et al. [75], but lack integrated visualizations across all scales. As
presented in Sec. A.8.3, Kim et al. [251] present a partially integrated visualization
that captures the airflow dynamics of their model but lacks spatiality across levels.
Furthermore, the visualization, as in many of these systems, does not allow for direct
user interaction.

Multiscale models for brain function are becoming increasingly common as compu-
tational power increases. Spanning cell to organ scale, such models capture the depolar-
ization of a single neuron, signal propagation through brain tissue, and the effects that
this signal has on brain function [120]. However, the visualizations of these models
are often limited in the scales they depict. For example, in the Cognitive Computa-
tion Project, Ananthanaryanan et al. [15] simulate a cat brain and visualize parts of the
model with a 2D heatmap that plots groups of neurons with similarly-timed firing rates
in a cortical area. A topographic plot provides a detailed view of the first spike of signal
within each neuron group.

Increasing works target the developmental stages of entire organisms through
communication-oriented tasks that present physiology for education and outreach.
Sorger et al. [470] use visual abstraction techniques to show, at a molecular level, the
transitional stages of an HIV-virion. On a larger scale, the OpenWorm and its various
subprojects [437] aim to visualize and simulate multiscale anatomy and physiology of
C. elegans with numerous tools designed for public outreach. On a system-specific
level, full-body virtual anatomical models of the human musculoskeletal system are
a lively research topic, not only for domain experts [314] but for visual effects ani-
mators as well [423]. Multiscale modeling approaches, such as those by Rzepecki et
al. [428], propose to combine multimodal structural, physiological, and biomechanical
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data sources in an interactive viewer that scales from visualizations of cartilage tissue
porosity up to a simulation of human gait.

A.10 Discussion

This survey is intended as a guide for visualization researchers interested in under-
standing common approaches and challenges to visualizing physiology from a spatio-
temporal and task-oriented perspective. In this section, we discuss general themes
along with lessons learned.
vitaLITy. Our literature collection approach utilized traditional search methods and
leveraged new visual analysis tools from the community to facilitate this process [361].
Using vitaLITy was a huge help to identify holes in our search. Although vitaLITy
does not span the space of literature that we covered, its coverage of the visualization
literature is comprehensive, and helped us identify whether any holes in our search were
due to issues with our methodology or due to the lack of visualization literature for a
given topic. For example, using this combination of search methods, we discovered
that the spike in publications in 2010 could be attributed in part to the rise in interest
in the visualization of omics-related data, with four surveys published on the topic that
year [154, 370, 377, 378] along with the running of funded research projects like the
Physiome, IllustraSound, and PhysioIllustration projects in Europe during this time
frame. Close to 40% of the papers included in this survey were found using vitaLITy.
In many cases, we used papers found in this tool as seed papers in a standard search
methodology. Using this combination of tools helped give us confidence that our search
methodology was even, in spite of an apparent bias towards, e.g., organ-scale functions.
Through vitaLITy, we were able to sanity-check that these are heavily-weighted topics
in visualization for physiology.
Spatio-Temporal Distribution. Classifying literature along a spatio-temporal axis un-
covers a few interesting patterns in Fig. A.5. Most salient is the dark grouping of works
related to organ function that is positioned symmetrically on both spatial and tempo-
ral axes. The data acquisition methods to capture these processes (brain, heart, lung
function, and blood flow) are well-established with strong clinical motivations. It is not
surprising to see an abundance of work in this region, given these two factors.

Another, though less dark, region we observe ranges spatially from large molecules
to cellular substructures and occurs over minutes. This corresponds to the abundance
of work where the key process of interest in the visualization is understanding gene
expression and where the majority of experimental methods, e.g., next-generation se-
quencing and proteomics methods, lack the temporal resolution to capture the active
process of translation and transcription [105]. These capture the result of the process,
which occurs typically in the span of minutes (for a single gene) [344]. This density
of work reflects the comparatively recent developments in experimental methods for
measuring gene expression, which similarly accounts in large part for the increase in
works over the last few years, as we observe in Fig. A.4. We expect to see a continuing
increase in such works.

The light region corresponding to a temporal resolution of a few seconds (101 sec)
represents a few possibilities. One relates to the temporal resolution of experimental
methods for gene expression: the majority of next-generation sequencing methods are,
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at best, on the scale of minutes [105]. Another reason is that, while a number of pro-
cesses bridge over this time range, for human physiology we found limited processes
that are confined to this range. Diffusion of molecules across a cell can occur in this
time span [344], but these are typically of interest when bundled into the greater con-
text of a molecular pathway or in the dynamics of an entire cell, which encompass a
larger time frame.

Smaller-scale processes, particularly at the molecular scale, have a much broader
potential temporal range than the organ-scale processes our study examined. As many
works in our survey allude to, this broad temporal range is both an enormous challenge
and opportunity for visualization to aid experts in exploration and analysis of their data
when events of interest are easily lost in temporal noise. A major, related, ongoing
challenge is in integrating into a visualization the larger spatial scales that build from,
and are affected by, the molecular process of interest. The discussion of the differing
breadth of time scales for the different spatial scales introduces another point: while
temporality generally increases with biological complexity [452], living organisms are
not bound to a system based on powers of ten, but rather to a roughly 24h cycle known
as the circadian rhythm [346]. This explains, in part, the temporal ranges of functions
such as gene expression and the heartbeat and breath cycles that we observe in Fig. A.5.

Cell & Tissue Function. We found comparatively few cell- and tissue-scale visual-
ization works. This reflects the history and trends in the availability and technological
advancements of the source data. Data that can truly visualize dynamic, living cell
processes on the scale of molecule, cell, and tissue have only just recently become
available and accessible, and we see in the publication dates that cell-related visualiza-
tion works are on the rise. Computational power is also steadily increasing to the point
where whole-cell visualizations are becoming a reality, while the additional complexity
inherent in tissue-level physiology visualization is still a challenge. Furthermore, many
application domain approaches use only basic visualization techniques, often simply
reviewing microscopy imaging data, to explore or quantify features or behaviors of in-
terest. This may show a lack of trust in abstraction that is, on some level, unavoidable
when processing data to visualize through other methods. Approaches that incorporate
raw imaging data in multi-view interactive tools alongside uncertainty quantification
are useful directions to continue to investigate.

Imaging and Simulation Data Across Scales. Visual exploratory and analytical
tasks at the organ scale and, to a lesser degree, at the tissue and cell scales are typically
closely tied to imaging data. In cases using a model, the model usually is compared or
validated against imaging data. Hence, visualization tasks at larger scales are often to
understand a given process from imaging data. This is not necessarily the case in real-
time visualization of dynamic processes at the molecular scale, and in many instances at
the cellular scale. Here, the visualization of a model often serves as the primary means
to understand a given process. As technology improvements lead to higher resolution
imaging methods, or if simulations come to be seen as more accurate and trustworthy
than the imaging methods themselves, we may see this balance shift.

Task Distribution. Task distribution between exploration, analysis, and communi-
cation differs slightly across all scales, with one major trend consistent across all:
communication-oriented visualization works for physiology are limited relative to ex-
ploration or analysis-oriented works. Most visualization works we surveyed have con-
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crete expert collaboration partners with specific data types and specific goals to under-
stand these data. This works at a much lower level than communication. There are
some possible explanations for this disparity in task distribution. One is that the data
being visualized is often cutting-edge, and the domain scientists producing these data
may not yet fully understand it themselves–visualization is needed to discover and ana-
lyze, and the communication element comes after understanding. A second possibility
relates to data-related permissions. Patient and research subject data is often heavily
protected and, in many instances, may not allow visualization beyond internal, domain-
specific analytical use or requires significant processing efforts to anonymize the data
before use. Lastly, visual communication of this type of data simply is hard. The data
are highly complex and multifaceted, and visual communication requires a high degree
of understanding on both the side of the domain expert and the visualization researcher
to distill this information into a clear narrative.

Application Domain Adoption. Many of the visualization approaches discussed in
this report have not fully permeated the application domain. These are often highly-
specific algorithms or techniques, while widely-adopted approaches in the domain are
often more generally applicable. Furthermore, such production-ready, i.e., stable, so-
lutions are continually maintained and designed for ease of use. For example, in visu-
alizing molecular dynamics, tools such as VMD [210] allow for easy visualization of
simulations through a movie-like series of time steps. Across all scales, visualization
methods adopted in the domain remain relatively restricted to direct visualization of
imaging data in a time-lapse sequence, as in light microscopy or medical imaging, e.g.,
fMRI. Techniques can extend into volumetric rendering with limited features for explo-
ration and analysis, with the option to create surface meshes from these data. These vi-
sualization methods are easily available in tools like Amira [476], 3DSlicer, [131], and
ParaView [9]. Additionally, across all scales, basic visualizations such as bar or scatter
plots are common to identify the frequency or distribution of physiological biomark-
ers under study. These are often created in tools like Microsoft Excel. Such charts
are often limited in interactivity, e.g., filtering, and do not apply across multiple views.
Coordinated efforts with funding agencies to establish initiatives for the deployment
of advanced visualization techniques can enable broader access from the application
domains. Furthermore, researchers can consider opportunities to develop advanced vi-
sualization approaches as plugins to existing domain tools rather than as stand-alone
solutions. This is an opportunity to enable greater domain accessibility, and can miti-
gate the resource limitations introduced by stand-alone tools.

A.11 Research Outlook

Physiology is a challenging, complex domain that visualization can do much more to
contribute to in the coming years. Increasingly sophisticated modeling and data acqui-
sition methods can capture physiology at finer spatial and temporal resolution but, in
exchange, produce even higher volumes of complex data. In addition, the multiscale,
multisystem, multidisciplinary nature of physiology needs visualization to help bridge
gaps, not only in exploration and analysis of data between scientists but in communi-
cating this science to a broader audience.
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Numerous recent technological advances in imaging and experimental methods
pose exciting opportunities for visualization across several scales. While light mi-
croscopy was previously limited to a maximum resolution of 200 nm, Pulsed Inter-
leaved MINIFLUX with a standard microscope has increased this resolution to 1 nm,
allowing visualization of metabolites and other small molecules in vivo [327]. The
boundaries of computed tomography have been similarly expanded with hierarchical
phase-contrast tomography (HiP-CT) to allow true multiscale imaging from the organ
down to the cellular level [536]. Other data have not received much attention from
the visualization community, such as the suite of methods used to assess cell biome-
chanical forces [38]. Pioneering experimental methods to observe protein translation
occurring in real-time in living cells, such as nascent chain tracking (NCT) [105] are
available, but visualization of these methods is limited. Expanding visualization re-
search to collaborate in such areas to develop new methods for experts to engage with
these data is an enormous opportunity.

To answer questions left by gaps in systems biology and integrative physiology, re-
search is shifting to focus on the human organism as a complete integrated network.
This considers not only the scales that have been the primary focus of this report but
also the coordinated efforts between organ systems and sub-systems. This study of
the human organism as an integrated network is termed network physiology, with a set
of grand challenges in this new discipline published only recently [223]. Visualiza-
tion methods and tools that can meet the exploratory, analytical, and communication
demands for this area of study are exciting opportunities.

Multiscale computational models are increasingly ubiquitous with advancements in
computational power and parallel processing. However, while these multiscale models
exist, corresponding multiscale visualizations are often lacking or exist in unlinked,
unintegrated forms. This is another opportunity for visualization research.

True multiscale and multisystem approaches necessitate multidisciplinary collabo-
rations. A dearth of visual methods and tools facilitate knowledge transfer between
domains or communicate physiology to the public. As the last two years of the pan-
demic have demonstrated, clear and accurate visual communication of physiology for
public health is critical at all levels of society.

A.12 Conclusion

This survey offers a broad overview of visualization trends and opportunities for phys-
iology and aims to provide a foundation for discussion and future research directions
in this area. From a mixed-methods literature search approach that uses state-of-the-art
visual analysis tools, we embed our discussion of these approaches in a spatio-temporal
context that focuses on the core tasks that drive the visualization: exploration, analy-
sis, and communication. Our report demonstrates an abundance of work at the organ
scale, particularly for hemodynamics. Molecular visualization, particularly related to
visual analysis and exploration of actors in molecular pathways, is a growing research
area driven by the advent of new technologies. These new technologies hold immense
promise for visualization research that incorporates multiple data types to span the true
multiscale nature of human physiology, from molecule to organ scale and beyond.
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A.13 Cited Literature in Report

This section provides an overview of the literature cited in this report on visualiza-
tion for physiology, organized according to spatio-temporal scale with glyphs encoding
high-level visualization task classification. To reduce repetition of information while
still providing a table overviewing the literature cited in this paper, we have modified
this from the original published version.

Scales: Molecular Cellular Tissue Organ Multiscale Survey
Tasks: Exploration Analysis Communication
*Color fill amount corresponds to primary task(s) each work addresses

Molecular Function Works:
[13] [45] [62] [64] [73] [74] [78] [76]
[77] [81] [94] [97] [98] [114] [138]
[145] [147] [146] [149] [311] [172] [176]
[177] [178] [179] [183] [194] [209] [210]
[229] [228] [232] [237] [242] [243] [246]
[248] [254] [255] [266] [265] [271] [279]
[290] [295] [355] [356] [297] [299] [300]
[304] [325] [340] [341] [89] [350] [363]
[368] [388] [422] [439] [444] [445] [447]
[448] [454] [458] [460] [499] [500] [512]
[524] [528] [578]

Cellular Function Works:
[26] [35] [54] [58] [99] [101] [118]
[126] [125] [124] [127] [130] [156] [160]
[162] [166] [196] [202] [203] [204] [224]
[236] [240] [256] [281] [292] [322] [386]
[389] [398] [405] [410] [414] [431] [432]
[446] [449] [467] [474] [515] [534] [537]
[539] [544] [552] [569]

Tissue Function Works:
[22] [36] [41] [65] [68] [69] [86] [88]
[113] [115] [161] [181] [192] [201] [212]
[283] [306] [313] [319] [339] [342] [343]
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[345] [347] [348] [373] [380] [379] [382]
[411] [416] [425] [442] [468] [496] [497]
[501] [502] [563]

Organ Function Works:
[9] [16] [20] [21] [23] [25] [29] [39]
[40] [44] [49] [53] [59] [71] [83] [91]
[100] [104] [103] [102] [111] [119] [123]
[129] [131] [134] [139] [140] [142] [151]
[152] [153] [155] [158] [171] [218] [182]
[184] [188] [206] [225] [227] [238] [241]
[258] [262] [264] [263] [270] [276] [280]
[282] [286] [285] [284] [293] [296] [302]
[310] [317] [320] [333] [334] [338] [337]
[335] [359] [365] [367] [371] [381] [383]
[391] [522] [396] [397] [420] [424] [426]
[430] [435] [451] [462] [463] [464] [469]
[483] [486] [487] [492] [494] [495] [516]
[107] [520] [519] [541] [550] [555] [560]
[562] [564] [566] [567] [573]

Multiscale Works:
[15] [63] [75] [157] [175] [197] [216]
[251] [294] [312] [314] [423] [427] [428]
[434] [437] [470] [472] [476] [565]

Related Surveys:
[10] [11] [12] [50] [79] [84] [95] [132] [133] [154] [169] [170] [199] [200] [214] [239]
[260] [261] [267] [268] [272] [287] [291] [318] [324] [323] [326] [330] [331] [364]
[370] [372] [374] [376] [378] [377] [384] [393] [521] [399] [401] [403] [406] [433]
[440] [441] [452] [466] [477] [484] [506] [523] [529] [538] [574]
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Abstract

Magnetic resonance spectroscopy (MRS) is an advanced biochemical tech-
nique used to identify metabolic compounds in living tissue. While its sen-
sitivity and specificity to chemical imbalances render it a valuable tool in
clinical assessment, the results from this modality are abstract and diffi-
cult to interpret. With this design study we characterized and explored the
tasks and requirements for evaluating these data from the perspective of a
MRS research specialist. Our resulting tool, SpectraMosaic, links with up-
stream spectroscopy quantification software to provide a means for precise
interactive visual analysis of metabolites with both single- and multi-peak
spectral signatures. Using a layered visual approach, SpectraMosaic al-
lows researchers to analyze any permutation of metabolites in ratio form
for an entire cohort, or by sample region, individual, acquisition date, or
brain activity status at the time of acquisition. A case study with three MRS
researchers demonstrates the utility of our approach in rapid and iterative
spectral data analysis.

This article was published in Computers & Graphics, vol. 92, pp. 1–12, 2020.
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Figure B.1: Plot of the typical visual output for spectral quantification by LCModel, with
processed data in black and model fit in red. Structural localization and annotations of key
metabolite peaks have been added.

B.1 Introduction

Magnetic resonance spectroscopy (MRS) is an in vivo non-invasive biochemical tech-
nique used to estimate the concentrations of certain small molecules, known as metabo-
lites, in a tissue region. When paired with high structural resolution MR imaging
(MRI), it has shown clinical potential for improving diagnosis and treatment monitor-
ing of numerous diseases and disorders of the central nervous system [517]. However,
its clinical adoption remains limited. Translation from the metabolite signals acquired
from MRS into clinically useful biomarkers is an open challenge in spectroscopy re-
search. Optimization and tuning of parameters for consistent, isolated metabolite ac-
quisition is one such area of research, while another branch of research aims to identify
patterns of the subtle disease effects on multiple metabolites [489]. In this paper, we
explore the application of visualization techniques to identify ratios and patterns of
multiple metabolites.

While recent technology improvements in MRS acquisition have enhanced data
quality and resolution [525], visualization of MRS data remains a largely unexplored
area. MR spectroscopy produces a vastly different readout than MR imaging. Rather
than a greyscale image of recognizable anatomical structures over many voxels, it ac-
quires an abstract spectrum per single voxel. This spectrum consists of a series of peaks
(resonances) that represent signal intensities as a function of frequency, as depicted in
Fig. B.1. Metabolites may consist of single peaks, as in the case of N-acetylaspartate
(NAA), or multiple peaks, as in Creatine (Cr). Most tools used to quantify single voxel
spectral data, e.g., LCModel [408] produce only rudimentary visual output, such as the
spectral graph in Fig. B.1. Recognizing the metabolites that correspond to these graphs
is challenging. Although it is important to see the spectral graph as a means of qual-
ity assurance, metabolite concentrations are the most clinically relevant output from
this method. These concentrations are most often output to a simple table in standard
domain tools. This does little to advance interpretation, understanding, or to facilitate
rapid comparison of metabolites between acquisitions.
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This paper expands upon our previous design study [150] in building a general
tool for the interactive visual analysis of all permutations of spectral metabolites, in
ratio form, for a small cohort. While we previously emphasized rapid visualization
of metabolite ratios directly from spectral input data, this work allows visualization
of complete, and more complex, metabolic signatures via an integrated pipeline with
Tarquin [557], an open source spectral quantification tool. Our specific contributions
include:

1. We provide a detailed review of MRS data characteristics and abstraction of spec-
tral analysis tasks identified from domain expert collaboration.

2. We present a refined pipeline that integrates spectral quantification and fitting to
allow multi-peak metabolite analysis.

3. Our visual exploratory analysis tool provides an extended interface for linking
of structural, spectral, and patient data, including group creation and uncertainty
communication.

4. We introduce a tiered system of visual encodings depicting layers of aggregated
metabolite ratios that can be partitioned by key attributes.

5. We present a clinical case study and feedback from three MR spectroscopy re-
search experts.

Using SpectraMosaic, MR spectroscopy researchers are able to rapidly identify pat-
terns at different layers that may be of interest for deeper clinical exploration.

B.2 Related Work

A key challenge in visualizing spectroscopy data is that each spectrum is in itself a mul-
tivariate dataset. We draw inspiration from tools such as InSpectr [14], which utilizes
multiple linked views and comparative visualization techniques [163] from multimodal
data sources (x-ray computed tomography and x-ray fluoroscopy) to provide insights
into composition of a multivariate sample. SpectraMosaic similarly combines imag-
ing techniques (MRS and MRI), but for a different domain and with a different focus.
Isosurface similarity maps defined by Bruckner and Möller [72] were applied to spec-
tra in Spectral Similarity Maps, an extension of the Inspectr framework [141]. In this
approach, correlations between spectra are shown as an intensity map. We adopt a sim-
ilar concept in our tool, but rather than mapping energy correlation we instead map
metabolite ratios.

Prior visualization approaches for MRS data have been limited to the analysis and
visualization of a subset of metabolites at a time. SDDS (scale driven data spheres) pre-
sented by Feng et al. [136] provide a 3D representation of metabolites within a voxel.
This application was later extended to include scatter and parallel coordinate plots for a
subset of metabolites [135]. SpectraMosaic remains in the abstract visualization space,
but allows comparison of all metabolite ratios. Nunes et al. [373] presented a visual
analysis framework combining ComVis [328] and MITK [559]. Brushing and linking
mechanisms allow for the definition of a biological target volume with its correspond-
ing metabolite values. However, this work was developed specifically for radiotherapy
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treatment visualization. Retention of spectra was not the focus of the application and it
provided limited functionality for metabolite comparison. SpectraMosaic extends the
flexibility of metabolite ratio calculations, and displays additional MRS data attributes
(spatial, individual, temporal, and brain activity status) in an overview and detail vi-
sual representation. Marino and Kaufman [321] implemented direct volume rendering
(DVR) to represent male prostate anatomy from MRI data combined with PET and
MRS in prostate tumor delineation. However, this application was focused on a single
metabolite ratio, and could only present an individual in a single time slice. SpectraMo-
saic retains an abstract visualization format, but offers broader insights into metabolite
relationships over time and between individuals. Jawad et al. [229] developed a sys-
tem for the analysis of segmented brain tissue composition to identify the metabolic
signatures of brain tumors—this tool was optimized for multivoxel data, and focused
on statistical outcome measurements. SpectraMosaic works at a more generalized level
in spectral analysis. Further work by Jawad et al. [228] presented an approach for the
comparative analysis of single voxel spectroscopy in cohort data, focusing primarily
on violin and parallel coordinate plots to convey spectral metabolite relationships. Our
approach uses a similar range of data inputs and processing tools. However, our tool fo-
cuses on simultaneous comparison of all metabolite ratios, using a nested visual design
linking multiple MRS data elements.

First introduced by Bertin [47], numerous solutions have leveraged small related
graphics series to visualize multivariate data. We base SpectraMosaic on this concept,
but extend this by including a second layer of nested visual encodings. This is inspired
by ATOM [390], a grammar for unit visualizations where individual data items are rep-
resented by unique visual marks (units) in a visual encoding system. PivotTable, subse-
quently trademarked by Microsoft and extended by Polaris [482], enables exploration
and analysis of multidimensional data with the flexibility to modify visual encodings,
graphics, and table configuration for visualization. Klemm et al. [257] built on this con-
cept for linked visualization of image-centric heterogeneous cohort data. Our approach
is related in that we allow on-the-fly reconfiguration of our matrix inputs. Although the
cohorts our application focuses on are not large, we share similar considerations with
heterogeneous and multivariate data inputs.

While our prior iteration of the SpectraMosaic application focused on the rapid anal-
ysis of single-peak metabolites directly from spectral graphs [150], this work expands
the tool to allow full, precise spectral analysis in an integrated pipeline with robust
MR spectroscopy quantification tools. This permits analysis of metabolites with more
complex metabolic signatures; these are encoded to bar and box plots for ease of in-
terpretation. We further increase the practical usability of the tool with new facilities
for analysis group creation and additional means for conveying the underlying data dis-
tribution. These features arose from additional working sessions and discussions with
spectroscopy researchers.

B.3 Background

MRS is an advanced spectroscopic technique used to non-invasively describe the bio-
chemical composition of living tissue. While MRI shows the spatial distribution of
atomic nuclei with high spatial resolution, MRS trades spatial resolution for detailed
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chemical information, using the same hardware. For example, where MRI may be used
to identify the extent of a tumor, MRS can help to identify the type of tumor [190]. For
each measured voxel, MRS produces a spectrum of signal intensity as a function of fre-
quency. Intensity peaks at different resonance frequencies are described as chemical
shifts. These chemical shifts, expressed in parts per million (ppm), arise from fun-
damentally different nuclear properties of the chemical structures being measured, and
represent metabolites in the acquired voxel [513]. The most commonly measured signal
comes from hydrogen atoms; this is known as proton MRS (1H-MRS). This technique
is capable of detecting metabolites in concentrations 50,000 times lower than that of fat
or water as imaged in conventional MRI.

MRS acquisition techniques include single voxel spectroscopy (SVS) or chemical
shift imaging (CSI). CSI is essentially a slab of multiple smaller single voxels. It covers
a much larger spatial area than SVS, but suffers from a reduced signal-to-noise ratio.
CSI produces a low-resolution image for each metabolite, being in that way similar to
conventional MRI, while SVS is more abstract and cannot be visualised in a conven-
tional way. Since SVS acquisition techniques afford more detailed spectra for analysis,
we focus our work on this technique. The majority of acquisitions by our collaborators
are collected at single time points, i.e., in longitudinal studies, but may also be captured
as time-resolved concentrations within a single examination, i.e., functional studies. In
the latter approach the subject can also be asked to perform tasks, such as tapping fin-
gers during the acquisition (active brain state), and alternately resting (resting brain
state).

Following acquisition, data are output to a vendor-specific format that contains raw
data and a header file containing all experimental parameters. Subsequent preprocess-
ing and quantification steps follow to map spectral peak intensities to metabolite con-
centrations in the measured voxel. In a final fitting step, a model based on prior infor-
mation is fit to the acquired spectrum; in many approaches, this is effectively a linear
combination of basis sets consisting of simulated or measured metabolite signatures.
Metabolite concentrations are typically calculated relative to a stable reference, often
water or creatine. This allows for a direct comparison of relative metabolite concentra-
tions, assuming the same acquisition hardware and protocols are used. While a more
comprehensive discussion of all steps is beyond the scope of this paper, interested read-
ers can refer to Stagg et al. [475] for a detailed overview. A number of existing tools
can be used to perform these steps: LCModel [408] is one such widely-used com-
mercial tool, while jMRUI [479], TARQUIN [557], SIVIC [93], OXSA [409], and
Gannet [352] offer open source solutions. Equipment manufacturers also supply basic
tools to facilitate simple analyses on the scanner console. Our collaborators typically
use LCModel or Tarquin; we utilize Tarquin in our pipeline for its ease of use and open
availability. The output from these steps includes the experimental parameters used
for the acquisition as well as the fitted data and quantification information for each
metabolite.

B.4 Task and Requirement Analysis

We developed SpectraMosaic over the course of one year. We met weekly with our do-
main collaborators, two of whom are coauthors of this paper. Collaborator backgrounds
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Figure B.2: Typical task flow for MRS data analysis. Users begin with data discovery (A)
to review spatial voxel position, associated spectral graphs, and relevant acquisition param-
eters. (B) continues with data selection and filtering, where spectral voxels of interest are
selected and divided into groups. Data production (C) calculates all possible ratios of selected
metabolites, e.g., Glutamine (Gln) to N-acetylaspartate (NAA). In (D) ratios are compared and
summarized between, e.g., Gln/NAA for different patients or different brain regions. Each of
theses steps may be revisited.

included two MD/PhDs in radiology, eight PhD researchers in MR imaging, and three
MR engineers. The weekly meetings went through three distinct phases. The first phase
focused on domain evaluation, identification of key challenges and where visualisa-
tion could potentially help overcome them. Ultimately, the output from this phase was
agreement on core tasks and requirements. The second phase explored the design space
for these tasks/requirements with discussion and interface prototypes. These were re-
fined and narrowed down to a single option. Our third phase reviewed and refined an
alpha application. Basic use case testing alongside individual and group evaluation
feedback ultimately helped us settle on the version we present in this paper.

B.4.1 Task Analysis and Abstraction

We frame the analysis tasks identified in phase one of our collaboration in the context
of Brehmer and Munzner’s multi-level typology of abstract visualization tasks [67].
This abstraction was useful for our development process, as it allowed us to more ob-
jectively frame the challenges experienced by our colleagues. These tasks form a gen-
eralized workflow shown in Fig. B.2. The first step, data discovery, provides a general
overview of the input components for spectral analysis. Following user selection of
components for analysis, a data production step calculates ratios from all inputs. Ratio
comparison and summarization follows.

T1: Data Discovery. The first set of tasks relates to data consumption for discovery
and verification of key MRS data aspects (Fig. B.2A). Spectra, anatomical reference
images, and associated subject data are reviewed together in an initial overview step.
Researchers visualize spectral graphs to establish a general sense of the data quality
and to form initial hypotheses. Supplemental parameter information, such as the echo
time (TE), during the acquisition can be used to verify validity of experimental com-
parisons. Researchers additionally validate their assumptions about the spectral graph
against its sample location. This serves two purposes: (1) as a second quality assurance
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Figure B.3: SpectraMosaic application workflow overview. Raw spectral data are first pro-
cessed in an offline step (A), then loaded into the application. In (B) the user visualizes the
anatomical image with voxel placement for each acquisition (B1) and the associated spectral
graph (B2). In (C) users may create custom groups for analysis. Metabolites may be selected
(D) for analysis from custom or preset groups in a drop-down list, and selections assigned to
the x- or y-axis of a ratio heatmap (E). The ratio heatmap is divided into a cell grid (E1) based
on the number of metabolite inputs to each axis. Detailed inspection of a cell (E2) shows the
ratios in a series of nested glyphs representing spatial region, individual, individual brain state,
and individual time acquisitions. A legend at the right provides a reference for heatmap glyphs
and colors (F). A table (G) shows relevant metadata for each voxel.

measure to check whether the data were sampled in the correct region, and (2) to pro-
vide initial validation for graph differences between spatial regions. This is because a
normal spectrum in one area of the brain may be aberrant in another region with a dif-
ferent tissue composition [475].

T2: Selection and Filtering. Following an overview, researchers next select and fil-
ter the data (Fig. B.2B). In both medical and clinical research studies our collaborators
often wish to select a subset of spectra or metabolites for further analysis for a variety
of different reasons. For instance, researchers may wish to look only at the variation
in metabolite concentration ratios for a single time acquisition in a longitudinal cohort
study, e.g., pre-operative patients in a tumor cohort, or to analyze only female subjects
within a study. Furthermore, some metabolites may be uninteresting to include for cer-
tain clinical studies, e.g., lipids and macromolecules are not usually relevant outside of
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certain oncological studies [475], and are useful to exclude on–demand.

T3: Data Production. Spectra can vary considerably between acquisitions. This
can occur due to different acquisition parameter settings or simply between different
scanners. Ratios and correlations calculated from metabolite concentrations are two
standard methods to understand spectroscopy data [315]. The use of ratios to deter-
mine metabolite concentrations is a core critical task for any MRS application for two
reasons, (1) as a method to correct for inhomogeneity across the sample and (2) to ac-
count for varying tissue composition. Following selection of interesting metabolites
for analysis, a data derivation step takes as input the Tarquin–processed and quantified
metabolite values and outputs the metabolites in ratio form (Fig. B.2C).

T4: Comparison and Summarization. Following data derivation, researchers
then wish to summarize and compare metabolite ratios (Fig. B.2D). For example, re-
searchers studying oxygen deprivation (hypoxia) in newborns are interested in com-
paring the metabolic differences between healthy and hypoxic newborns. This can
be achieved by evaluating ratios of the same metabolites between both groups, e.g.,
NAA healthy vs. NAA hypoxic. Futhermore, researchers would like to understand the
metabolic profile of hypoxic newborns on a spatial and individual level. For instance,
the basal ganglia region of the brain is known to be sensitive to oxygen deprivation,
so it is clinically relevant to compare this region to a less sensitive region. Within a
given region of interest researchers then wish to compare individuals to identify clini-
cally relevant outliers in order to answer questions such as “How does Lactate/Choline
compare for Patient X versus Y?" Moreover, oxygen-deprived newborns who survive
often experience developmental disabilities later in life. Longitudinal MRS studies al-
low researchers to understand how the metabolic profiles of affected individuals change
over time relative to healthy individuals. In a different scenario, researchers studying
schizophrenia are interested in comparing the metabolic profiles of individuals when
their brains are active relative to their resting brain state. Different metabolites present
in different concentrations in these states, and identification of these differences may
help progress understanding of this disorder.

Following comparison of interesting metabolite ratios, researchers often wish to re-
fine their hypotheses and revisit metabolic input data. This task sequence then repeats,
following an iterative analytical approach to hypothesis exploration and verification in
MRS data.

B.4.2 Design Requirements

Following the identification of tasks important for our collaborators in MRS analysis,
we developed the design requirements for our application. First, on a technical and
infrastructure level, our colleagues often switch between hospital workstations while
accessing sensitive patient data. Thus, for practical utility it is critical to provide a
tool that enables a machine-independent workflow (R1) that adheres to patient data
restrictions (R2).

As discussed in T3, for a combined analysis of spectra acquired from different
scanners, or with different acquisition settings, it is necessary to calculate metabo-
lite ratios (R3). Furthermore, as implied by T1 and T2, visual linking between input
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data (voxel placement, spectral graph, patient- and acquisition-specific information)
and calculated metabolite ratios is important for many analysis questions (R4). For
our collaborators, the most important patient and scanner-specific information to retain
include patient age, gender, and echo time (TE).

Based on the types of questions outlined in T4, users must be able to compare
metabolite ratios of interest (R5). This should be accomplished for any permutation
through four key attributes: spatial region, individual, time point, and brain activity
state. Additionally, appropriate mechanisms to compare ratios over time as well as
between spatial regions and individuals are critical for longitudinal or single-run stud-
ies. Furthermore, for functional MRS studies it is important to support comparison of
metabolite ratios in an active relative to a resting brain state.

B.5 SpectraMosaic Workflow and Interface

We provide an overview of the SpectraMosaic interface in Fig. B.3. Following an of-
fline processing step, data are loaded into the web tool (Fig. B.3A). Data of interest for
analysis can be explored, selected, and added (Fig. B.3B-D) to a spectral ratio heatmap
for deeper inquiry and hypothesis verification (Fig. B.3E). A legend provides informa-
tion on the encodings used in the tool (Fig. B.3F). A table below the heatmap summa-
rizes salient acquisition information (Fig. B.3G).

Data Processing and Loading. We first perform an offline processing step that au-
tomates spectral processing and quantification from Tarquin and MATLAB [329]. We
utilize MATLAB to process the structural imaging files, which includes patient data
de-identification (R2). The resulting output contains a structural image to localize the
voxel sample, the spectral graph, quantified metabolites, and associated metadata; these
data remain semantically linked in the visual tool. We use a custom data format because
the DICOM standard is not universally or consistently adopted for MRS data.

Visual Inspection of Voxel Positioning and Spectral Graphs. Following data load-
ing (Fig. B.3A), the spatial voxel overview panel (Fig. B.3B) is used to review the spec-
tral graph, associated anatomical image, and included metadata for each acquisition.
This panel consists of a set of images for each patient. In each structural image, a fuch-
sia rectangle indicates the voxel sample region for the MRS acquisition (Fig. B.3B1).
To the left, a position selector consists of small filled nodes, each of which indicates
an acquisition for the selected patient. Using the standard CPK color convention for
atomic elements [92], we represent 1H spectral metabolites with a white-filled node.
A light gray bar behind the disks shows the active selection image, while the node be-
comes filled in fuchsia to indicate image linkage to a spectrum that is selected in the
spectral heatmap panel (Fig. B.3B2). Users can access different images via these posi-
tion nodes or time acquisition nodes (horizontal axis). A selected node shows the struc-
tural image with localized voxel, associated spectral graph, and supplemental metadata,
such as TE setting, patient age and gender, stored with that voxel (R4). These data are
stored hierarchically, where each voxel sample with spatial information is first sorted
by individual identifier and associated metadata, then by time of acquisition, and finally
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by brain activity state during the acquisition.

Group Creation and Metabolite Selection. Following visual inspection of voxel
position and spectral graphs, the user may then create custom groups of spectral voxels
for subsequent analysis (T3) in the Voxel Group Overview panel (Fig. B.3C). Custom
groups may be edited at any time. Membership in a custom group is listed in the
metadata table at the bottom right region of the interface (Fig. B.3G). Our application
additionally creates preset groups for each echo time, spatial region, individual, brain
state, and time point. These may be immediately accessed in a drop-down list in the
Metabolite panel (Fig. B.3D).

Following a group selection from the metabolite drop-down list, all quantified
metabolites from the offline processing step are displayed. Users then have the op-
tion of adding all metabolites in the list to the x-axis, y-axis or both axes of a spectral
ratio heatmap located to the right of this list (Fig. B.3E). Alternatively, only a subset
of metabolites may be added to the heatmap axes. Groups may be flexibly added or
removed from either axis at any time. Metabolites populate along heatmap axes in al-
phabetical order; we discussed a number of ordering options with our domain collabo-
rators, settling on this ordering method for consistency and pattern recognition between
studies.

Ratio Exploration. Following loading of metabolite groups onto each axis, we deter-
mine ratios for all metabolite permutations for display in the heatmap panel (Fig. B.3E).
This serves as the primary visualization component of our tool, as shown in Fig. B.3E
and which is described in detail in Section B.6. In this view, users can compare aver-
age (Fig. B.3E1) or individual metabolite ratios at different levels of detail (R5). Users
may interactively expand a cell to reveal key attribute details (Fig. B.3E2), as inspired
by Bertifier [395]. The background of the cell remains visible behind individual ratio
elements for all expansions to preserve context of the aggregated value during naviga-
tion. This subtle context preservation was deemed useful by experts in our development
process.

A legend at the far right (Fig. B.3F) serves to indicate hue and glyph meaning. Hov-
ering over a cell or glyph correspondingly highlights linked data elements in fuchsia,
including the associated spectral graph, patient anatomical image, and associated meta-
data (R4), as depicted in Fig. B.3G.

B.6 Spectral Ratio Heatmap

In the heatmap panel we divide MRS data elements into tiers of visual priority (R3-R5):
Tier 1 Quantified spectral data
Tier 2 Derived spectral data
Tier 3 Spectral metadata

Tier 1 has primary importance; it consists of relative metabolite concentrations
which are the result of pre-processing and quantification steps from the raw spectral
acquisition. Tier 2 comprises the complete set of metabolite ratios. It is used for
comparison between user-defined groups as well as the following key attributes: spa-
tial region, individual, brain activity state, and time point. Spatial region indicates the
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voxel sample position within the brain. Individual refers to a given patient included
in the analysis. Time indicates either the number of separate spectral acquisitions per-
formed on an individual over a study period, as in a longitudinal study, or recorded
metabolite values within an acquisition session, as in a time-resolved MRS study. Fi-
nally, brain activity state indicates if the subject was in an active (task-explicit) state or
resting (task-negative) state during signal acquisition. Tier 3 includes metadata impor-
tant for context and selection that are unnecessary to include as explicit encodings in
the visualization: gender, age, and acquisition settings can have varying impact on the
resulting concentrations and ratios of metabolites [475, 568].

Tier 1 Encoding. Visual perception research has shown that encoding position along
a common axis is the most effective visual channel for communicating quantitative
information [90]. Box plots are a simple, ubiquitous and descriptive means of visually
encoding statistical information about a dataset [556]. Since each MRS spectrum is
essentially a multivariate set, where each metabolite is a variable, each metabolite in
the spectrum then is tied to its own set of unique statistical information. We chose
box plots over violin [198] or summary plots [400] to visualize tier 1 data, as our goal
with this tier is to provide clean, quickly readable insight to the input value range. Our
use of box plots is additionally inspired by Blumenschein et al. [52], who used bars
to encode aggregate dimensions in their work on table visualization. Bars and box
plots are additionally well-recognized and easy to interpret; use of elements that were
familiar to our target user group was an important design consideration. Furthermore,
since box plots are only applicable when a dataset consists of five or more members, we
introduce three variations depending on the number of inputs as illustrated in Fig. B.4.
For any of these variations, we first flatten the voxel hierarchy described in the spatial
overview panel, and split the data into one voxel array per axis. In each array, we
calculate the mean for each metabolite. In the case of a single spectral input, we use
design variation A, which utilizes bars only, where height encodes the concentration
of each metabolite (Fig. B.4A). We calculate median, minimum, and maximum for
two or more metabolite values on an axis. This corresponds to variation B, where
height encodes the median value and whiskers encode the minimum and maximum
metabolite concentration value, respectively (Fig. B.4B). For five or more metabolites
on an axis we additionally calculate the interquartile range. The box and whisker plot
in variation C is utilized in this case, and shows the median, first and third quartiles,
and the minimum and maximum value (Fig. B.4C).

Tier 2 Encoding: Overview. In tier 2, we visualize ratios between the mean along
the x- and y-axes in a heatmap matrix (R5), as shown in Figure B.3E. This effectively
trades the low spatial resolution of MRS data for abstract resolution, focusing on bio-
chemical concentrations in detail for a small region of interest. Each cell shows the
aggregate ratio of the metabolite on the x-axis position to the corresponding y-axis
metabolite, for instance mean Glutamine (Gln)/mean N-acetylaspartate (NAA), as il-
lustrated in Fig. B.5. We map the ratio value to a diverging red-blue colormap [185]
inside each heatmap cell, as this color scheme is a familiar sight to our collaborators.
In instances where the ratio is less than 1, we invert the ratio and switch the sign. To
obtain a cleanly symmetric, divergent mapping structure we drop all values by 1 so the
diagonal of the heatmap matrix is 0, rather than 1. Our aim is to draw attention to large
input differences; this was identified as important for spectroscopy researchers. Red
indicates a higher x-axis metabolite input while blue indicates a higher y-axis metabo-
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Figure B.4: Box and bar plots encode metabolite concentrations (tier 1 visual encoding). (A)
utilizes bars where height encodes the concentration of each metabolite for a single spectral
input. (B) is utilized for two to four spectral inputs on an axis, where height encodes the me-
dian value and whiskers encode the minimum and maximum metabolite concentration values,
respectively. A box plot (C) is utilized for five or more spectral inputs on a given axis.

lite input. Equivalent inputs map to white. If an input value is 0, we map the cell color
to dark grey. We originally thought to exclude such values from the heatmap, but on
further discussion with our collaborators felt these were useful to include in order to
preserve context. This heatmap view provides a means to visualize otherwise unde-
tectable patterns in a rapid overview. To aid color interpretation and perception, our
application includes a colormap legend to the right of the heatmap (Fig. B.3F).

Tier 2 Encoding: Attributes. Through a series of group interviews and individual
shadowing sessions to the MR scanners we identified that, following an overview of all
aggregated metabolite ratios, researchers are most interested in comparing and sum-
marizing (T4) individual metabolites. For a given metabolite ratio, researchers first
are interested in comparing brain spatial regions, as this can provide the most context
for understanding ratio differences, e.g., in a tumor cohort study where voxels are ac-
quired in the tumor region and in a healthy region of the brain. With spatial context,
researchers can easily compare ratios between individuals. Assessing brain activity
state is then most relevant in the context of the individual. After comparing the dif-
ference in active vs. resting brain state for an individual, the researcher may review
the difference in these values over a cohort. Similarly, time points are best assessed
first within a given brain state, then between states of an individual, before comparing
between individuals.

In order to support experts in better identifying unexpected source ratios in a study,
they thus need to evaluate four key attributes: (1) brain spatial region, (2) individual,
i.e., patient, (3) brain activity state, and (4) time point. . Furthermore, through each of
these analysis stages we found that researchers prefer to maintain context between at-
tributes to better understand sources of variation. This helped drive our development
of a detailed metabolite ratio view that nests within each heatmap cell. Many MRS
studies, particularly proof-of-concept research studies, by our collaborators often in-
clude around 20 subjects. They may sample up to four brain regions (although two is
more typical), include up to three time points, i.e., pre-operative, post-operative, and
long-term follow-up, and measure either a single or dual brain activity state. This space
of attributes and approximate study size produces a set of 16 possible case scenarios to
account for in our detailed comparison view.

Tier 2 Encoding: Detail. Given the low number of key attributes, we found a simple
glyph representing each attribute to be the most conducive to user analysis. Our glyph
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Figure B.5: In nested ratio calculations, the cell background (A) is first mapped to color based
the average of input metabolites on the x-axis divided by the average of input metabolites on
the y-axis. Within the cell (B), the value of each input metabolite for all patients, at all time
and brain state collections, is averaged and compared as a ratio for each spatial region. Within
a spatial region, the average of each metabolite is compared for each patient, then for the brain
state of each patient. The innermost step, time, takes a single metabolite input for both the
numerator and denominator.

choice and design was mainly inspired by findings from unit visualization research,
mainly the ATOM grammar by Park et al. [390], for this method’s demonstrated strong
intuition and interaction properties. Since our target study sizes are typically relatively
small, we avoid issues with display and perceptual scalability from which unit visual-
izations often suffer. To maintain important context in the analysis flow, we nest glyphs
to mirror the order of analysis preferred by researchers. Our glyph nesting design was
inspired by dimensional stacking visualization techniques pioneered in XmdvTool and
N-land by Ward et al. [542, 543]. Since nested glyphs can form complex shapes, we
chose glyphs that were simple and familiar to our collaborators to reduce interpretation
difficulties. Although we discussed different stroke styles for glyphs, for simplicity and
clarity our ultimate design uses a solid hairline stroke for each of the four attributes.
Experts felt that changes in stroke weight or style was distracting and overemphasized
elements; this may bias conclusions.

The visual design for this detailed view is mapped from a series of nested ratios.
Inside each cell we flatten the data to a single voxel array, skipping any duplicate voxels.
We then determine ratios for each of the key attributes, where available, in a nested
fashion that mirrors the preferred order of user analysis: the ratio for each spatial region
(using the average of all individuals for this region), each individual (using the average
of all states for the given individual in a given region), each state (using the average
of all time points for a given state of an individual from a given region) and each time
point, as shown in Fig. B.5B. These nested values then map to the appropriate glyph.

We represent spatial regions as rounded rectangular glyphs. We chose rounded cor-
ners to distinguish spatial glyphs from the square shape of the heatmap overview cell.
Furthermore, the rounded corners leave space to reveal the heatmap cell color, thereby
subtly preserving context within the detail view. In each cell, we evenly divide the
space vertically by the number of distinct regions sampled. Individuals are presented
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Figure B.6: Key tier 2 visual attributes include: brain spatial region, individual, brain state,
and time point. We assign a unique glyph to each of these four attributes. Brain state is defined
as active or resting; in absence of a classification we assume a resting state. All remaining
three attributes may have single or multiple recordings. This produces 16 possible scenarios
for spectral analysis. A sample visual is included for each scenario.

as filled disks when only shown in a single time acquisition (e.g., case 9), expanding
to rounded squares when time series data are incorporated (e.g., case 3). This shape
change permits a spark line to move evenly across the space without going outside the
border of the enclosing glyph. Shapes scale to fill space within their frame. In in-
stances where different brain activity states are analyzed, we divide the shape in half
horizontally (e.g., case 2). This feature was important to include for our collaborators
who perform time-resolved spectroscopy, as this is not available in other tools. Finally,
we encode different time acquisitions as points connected via a spark line, inspired by
Meyer et al. in their work, Pathline [341]. This spark line is nested into the relevant
glyph: if a multi time step series is captured in a study analyzing different brain states,
the spark line is placed within each state half-moon glyph (e.g., case 4). If analysis
is only for a single activity state, the spark line nests inside the individual glyph (e.g.,
cases 3, 11), or inside spatial glyphs for a single patient (e.g., case 7). The remaining
cases comprise different permutations of these spatial region, individual, brain state,
and time point arrangements.
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For example, consider an instance of scenario 16: two patients are sampled in two
regions of the brain four times in a year. During two acquisition times the subjects
were asked to perform a task (active brain state), while the other two times were asked
to relax (resting brain state). This produces a total of 12 unique measurements, 6 per
patient. The overview cell is calculated by averaging the 6 values of Gln for patient 1
and the 6 values of NAA for patient 2, and dividing the result of NAA into Gln. In-
side the cell, we compute this ratio as a series of nested averages for each of the four
key attributes, as depicted in Fig. B.5: (1) spatial region, (2) individual, (3) brain state,
and (4) time point. For each, we average the metabolite concentrations before com-
puting the ratio. For additional detail view images and example tasks of each scenario
in a more complex dataset, we refer interested readers to the supplementary material
SpectraMosaic Detail Case Scenarios.

Hovering facilities display the ratio value for each cell or attribute of interest (R5).
Displaying this numerical value provides a safeguard against possible distortions of
color perceptions that may occur with our chosen glyph nesting structure. This value
is displayed in red text if one metabolite input exhibits an uncertainty above 15%
(Cramér-Rao lower bound) [82]. This information may be used to assess both the qual-
ity of the measurement and the accuracy of the spectral processing and quantification
steps.

Tier 3 of MRS data consists of metadata information used for context and selec-
tion. We depict this information in a table below the heatmap. Gender, age, and echo
time comprise other important patient attributes to track because the shape of the spec-
trum can vary considerably with these factors—for example, the lactate peak is virtu-
ally undetectable in healthy babies [568], but is nearly always measurable in healthy
adults with increased neural activation [475]. Acquisition settings are also important,
as different echo times will yield a vastly different spectral representation for the same
patient.

B.7 Implementation

SpectraMosaic is a web-based application implemented with HTML, CSS, Javascript,
as well as the D3 [60], P5, and gridster Javascript libraries. It was developed as a web
application to allow for easy integration and use within the hospital network (R1). A
Python back end integrates MATLAB [329] and Tarquin [557] components in the pre-
processing steps. Assets are stored on the client and fetched on-demand. Our visualiza-
tion tool code is open source and is publicly available at https://github.com/mmiv-
center/spectramosaic-public.

B.8 Case Study

We evaluated the utility of SpectraMosaic as a research tool using a giardiasis MRS
case study. Giardiasis is a parasite-borne disease affecting the small intestine caused
by drinking water contamination. The metabolic byproducts of this disease are subtle,
but have been shown to be detectable by MRS [117, 526]. The goal of this study is to
explore and identify possible metabolic indicators for infection using our tool.
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Figure B.7: Heatmap inspection in a two-patient, multi-voxel study acquired at two TEs: 35
ms (x-axis) and 144 ms (y-axis). Investigating the Alanine (Ala)/Alanine (Ala) cell reveals a
higher measurement in the TE 144 ms group. However, the tooltip indicates that this ratio may
be unreliable due to a poor model fit.

Collected in Bergen, Norway, study data comprised two patients imaged some
months apart in three different regions of the brain at a single echo time (TE 35 ms).
For one region (prefrontal region) two different TE parameter settings were used (TE
35 ms and TE 144 ms). These data were analyzed by three volunteers recruited from
the fMRI/MRS research group in Bergen. All three provided feedback on earlier in-
terfaces of the SpectraMosaic application, and are not co-authors of this work. User A
is an MR physicist specializing in development and refinement of spectroscopy proto-
cols for clinical studies of neuropsychiatric and developmental disorders. User B, also
an MR physicist, uses 31P and 13C-labeled pyruvate timecourse data to study real-time
metabolism. User C is a cognitive neuroscientist who uses MRS in conjunction with
fMRI in research on neurodegenerative and developmental disorders, e.g., Parkinson’s
disease, stroke, and stuttering. We processed the data in advance to focus evaluation on
the visual web tool; this step included de-identification of patient-specific information.

Case Workflow Feedback. After a brief introduction to the tool, users analyzed
this case following a “think-aloud" protocol [298]. We conducted follow-up interviews
after the analysis was complete, which we summarize and discuss in this section.

All three users began with an overview of the spectral graphs and voxel position for
each imaged brain region (T1). User A investigated spectral graphs by region, while
B and C explored by patient. Users A and B commented that this overview provides
an important quality assurance check for each acquisition. Since all three users are
familiar with MRS, they agreed with our decision to exclude labeling of spectral peaks;
they felt this would have been unnecessary and distracting to include. All commented
that the hippocampus region spectra looked strange, which could be indicative of either
a pathology or acquisition problem. They noted that this region is particularly difficult
to image well, and requires deeper investigation.
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All users then explored available group presets and experimented with creation of
custom groups for analysis (T2). They agreed that the presets particularly improved
the practical usability of the tool, stating that these were comprehensive and largely
removed the need to make custom groups. All users experimented with adding a subset
of basis set metabolites (Fig. B.3D) to the heatmap view, although they felt that analysis
of all metabolites is a useful first step for exploring new hypotheses. However, they
agreed that subset metabolite analysis is useful as hypotheses are refined to a narrower
metabolite set.

Feedback was positive for the alphabetical ordering of metabolites on heatmap axes.
User C strongly felt that any statistics-based ordering method would make interpreta-
tion too difficult because they would spend too much time locating metabolites along
the axes. All users agreed that the representation of metabolite relative concentrations
as whisker bar or box plots was extremely useful, as it offered additional insight into
unexpected values observed in the heatmap. User B stated: “Checking the range on the
metabolite inputs helps me as a first check; a huge range could indicate a [brain region]
area effect or a bad acquisition. I can easily then verify this by checking the spectral
graph in the other panel." All users noted a massive range for Gamma-Aminobutyric
acid (GABA) in this study, and were able to quickly conclude that the acquisition tech-
nique used is not effective for this metabolite. For this study and others acquired on the
same scanner, through the same technique and parameters, this representation allows
for a straightforward relative comparison of metabolites before ratio computation (T3).

In the spectral ratio heatmap, user A was primarily interested in exploring ratios at
different echo times (TE) (T4). We see this exploration in Fig. B.7; TE 144 ms vox-
els are placed on the y-axis while TE 35 ms voxels are placed on the x-axis. This user
focused on the diagonal of the matrix, and primarily on examining known metabolites
implicated in giardia infection, e.g., Alanine. Although this ratio shows relative simi-
larity, we note that the model fit for this metabolite is outside the accepted range. This
requires further investigation. User B also compared different echo times, but over the
entire matrix space for any unexpected dark color regions. For each unexpected cell,
the user noted whether this could be pathology, or an acquisition problem.

All three users were also interested in comparing ratios of metabolites between pa-
tients for each of the three measured brain regions (T4). They first filtered out TE
144 ms acquisitions, then arrayed each patient on opposing axes. Assuming both pa-
tients are healthy, we would expect that the patient glyphs for all spatial regions would
show similar values. All three users noted an unexpected, relatively large difference
for Lactate/Total Creatine in the hippocampal region (Fig. B.8). To investigate this dis-
parity, users A and B first verified whether the value met the threshold for each patient.
The value did not meet the threshold for the female patient, indicating an unreliable
fit. Users then reviewed the spectral graph of the hippocampal acquisition for this pa-
tient, noting its abnormality—users concluded that this merits deeper investigation, and
likely requires an new acquisition.

Summary Feedback. All three participants felt that SpectraMosaic was useful and
could augment their standard workflow for deeper insights into spectral data. User A
noted that the visual feedback on the model fit in each ratio provides invaluable data
quality information. User B stated, “The linking between the glyph ratios, the spectra,
the table, and the images is incredibly useful for us—whenever we look at metabolite
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Figure B.8: Following overview of the metabolite ratios between the individual patients, the
user inspects Lactate (Lac)/Total creatine (TCr) ratio between two patients for all three regions
at TE 35 ms. The user notes a high lactate measurement for the female patient relative to the
other measured regions (A). Subsequent inspection of spectral metadata (B), the spectral graph
(C), and the brain region in which this measurement was acquired (D) help establish reasons
for this difference.

results we always want to go back to the raw spectra and see if this makes sense, and
if the quality is good, and this makes it really easy to see. I see this tool as being useful
to verify assumptions I have going in to the study, and to explore the entire range for
quality checks that might affect the results that I’m expecting."

All participants felt the nested glyphs were integral elements of the metabolite ra-
tio exploration process. The detail glyph view provided a means to quickly drill into an
unexpected ratio and identify the possible source(s), while easily retaining contextual
information from the surrounding heatmap. User C noted: “This [spectral heatmap]
overview and detail glyph feature is useful to have a closer look at, for example, neu-
rodegeneration [in Parkinson's] with the loss of dopaminergic connections, as seen
with concentrations of glutamate or GABA... and it is ideal for testing new proto-
cols against established protocols." Furthermore, experts agreed that the glyph design
and nesting structure was intuitive and clear in all case scenarios, even in larger, more
complex studies. All three stated that interpreting these glyphs was not difficult, par-
ticularly when compared to the very steep learning curve to interpreting spectral data
through their standard approach. They agreed that the inclusion of the legend was help-
ful when first familiarizing themselves with the system, but that they had little need to
reference it after the first few minutes of heatmap exploration. However, two experts
commented that our mapping of vertical time points could be scaled differently to more
clearly demonstrate relative ratio value changes, which were at times difficult to rec-
ognize. For detailed expert feedback on clarity and interpretability of the nested glyph
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structure in all 16 possible case scenarios in a larger dataset, we refer interested readers
to SpectraMosaic Detail Case Scenarios in the supplementary material.

All users indicated interest in an option to extract spectral heatmap visuals and
data for subsequent statistical analysis; user A expressed interest in seeing this output
to the hospital PACS for access by radiologists to aid in more rapid interpretation of
spectroscopy data for more widespread clinical use.

B.9 Discussion and Limitations

In the case evaluation of SpectraMosaic we found that our tool provides new, interesting
insights on metabolic profiles at different aggregation levels.

Our task analysis showed that experts were particularly interested in large metabo-
lite differences. Although our diverging color mapping approach in the heatmap is
effective in demonstrating large differences between metabolites, subtle differences are
less obvious. Investigation into fine grained color mapping options or user-defined
color map scaling may help more clearly highlight these instances. This extends to our
plotting of time points, where subtle ratio changes could benefit from a logarithmic axis
scaling approach to highlight such changes to users.

While our decision to sort metabolite inputs in a consistent order limits the abil-
ity for pattern recognition within a study, this approach allows for pattern recognition
between studies, where users can begin to observe a typical “footprint" for certain ac-
quisition techniques.

Although this is uncommon for our collaborators, we also note that if data are not
acquired from the same scanner and same parameters, the utility of the bar and box
encoding becomes more limited. This is because different scanners and different pa-
rameters can vastly change the metabolite concentrations; in this case the ratio heatmap
becomes the primary tool for comparative analysis.

Our visual design, particularly with reference to the nested glyphs in the detail view,
was guided by collaborative discussions with research experts. These relatively small
study sizes are conducive to nested unit visualizations, and in this iteration of the ap-
plication were not designed to scale to, e.g., hundreds of patients. With respect to the
scalability of groupings within our planned design, we conducted a preliminary assess-
ment of nested glyph interpretability for each case scenario using a larger study. We
provide the results of this assessment in the supplementary material (SpectraMosaic
Detail Case Scenario). Our collaborators even indicated that they could envision this
approach scaling beyond 20 patients for some scenarios. Additionally, we could in-
corporate clustering or an additional design layer for automatically- or user-generated
groupings for further scalability (T4).

Lastly, while our glyph system covers all main use cases, we found that echo time
is varied in research studies more often than initially expected. This frequency of use
may imply that this attribute should be encoded at the second priority visualization tier,
rather than its current third level. However, comparison of different echo times beyond
an overview level is of less clinical interest than the four attributes we have discussed.
Inclusion of a fifth glyph would require careful consideration.
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B.10 Conclusions and Future Work

In this design study we contributed a characterization of the data, task, and design
requirements for the development of SpectraMosaic, followed with an expanded tiered
visual encoding system and pipeline. We performed case studies with three domain
experts to validate our tool in spectroscopy clinical research and protocol development.
MR spectroscopy is a ripe area for continued visualization research.

The flexible design of our tool allows for a number of possible extensions; this may
include investigation into additional statistical measures relevant for comparative anal-
ysis, e.g., correlation. Although this paper focuses on 1H-MRS, 31P-MRS and 23Na-
MRS analysis may also be integrated to our tool. While we offer basic mechanisms
for uncertainty visualization, exploring additional means for uncertainty feedback in
the heatmap cells and glyphs can offer deeper insights into the data. Finally, although
typical MRS cohort studies are relatively small, exploration of methods to extend our
visual encoding system to successfully manage larger cohorts may further increase tool
usability.

Automatic interface adjustment based on acquisition technique offers a valuable in-
vestigation of parameter space analysis in MRS. Exploration of the most salient features
to reveal for, e.g., PRESS versus MEGA-PRESS, may help experts more effectively
identify interesting ratios for further investigation. Beyond the medical domain, an ad-
ditional interesting line of inquiry would be to explore the adaptability of our abstracted
tasks paired with our visual encoding system in other areas facing similar challenges
with heterogeneous multidimensional data, such as meteorology or geophysics.
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Abstract

The identification of interesting patterns and relationships is essential to ex-
ploratory data analysis. This becomes increasingly difficult in high dimen-
sional datasets. While dimensionality reduction techniques can be utilized
to reduce the analysis space, these may unintentionally bury key dimen-
sions within a larger grouping and obfuscate meaningful patterns. With this
work we introduce DimLift, a novel visual analysis method for creating and
interacting with dimensional bundles. Generated through an iterative di-
mensionality reduction or user-driven approach, dimensional bundles are
expressive groups of dimensions that contribute similarly to the variance of
a dataset. Interactive exploration and reconstruction methods via a layered
parallel coordinates plot allow users to lift interesting and subtle relation-
ships to the surface, even in complex scenarios of missing and mixed data
types. We exemplify the power of this technique in an expert case study on
clinical cohort data alongside two additional case examples from nutrition
and ecology.

This article was published in IEEE Transactions on Visualization & Computer Graphics, vol. 27(6), pp.2908-
2922, 2021.
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Dimensionality reduction techniques are frequently utilized to reduce the complex-
ity of high dimensional data by projection to a lower dimensional space. However,
when used alone and monolithically, these techniques can emphasize strong, uninter-
esting patterns in the data and hide important variations. For example, although cardiac
risk is well-known to correlate with waist measurement, a more interesting, though
subtle, relation to gender or smoking may be relevant for a clinician to see. Visual
analytics leverages the strengths of powerful statistical tools, including dimensionality
reduction, in tandem with user knowledge. However, while some visual analysis tools
have been developed to create expressive dimensional groupings, they do not easily
allow for incorporation of user knowledge for faceted hypothesis generation. Further-
more, connecting the results of the dimensionality reduction back to the original data
for interpretation and relation to subsequent steps, e.g., decision making, can be diffi-
cult.

For instance, in clinical cohort studies medical experts are chiefly interested in un-
tangling interesting and relevant measures of a given disease, e.g., cerebral small vessel
disease (CSVD), for diagnostic purposes. Biomarker discovery is a complex and chal-
lenging process, and dimensionality reduction techniques provide a means to reduce
the analysis space. However, these techniques may produce groupings that are not in-
teresting to the expert for particular subcohorts, e.g., a specific gene expression level
grouped with test results for young patients. Our method, which utilizes iterative di-
mensionality reduction to extract subsets of dimensions that contribute similarly to the
variation of a dataset, allows for flexible user-driven restructuring of subcohorts and
subsequent groupings to support exploratory hypothesis generation. For example, ad-
justing the previous subcohort to include middle-aged patients with high blood pressure
may be done to support a new hypothesis that high expression of a particular gene in
combination with a certain range of test scores, such as high blood pressure, can act
as a set of indicators for CSVD in middle-aged patients. Similar such scenarios occur
in many areas of science and engineering. These domains are interested in exposing
patterns in subsets of large, complex populations, and benefit from this style of visual
reasoning.

The rapid identification of interesting patterns and relationships is key to the anal-
ysis of complex high dimensional data. Achieving this requires effective integration
of statistical methods with user knowledge to reduce the space to salient dimensions.
Core to our approach is the concept of dimensional bundles: statistical- or user-driven
groupings of dimensions that are accessible as a unit or at the component level. Our sta-
tistical approach utilizes factor analysis of mixed data (FAMD) [289], a dimensionality
reduction technique applicable to complex, mixed-type data. We run this algorithm
in multiple iterations over the data; each iteration captures and extracts a set of di-
mensions, so called dimensional bundles, which contribute similarly to the variance
within the dataset. This avoids a monolithic treatment and instead produces hierarchi-
cal bundles of dimensions that retain the expressitivity of the original dataset. While
previous approaches to dimensional grouping have focused on clustering or dimension-
ality reduction methods that converge to an ideal representation of a high dimensional
dataset [269], our approach facilitates dynamic visual navigation and composition of
high dimensional data to lift subtle, interesting features to the surface. A simple ex-
ample of dimensional bundle restructuring is shown in Fig. C.1, where we explore the
relationship between cardiac risk and gender.
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Figure C.1: We inspect a dimensional bundle comprised of lifestyle dimensions, e.g., edu-
cation (b1), workout frequency (b2), smoking (b3), cardiac risk (o2), and gender (c1). We
suspect a correlation between cardiac risk (o2) and gender (c1), so then lift these dimensions
to better target and test our hypothesis by removing all other dimensions from this bun-
dle. With an eigenvalue above 1 and changes in contributions/loadings indicated by hue at the
bottom of the axes, we note a subtle correlation that was previously undetectable. This is
conceptually illustrated on the left.

Expressive visual mapping techniques from visual analytics have been developed to
represent dimensional hierarchies, e.g., parallel coordinates plots with embedded clus-
ter diagrams [207]. However, these solutions typically expect data in a pre-established
hierarchical structure, or offer limited interaction methods for restructuring groups dur-
ing analysis. By contrast, our method proposes to semantically connect and track data
transformations through visual mappings and interactions that allow on-the-fly recom-
position of dimensional bundles. This provides a flexible solution to swiftly adapt
perspectives on high dimensional data with the potential to rapidly identify relevant
relations, even when overshadowed by well known or less interesting trends. Our con-
cept extends to complex mixed-type and incomplete data. Following a review of related
work and a description of our methodology, we demonstrate the power of our approach
in the context of three scientific datasets, one of which is a case study with domain
experts in clinical neurology.

C.1 Related Work

Visual analysis of high dimensional data is a grand challenge in the visualization
research community, with applications across numerous domains. Discussion of ef-
forts in this general area are beyond the scope of this paper, but are detailed with a
survey of advances in recent years by Liu et al [307]. Our work expands on the idea
of simultaneous dimensions and items analysis for exploratory hypothesis generation,
described as the Dual Analysis approach, by Turkay et al. [510]. This work, along
with a follow-on clinical application study [511], describes a visual analysis workflow
where users seamlessly move between analysis of dimensions through comparative de-
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scriptive statistics and item comparison to identify outliers and correlations of interest.
Brushing and linking mechanisms provide clear visual feedback during the analysis
process. This approach has since been extended to incorporate mixed data (continuous
and categorical) with facilities for visualization of missing data by Müller et al. [351].
DimLift expands further on the reciprocity between dimension and item space by in-
troducing dimensional bundles for analysis of high dimensional data. The SIRIUS
system, presented by Dowling et al. [110], explores the interplay of dimension and
item space while incorporating a nonlinear dimensionality reduction technique. This
approach shows MDS projections for both dimension and item space in linked views
to demonstrate correlations in high-dimensional data. Our approach similarly utilizes
dimensionality reduction to aid correlation exploration of high-dimensional data, but
adopts a linear technique to better track between the original and newly-produced di-
mensions.

Dimensionality reduction is used ubiquitously in visual analytics. Sacha et
al. [429] provide an overview and classification of dimension reduction methods as used
in visual analysis. Our work incorporates dimensionality reduction into a subset of the
interaction scenarios they identified: data selection & emphasis, data manipulation, and
feature selection & emphasis. Similar works in this space include the work of Tatu et
al. [493], who utilize an interestingness-guided subspace search algorithm to identify
subspace sets for subsequent visual analysis, although tools for user-driven subspace
composition are limited. The DimStiller workflow by Ingram et al. [215] guides users
through the dimensionality reduction process to find a single global optimal compo-
sition; our approach by contrast does not emphasize a single global optimum, and is
designed for a variety of complementary perspectives onto relations between relevant
subsets of the dimensions. Yuan et al. [576] combine a Dimension Projection Matrix,
an extended scatterplot matrix, with a Dimension Projection Tree to explore data and
dimension subspaces. Our approach tackles a similar goal of dimensional subspace
analysis at both item and dimension levels with related interactions. However, our vi-
sual approach enables direct correlation comparison between multiple dimensions and
items in a parallel coordinates view, and is targeted specifically at user-driven hypoth-
esis exploration.

Although dimension reduction methods project relevant data features into low di-
mensional space, the results are often difficult to comprehend. Principal component
analysis (PCA) [394], although a well-known and broadly applicable method utilized
in dimensionality reduction, suffers from this interpretation gap. Müller et al. [357]
present a general discussion of design solutions to clearly visualize the connection be-
tween data inputs and results from PCA. However, many of these solutions do not scale
well with high dimensional data. Our visual interactive approach offers one method
for bridging this intuitive gap into high dimensional data spaces. iPCA [235] is one
other such solution designed to connect PCA results to source data. It uses multiple
coordinated views to depict PCA results with interaction facilities for the user to ad-
just dimension contributions within any principal component—any adjustments update
visuals for the final PCA results. Our approach similarly uses visual elements and in-
teractions to connect the raw data to the results of a linear dimensionality reduction
method, but rather than using visualization to understand the semantics of PCA, our
approach uses similar results as a tool in hypothesis formation.
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Parallel coordinates are a well-known method for representing multidimensional
data [189]. Nested or hierarchical plots, adapted from the traditional flat parallel coor-
dinates plot, are used to visualize and evaluate structural relationships of the data. Nu-
merous solutions present data aggregation by item relatedness into parallel coordinates
as a means to reduce clutter and noise in the plot [24, 80, 143, 144, 418, 518, 533]. Each
of these methods focuses on the hierarchical construction of sets of items, while our ap-
proach aims one level above this on the hierarchical construction of sets of dimensions.
Several approaches have utilized parallel coordinates to visualize dimension-level ag-
gregation, created either through algorithmic methods or pre-defined data hierarchies.
These methods provide varying degrees of interaction to the user. For example, Wang
et al. [540] and Dunica et al. [112] use parallel coordinates to visualize results of a
single-run PCA, where each axis represents a different principal component. While
we similarly incorporate principal components, we instead take an iterative algorithmic
approach to produce principal components of selected subsets of particularly related
dimensions. These subsets form the dimensional bundles in our method.

Approaches to parallel coordinate dimension hierarchies often incorporate other
views on the data, integrated either separately or directly into the parallel coordinates.
Huang et al. [207] create hierarchical clusters of dimensions in parallel coordinates
using dendrograms that attach to each axis. DOFSA [571] and InterRing [572] are
connected tools that allow interactive visual exploration and modification of hierar-
chical data. These modifications are made on InterRing and linked to other panels,
e.g., parallel coordinates. By contrast, our method does not divide user attention over
different graphical interfaces. Furthermore, the DOFSA hierarchy itself is flattened
in parallel coordinates, and its order is informed by the hierarchy constructed in In-
terRing. Our approach does not flatten the hierarchy in this manner. Weidele [548]
recently presented the conditional parallel coordinates method, which ties and reveals
additional dimensions to the range of a given parent dimension only if certain condi-
tions are met. Perhaps most similar in principle to our visual approach, Brodbeck &
Girardin [70] and Andrews et al. [18] create aggregated dimension axes for parallel co-
ordinates plots, which may then be expanded to reveal the contained dimensions. In
contrast to these methods, we do not expect pre-defined hierarchies, instead allowing
flexible regrouping as hypotheses evolve.

C.2 DimLift Approach

Key to complex high dimensional data analysis is the rapid identification of interesting
dimensions. While dimensionality reduction is a core tool for high dimensional data
analysis, nonlinear methods do not allow for an easy link back to the original dimen-
sions, which Sedlmair et al. [453] identify as key tasks for users interested in finding
important original dimensions (as opposed to purely gaining insights on the dataset
structure). Sedlmair et al. also identify the need of users to compare, or unmap, orig-
inal dimensions to newly-created dimensions; nonlinear methods are also of limited
use for this task. Lastly, Sacha et al. [429] identified user interactions as critical com-
ponents of an exploratory visual analysis pipeline utilizing dimensionality reduction.
While numerous solutions in this space have incorporated a human into the loop, many
aim to help the user to better understand the results of the algorithm, or to guide the user
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Figure C.2: Conceptual pipeline of DimLift. Factor analysis of mixed data (FAMD) is applied
iteratively to produce dimensional bundles (body measurements, lifestyle). Data are mapped
to a layered parallel coordinates plot for users to explore and structurally modify. FAMD is
re-run on any structurally-altered dimensional bundles before visual remapping. We highlight
the path of the dimension cardiac risk in one possible interaction flow in our approach.

to identify a single global optimum of reduced dimensions, as we discussed previously
in Sec. C.1. These solutions are less effective for an exploratory approach where the
user develops multiple new hypotheses over a single session. For each newly-formed
hypothesis, the user needs to identify interesting, important original dimensions.

In contrast, our DimLift approach utilizes dimensionality reduction and user-driven
methods to produce similarly-contributing groups of dimensions, i.e., dimensional bun-
dles, that serve as the primary unit of exploration and interaction. These bundles reduce
the analysis space while allowing the user full control to discover interesting relation-
ships that may otherwise go unnoticed. Inspired by Elmqvist and Fekete’s [121] prin-
ciples for the visualization of aggregate hierarchies, we show our analytical workflow
in Fig. C.2. The user initiates algorithmic construction of dimensional bundles with a
linear dimensionality reduction technique. Subsequent visual analysis allows the user
to explore the degree of bundling of their data, which offers insights on the degree of
correlation within the data. Our choice of a linear dimensionality reduction algorithm
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allows users to visually inspect bundle contents to identify important original dimen-
sions that are now mapped to the new bundles. As new questions form, users may
reconstruct bundles to emphasize and lift interesting patterns for detailed exploration.
This series of steps may be repeated as new hypotheses and insights are continually
formed.

In the remainder of this section, we present our methodological approach along-
side a synthetic dataset containing human lifestyle and body measurements, organized
as follows: In Section C.2.1, we detail our method for automatically generating di-
mensional bundles, Section C.2.2 discusses our visual encodings, and Section C.2.3
describes our interaction facilities for lifting expressive dimensions. We conclude with
a discussion of our treatment of mixed and missing data in Section C.2.4.

C.2.1 Creating Expressive Dimensional Bundles

High dimensional data analysis typically involves producing a low dimensional pro-
jection of the data. Common dimensionality reduction techniques automatically treat
a dataset monolithically, and may obfuscate subtle but relevant characteristics. In our
simple example, smoking (b3) is an important indicator for cardiac risk (o2), but a stan-
dard dimensionality reduction does not easily show this relationship. It instead buries
these dimensions in all five principal components (Fig. C.3, top). In contrast, our iter-
ative dimensionality reduction approach extracts subsets of dimensions that contribute
similarly to the variance within the dataset. We define these subsets as dimensional
bundles. For example, our approach places the lifestyle-related dimensions educa-
tion level (b1), workout frequency (b2), and smoking (b3), together with the similarly-
contributing variable cardiac risk (o2) (Fig. C.3, bottom). In the following, we describe
our algorithmic process to creating dimensional bundles. This is additionally described
in pseudocode in Algorithm 2.

Algorithm 2: Dimensional bundle creation for two or more dimensions
1 initialize pool = all dimensions in dataset
2 do
3 mark all dims in pool as possibly contributing
4 initialize new bundle
5 perform FAMD on pool
6 for all dimensions in pool
7 if PC1 loading ≥ contribution threshold
8 move dimension from pool to new bundle
9 else

10 mark dimension as non-contributing
11 while pool contains dimensions marked as non-contributing
12 for all bundles
13 perform FAMD on bundle
14 store PC1 and PC2 for bundle

Bundle Creation. Prior to analysis, we standardize all input dimensions; this ensures
equal weighting between dimensions comprised of items on different scales. We then
run a factor analysis of mixed data (FAMD) [387] on all dimensions, provided two or
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Figure C.3: We contrast our iterative algorithmic approach (bottom) with a standard ap-
proach (top) using a synthetic ten dimensional health and lifestyle dataset comprised of four
quantitative [height (a1), weight (a2), waist circumference (a3), BMI (o1)] and six qualita-
tive [education level (b1), workout frequency (b2), smoking (b3), gender (c1), eye color (c2),
and cardiac risk (o2)] dimensions. A standard approach contains all ten dimensions in each
principal component (PC), e.g., cardiac risk (o2) is present in all PCs. In contrast, our ap-
proach (bottom) produces a pair of dimensional bundles (A: body measurement, B: lifestyle)
containing only dimensions with similar variance contributions, where cardiac risk is bundled
into B. Dissimilarly contributing dimensions, i.e., c1 and c2, remain unbundled.
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more dimensions are available in the pool (line 5). The resulting correlation matrix
is used to determine principal components (PCs), their respective eigenvalues, and the
contributing dimensions to each PC. We focus on the first principal component (PC1)
for the creation of each bundle (line 7), as this captures the largest variance within the
data [394] and shows the most potential to create expressive bundles.

Formally, PC1 is defined to maximize the sum of squared correlation coefficients r2

between itself and each dimension k:

∑
k

r2(k,PC1) (C.1)

Referencing the loading of each dimension, i.e., the correlation coefficient r that de-
fines the factors by which the corresponding original attributes are multiplied so that
they add up to the scores of PC1, we extract only those dimensions contributing above
a threshold defined as 100%/number of input dimensions [1] (lines 6-8). We use this
threshold as a baseline heuristic for creating bundles of similarly-contributing dimen-
sions; it defines whether the contribution of a given dimension exceeds the average
contribution to PC1. Thus, we formally define the initialization of a dimensional bun-
dle as the set of all dimensions with loadings greater than or equal to this threshold,
with respect to PC1.

On all dimensional bundles we then run another FAMD and save: (a) the princi-
pal component scores, which are the computed representations of the individual items
for the bundled dimensions, and the (b) contribution and (c) loading of each dimen-
sion (lines 12-14). For this second run we do not use the threshold, and instead keep
all contributing dimensions. We preserve the second principal component (PC2) in
this second FAMD run to provide additional structural context for PC1, and to fur-
ther indicate the quality of the bundling. We found diminishing returns for including
any further PCs, particularly since the full dimensional information is already provided
with the first FAMD sequence. Preserving PC1 and PC2 at the dimensional bundle
level conforms to a manageable mental analysis model and avoids visually overwhelm-
ing the user. Thus, these three elements: PC1, PC2, and their contributing dimensions,
comprise a complete organized dimensional bundle (Fig. C.3A, B).

The dimensions that do not meet the contribution threshold remain in the original
dimension pool (line 10). We recurse on this pool of dimensions (lines 2-11) until less
than two dimensions remain, or until the eigenvalue of PC1 falls below 1, meaning
that PC1 accounts for less variance than one of the original dimensions (Kaiser crite-
rion [575]). These dimensions are left unbundled (Fig. C.3, unbundled dimensions).
This produces the branching structure as shown in the bottom diagram of Fig. C.3. The
results of this algorithm, both dimensional bundles and unbundled dimensions, serve as
a meaningful basis for subsequent user-driven exploration and knowledge integration.

C.2.2 Visual Encodings

Projecting to a lower dimensional subspace in dimensionality reduction often creates
a degree of disconnect from the source data [235]. If the analyst can identify interest-
ing correlations leading to new discoveries in their bundles, but is ultimately unable to
relate these correlations back to the original data, then this is not an actionable appli-
cation of dimension grouping. To solve this issue, we preserve and map the semantics
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Figure C.4: DimLift is a mixed-initiative approach to creating and navigating dimensional
bundles. They are defined as a subset of similarly contributing dimensions to the overall
variation of a dataset, as computed from factor analysis of mixed data. Parallel coordinate
axes (A) map to the first or second principal component (PC1, PC2) of a dimensional bundle.
Glyphs (A1) provide feedback on variance contribution, missingness, and composition. View
interactions (A2) allow users to pan (D) through the dataset, swap axes between PC1 and PC2,
drill-down into a PC1 vs. PC2 score plot (B), or drill-down further to the dimensional bundle
component dimensions (C) and their relationships (C1). A chart at the bottom right (E) pro-
vides an overview of all dimensional bundles and unbundled dimensions, a subset of which
are visualized as plot axes.

of dimensional bundles produced through dimensionality reduction directly to visual
elements. Our visual aggregation utilizes a modified parallel coordinates plot that mir-
rors the results of the data aggregation step. Our approach is guided by principles of
unambiguous data depiction and visual-data correspondence, inspired by the algebraic
method of visualization design [253].

The basic unit of the DimLift method, dimensional bundles, consist of two principal
components (first and second) and their constituent input dimensions. This composition
forms a hierarchy of data representations. Usually, each dimensional bundle has a
number of sibling bundles, which are other bundles produced by our iterative FAMD
approach. Our visual design is based on the following requirements, which we draw
from the basic high dimension data analysis tasks that we discussed at the beginning of
Sec. C.2:
R1 Support the creation of dimensional bundles
R2 Support the iterative modification of dimensional bundles
R3 Allow rapid retrieval of item values in a given dimensional bundle
R4 Lift dimensions of interest in a dimensional bundle
R5 Provide information on the quality of each dimensional bundle
R6 Allow for relation investigation between dimensional bundles and input dimensions

Parallel coordinates are a popular, generally applicable technique to visualize rela-
tionships and correlations in multidimensional datasets [189]. Furthermore, they have
been shown as more effective in visual retrieval of data values relative to scatterplot
matrices (SPLOMs) [273] (R3), and more performant than SPLOMs in solving tasks
for higher dimensional data [366]. We utilize parallel coordinates but with some adap-
tations; although bifocal parallel coordinates presented by Kaur and Karki [244] visu-
alize all dimensions simultaneously, this becomes overwhelming. We instead use an
approach inspired by the perspective walls technique [421] to focus attention on bun-
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Figure C.5: Rectangular glyphs above each dimensional bundle axis provide information on
bundle composition. These glyphs, with accompanying tooltips available on hover, display
(A) the eigenvalue and explained variance, where height encodes the percent variance while
the eigenvalue is revealed in the tooltip, (B) percent available, i.e., non-imputed, items, and (C)
contributing dimensions and loadings in a given bundle, where bar height encodes the percent
contribution while hue encodes the loading of each dimension.

dles relevant to the user. Our modified plot further supports three layers of nested visual
analysis within and between each dimensional bundle. This nested approach is inspired
by model-based reasoning methods described by Liu et al., where deeper data insights
can be obtained by presenting information sets and supersets [308]. The result is shown
in Fig. C.4 (R1–R4, R6). Beginning with the axes of a traditional parallel coordinates
plot, we set the stroke-width of each axis relative to the number of contained dimen-
sions, similar to Andrews et al. [18]. For each dimensional bundle, PC1 is depicted as
the primary axis in the plot (Fig. C.4A). Items are plotted by their scores (R3). PC2
is included on-demand as a secondary axis expanding horizontally from the primary
axis; this scatter plot shows item scores for both PC1 and PC2 to inform on the similar-
ity of dimensions included in these components (Fig. C.4B). This approach is inspired
by the natural orthogonality of the first and second principal components. Our nested
plot approach is similar to previously suggested enhancements to parallel coordinates
plots [187, 207, 226]. The innermost third level comprises all dimensions contribut-
ing to the principal components of the dimensional bundle (Fig. C.4C) and plots the
original item values (R3, R6). It resides conceptually within each dimensional bun-
dle parallel coordinates axis as a second parallel coordinates plot that is made visible
on-demand (Fig. C.4C1), as inspired by the approach by Andrews et al. [18].

Rectangular filled glyphs, positioned above each axis, provide information on di-
mensional bundle composition and variance contribution (Fig. C.5) (R5, R6). Our
glyph choice is driven by position-based principles from graphical perception re-
search [90]. These glyphs display the eigenvalue and explained variance (Fig. C.5A),
available, i.e., non-imputed, data (Fig. C.5B), and contributing dimensions with their
respective loadings (Fig. C.5C).
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Understanding the explained variance alongside the eigenvalue is a critical aspect
of determining the utility of a given bundle in its ability to explain properties of the
dataset. Using the Kaiser criterion [575], if an eigenvalue is below 1, we can conclude
that the contributing dimensions are more informative when unbundled. The variance
contribution gives an indication of the type of relationship between dimensions—a low
overall variance may indicate more complex, non-linear relations. We provide this
information for each bundle as shown in Fig. C.5A (R5).

Our approach also explicitly handles missing and imputed data. In particular, the
proportion of non-imputed data items can provide feedback on the certainty of the
bundles (R5). The amount of available, i.e., non-imputed data, is visualized by the
glyph shown in Fig. C.5B. A bundle containing primarily imputed items, e.g., a mostly
white/unfilled glyph, offers less certainty than a fully-filled glyph for a bundle or single
dimension. We provide further details on our approach to handling of missing data and
imputation in Sec. C.2.4.

To draw meaningful, actionable conclusions from an analysis the user must link
back to the original data (R3, R6). The bundle composition glyph (Fig. C.5C) shows
the percent contribution and correlation direction, i.e., loading, of each dimension to
the bundle. The glyph is broken into segments by each dimension’s variance contribu-
tion. We encode correlation direction using a diverging red-blue colormap, where red
indicates a positive correlation while blue indicates a negative correlation. These en-
codings are additionally present in the nested dimensions parallel coordinates plot for
each bundle (Fig. C.4C1) in circles placed under each dimension axis. This indicates to
the user the relationship of item values to the principal component, and supports its in-
terpretation. For instance, consider a synthetic dimensional bundle containing height,
weight, and BMI: all dimensions are positively correlated and encoded with red at both
plot levels. Brushing on any axis would highlight similarly high values in the principal
component axis, showing that these values tend to increase and decrease together.

Both quantitative and qualitative data can be involved in relevant and interesting
patterns. For instance, our synthetic dataset includes a cardiac risk outcome dimension
which is comprised of quantitative body measurement and qualitative lifestyle dimen-
sions (Fig. C.3-o2). To help reduce visual clutter and clarify relative occurrences, we
utilize a horizontal bar chart extending from each categorical parallel coordinate axis
(Fig. C.1), where bar length encodes the frequency of item occurrence in each category,
as inspired by Hauser et al. [187].

C.2.3 Lifting Expressive Dimensions

A dimensionality reduction process that does not incorporate user interaction may
overemphasize trivial aspects of the data. Key to the DimLift approach is lifting, an op-
eration that changes the data hierarchy and structure of dimensional bundles for greater
expressitivity. For instance, our synthetic grouping shows cardiac risk as bundled in the
automatic process with the lifestyle bundle (Fig. C.1). While useful for understanding
that cardiac risk is, in our example, more closely correlated with lifestyle dimensions,
we would like to lift this, and any other outcome-associated dimensions, to their own
bundle for direct correlation assessment. Our method incorporating task-based user in-
teractions allows for the flexibility to explore data at differing levels of granularity, and
to reconstitute existing bundles to discover new and unexpected relationships. We di-
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Figure C.6: DimLift structural interactions allow for the creation or modification of dimen-
sional bundles. Using our synthetic health dataset we create a new bundle combining smok-
ing (b3) with gender (c1); a resulting eigenvalue above 1 shows a fair grouping with equal
dimension contributions. The left diagram provides a conceptual overview of this process.
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Figure C.7: In the analysis of a synthetic health dataset we may suspect gender (c1), to have
interesting correlations with the lifestyle-related bundle, i.e., education level (b1), workout
frequency (b2), cardiac risk (o2), and smoking (b3). We add gender (c1) to this bundle and
observe that gender shows no contribution (loading = 0) to the bundle variance.

vide the interaction techniques for our approach into two classes. For a demonstration
of the following interactions, we refer readers to the video included in the supplemen-
tary materials.
Structural interactions are operations that alter dimensional bundles (Fig. C.2E) by

combining, adding to, or removing dimensions from these bundles. A linkage be-
tween layered parallel coordinates and a dimension scatterplot provides an easy
mechanism for bundling interesting dimensions by similar statistical measures.

View interactions are inspired by the model for hierarchical aggregation interaction
techniques proposed by Elmqvist & Fekete [121]. These do not change the funda-
mental structure of the data hierarchy (Fig. C.2D), and include: pan, brush & subset,
drill-down/roll-up, or swap levels in their exploration of the data space.

Structural Interactions
Dimensional bundles created automatically may not always be conducive to specific
user analysis goals. As such, we introduce structural modifications that allow the user
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to create entirely new, or modify existing, dimensional bundles to lift interesting di-
mensions for analysis.

Creating New Dimensional Bundles. During the analysis a user may wish to visual-
ize the degree that a group of conceptually-related dimensions, e.g., all lifestyle input
variables in our synthetic human measurements dataset, are correlated. Similarly, seem-
ingly conceptually-unrelated dimensions may exhibit similar descriptive statistics, e.g.,
similar mode or diversity measures, that would be interesting to apply dimensionality
reduction to for deeper correlation assessment. Figure C.6 demonstrates the workflow
for creating a new dimensional bundle based on similar descriptive statistics, begin-
ning with a marquee selection of a pair of dimensions positioned near each other. The
user confirms their selection in the dimension grouping menu. Selection by descrip-
tive statistics serves as a rough guide for the suitability of a possible bundle, which is
then validated by applying the dimensionality reduction and visualizing the eigenvalue
and contributing dimension attributes in the parallel coordinates plot. On creation, this
bundle is briefly highlighted with a red underline in the parallel coordinates plot. When
manually creating new bundles, redundant dimensions are not extracted from their orig-
inal bundle to the new bundle—a single dimension can remain in multiple bundles. The
reasoning is that it could be that one dimension is highly important in multiple bundles.
For example, smoking (b3) is important semantically as a lifestyle variable and is log-
ically bundled with other lifestyle variables, but it is additionally clinically interesting
to bundle with, e.g., gender (c1), to assess for patterns or relationships between these
two dimensions. Our approach allows the user to see this from both perspectives.

Modifying Dimensional Bundles. Algorithmically-created dimensional bundles may
still bury an interesting dimension within, e.g., cardiac risk within a lifestyle bundle, or
leave out a conceptually interesting dimension, e.g., gender from the lifestyle bundle.
Rather than creating a new bundle, the user may simply modify the existing bundle and
either add or remove dimensions in place. We demonstrate the workflow to add a di-
mension to an existing bundle in Fig. C.7; a right-click on the contributing dimensions
glyph for the bundle of interest opens the dimension selector panel where bundle mem-
bership may be updated. The user may search by name or explore the list to add dimen-
sions. Similarly, dimensions may be removed by entering the same panel (Fig. C.1). To
remove a dimension, the user clicks on the dimension in the selected dimension list for
immediate removal. After dimension addition or removal, the user can choose to run
the dimensionality reduction algorithm on the updated bundle. As with bundle creation,
the updated group is highlighted briefly in the parallel coordinates plot. All contribu-
tion information is updated in the glyphs, and correlations in the parallel coordinates
are updated automatically.

These structural modification tools empower the user to reconstruct the dimensional
hierarchy for open exploration. With flexible bundle composition and modification,
along with feedback on their suitability in the parallel coordinates plot, users may
rapidly form new insights about their data by lifting dimensions of interest from their
original bundles.

View Interactions
With the DimLift approach users may visually navigate dimensional bundles via the
previously described layers: the top-level parallel coordinates axes for between-bundle
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Figure C.8: DimLift view interactions allow iterative exploration of dimensional bundles. Pan-
ning through the parallel coordinates plot allows the user to explore correlations between all
bundles. Brushing over a bundle axis, e.g., lifestyle, creates a subset of moderately active, uni-
versity education level smokers with moderate cardiac risk. This selection is adjustable in an
adjacent panel. Drilling down to a plot of PC1 vs. PC2 item scores shows a distribution shape
that is interesting to explore further. Drilling further to the contributing individual dimensions
shows a definite correlation between b1 (education level) and b2 (workout frequency) (black
rectangle). Swapping the bundle axis from the first (PC1) to second (PC2) principal compo-
nent shows that b3 (smoking) contributes no variation to this component, while it contributes
similarly to other included dimensions in PC1.
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navigation (A), or nested scatterplots (B) and further nested parallel coordinates (C) for
within-bundle navigation (Fig. C.4).
Pan. Pan operations are ubiquitous in visual analytics, particularly in aggregated
datasets [121]. We utilize panning to bring dimensional bundles of interest into the
field of view, as shown in Fig. C.8. Arrow buttons allow incremental panning while a
small donut chart, used as it mirrors the panning-carousel nature of the parallel coordi-
nates plot, provides a quick overview of the created bundles and individual dimensions
while acting as an additional navigational aid [351]. It additionally serves to spotlight
those bundles with subsets applied. Within this glyph, bundles are denoted as purple,
while individual dimensions are grey. In addition to these manual controls, panning
can be facilitated by axis reordering based on descriptive statistics, i.e., variance, stan-
dard deviation (and their qualitative analogs), diversity, modality, and percent missing
values [351], or by order of extraction via the iterative FAMD algorithm.
Brush & Subset. Brushing and linking are commonly used in visual analytics to link
data elements [510] across views. Our approach relies on this premise, but rather than
only brushing and linking items or individual dimensions [351], we support brushing
and linking of dimensional bundles. In our method the user may brush a dimension
or dimension bundle in the dimensions overview plot (Fig. C.6) or in the layered par-
allel coordinates plot (Fig. C.8). In the latter, brushing creates subsets of dimensional
bundles, as demonstrated in Fig. C.8, which may be subsequently adjusted.
Drill-Down and Roll-Up. Drill-down and roll-up are two primary methods for viewing
data at multiple aggregation levels [121]. Since dimensional bundles comprise two
PCs and raw dimensions, we utilize two different methods to access each data type
in a bundle. The first branch explores PCs in a given dimensional bundle: with this
method, the user may see the orthogonal axis of variation presented by the grouped data
axis (Fig. C.8); this provides a greater sense of the bundling strength and reasonability.

The second method accesses constituent dimensions of PCs within a given dimen-
sional bundle. To differentiate from the first method we drill-down/roll-up on a hori-
zontal axis, e.g., expand/collapse (Fig. C.8). Expansion occurs in-place, and allows the
user to assess correlations within and outside a given dimensional bundle.
Swap. Described as a flip operation by Elmqvist and Fekete, this allows the user to ob-
serve neighboring siblings in an aggregate hierarchy [121]. We can consider the first
(PC1) and second principal components (PC2) as siblings in our aggregate structure.
We view this operation as fundamentally different from drilling-down, as the swap does
not add detail to the existing view but rather shifts to a different, related frame. Lift-
ing the secondary axis of variation in the bundle to the surface permits visualization of
interdimensional correlations through a different lens (Fig. C.8). This allows prioriti-
zation of second-level variation structures in the data to establish subsurface patterns.

C.2.4 Handling Mixed and Missing Data

Our algorithmic approach as described in Sec. C.2.1 may furthermore handle complex
data, as characterized by missing items and mixed data types. In the instance of a
purely qualitative dataset we perform all steps previously described, with a few alter-
ations: we first use multiple correspondence analysis (MCA) to convert all qualitative
dimensions to quantitative dummy variables [28, 436]. Then, rather than the squared
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correlation coefficient criterion we instead use the squared correlation ratio to iden-
tify the PC1 leading to each dimensional bundle. In instances of mixed datasets, the
algorithm simply uses the appropriate criterion to define each dimensional bundle.

Furthermore, data are often incomplete, as was true for one of our case studies
which was 76% incomplete. While some solutions drop cases with missing data from
the analysis, this can easily lead to an inaccurate picture of dimension correlations.
Imputation of missing data is still a highly debated area of research, and is dependent on
the analysis goals and the data itself. While our approach is flexibly designed to allow
a variety of imputation methods, our default method is multiple imputation of chained
equations (MICE) [554], a multiple imputation method, to minimize bias and reduce
standard error. This default can be changed by the user. A key feature of MICE is
that it can handle different variable types: quantitative continuous, binary, and ordered
and ordered categorical data. As we aim our method to be broadly applicable to mixed
datasets, this was a critical aspect of our decision process. It furthermore is widely used
in epidemiology [108], a field known for its complex and highly missing data, and was
chosen after discussions with our clinical collaborators on this paper.

MICE is applied by default to all dimensions with missingness of 78% or lower. We
chose this default value experimentally, as this was the limit up to which MICE was
typically still able to provide meaningful results. In the extreme case of dimensions
with only a handful of total entries where multiple imputation produces meaningless
results, e.g., 99% missing, we instead perform a single value imputation using the mean
for quantitative variables and create a new ”not defined” category for categorical data.
The missing data glyphs serve as identifiers for the reliability of the data for patterns
observed in these dimensions. We explore the impact of different imputation methods
in the discussion section and supplementary material.

C.3 Case Studies

We implemented our approach as a web application using Javascript and D3.js [60].
Descriptive statistics computations and dimension groupings are performed in a Flask
Python back end, and we use FactoMinR [289] to perform the FAMD in R. The full
source code is available at https://github.com/lauragarrison87/DimLift.

Following initial analysis of the data via our iterative FAMD algorithm and visual
aggregation, the user may explore the resulting dimension hierarchy. As part of the ex-
ploratory analysis process, users may flexibly adjust membership of dimensional bun-
dles and construct a new dimensional hierarchy to lift interesting dimensions to the
surface.

In the following, we demonstrate the value and versatility of DimLift applied to three
data scenarios, one of which corresponds to an ongoing clinical collaboration. Anal-
ysis of data in these domains typically utilizes statistical analysis packages which are
unwieldy when applied to open-ended data exploration [174]. Before discussing our
clinical cohort case study, we introduce nutrient and plant ecology datasets to demon-
strate our method’s general applicability by reproducing insights from existing domain
literature.
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Figure C.9: Analysis of BiolFlor-MycoFlor dataset confirms Hempel et al. findings [191].
An initial dimensional bundle contains mycorrhizae, i.e., fungi symbiotically-associated with
plant roots, and light preference, showing a clear correlation between these dimensions. We
add pH and moisture dimensions and run a FAMD for this bundle. We then brush low scores
on the axis to subset only obligate mycorrhizal (OM) i.e., need symbiotic fungi relationships
to survive, plant species, and find that these species tend to favor environments with higher
soil PH, drier habitat, and more light. This corroborates the study findings.

C.3.1 Plant Ecology

Plant traits are frequently used in large-scale ecological studies to describe species
distribution in plant communities [191]. Mycorrhizae are fungi that form symbiotic
associations with roots of certain plant species; these fungi serve a key role in helping
ecologists understand plant species characteristics and their distribution. Mycorrhizal
plants in this study are classified in three groups: (1) obligate mycorrhizal (OM), i.e.,
always requiring fungi, (2) facultatively mychorrhizal (FM), i.e., occasionally requiring
fungi, and (3) nonobligate mycorrhizal (NM), i.e., never requiring fungi. We pattern
our analysis after a study by Hempel et al. [191] which analyzed these relationships
in large plant communities through mixed PCA and linear correlation methods. The
data for this study are extracted from BiolFlor [274], a database containing biological
and ecological information on vascular plants in Germany. We explore mycorrhizal
status and plant trait data, totaling 13 dimensions, for 1758 plant species, following
the data selection procedure as described by Hempel et al. for habitat characteristics,
species traits, and mycorrhizal status. Our goal was to corroborate a subset of study
findings relating mycorrhizal status to habitat characteristics and species traits using
our approach.

Hempel et al. [191] demonstrated that OM species tend to be positively associated
with higher temperature, drier habitats and higher soil pH; and negatively associated
with moist, acidic and fertile soils. We can confirm these positive associations in our
method, noting the red contribution glyph bars for the bundle comprised of these dimen-
sions (Fig. C.9, top right glyph). Interestingly, by simply brushing a range [–1, –0.6]
in PC1 of the bundle we are able to identify this relationship for all dimensions with-
out creating a subset of any individual dimension (Fig. C.9, rectangular marquee). By
comparing inter-axes correlations and by drilling-down into this habitat bundle, we cor-
roborate their PCAmix finding that FM plant species are associated with differing plant
traits and habitat characteristics relative to OM/NM species (Fig. C.9). These findings,
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Figure C.10: Analysis of FDA nutrient dataset using our approach. Selenium, vitamin B12,
cholesterol, and total choline are bundled together automatically in our approach; this corrob-
orates a known link in clinical literature between Selenium and Cholesterol. Subsetting to only
the high values of selenium shows low values of cholesterol, although with values near 0 this
finding needs confirmation with a larger dataset.

generated in a very short session, show promise for our approach in quickly lifting and
establishing relationships that corroborate results from a complex plant ecology study.

C.3.2 USDA National Nutrient Data

We next demonstrate insights generated with our method using data from the USDA SR28
National Nutrient Database [514]. This database is the standard reference for food nu-
tritional content in the United States; many of these variables correlate and thus this
dataset lends itself well to dimensionality reduction. The subset we analyzed is pre-
dominately comprised of quantitative data and consists of 899 data items in 53 di-
mensions. Selenium is an essential micronutrient for effective thyroid hormone and
reproductive function; when levels are sufficient in the body it has been shown to pro-
vide antioxidant and anti-inflammatory effects [413]. Cholesterol plays a known role
in cardiovascular health; high total cholesterol levels are strongly linked to higher car-
diovascular risk [478]. Chen et. al. [85], in their seven-year longitudinal nutritional
cohort study, found that participants with higher levels of selenium exhibited a greater
decrease in total cholesterol over the course of the study; this offers insights on se-
lenium’s possible mitigating effect of cardiovascular risk in elderly populations. Our
goal in this exploratory analysis of nutrient data was to establish the possible ease and
clarity of discovering this known clinical link.

Our approach rapidly lifts Selenium to the surface, placing it in a dimensional bun-
dle alongside Vitamin B12, Cholesterol, and Total Choline; each contribute approxi-
mately 25% to the bundle variance (Fig. C.10). This immediate insight corroborates
the correlation between these nutrients, while also providing an interesting line of in-
quiry on the additional relatedness of vitamin B12 and Choline. Creating a subset of
high selenium values, our results are not as conclusive since we have a small popula-
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tion sample in our dataset, but the results indicate the same link as shown in the clin-
ical literature that we discovered in a short period of exploration. If we then remove
VB12 and Choline from the bundle to hone in on the relationship between Selenium
and Cholesterol, we find equivalent positive loading values for each. This further sup-
ports a positive colinear relationship between these two nutrients. If performed in a
standard FAMD this link would have been difficult to identify, as the results would
show all dimensions in each principal component. The subtle link between selenium
and cholesterol would be buried beneath the stronger variance contributions of other
nutrients, e.g., magnesium, folate, and calcium, to the data. Our approach allows this
dimensional relationship to be immediately apparent.

C.3.3 Clinical Cohort: Cerebral Small Vessel Disease

The ultimate analysis goal for any clinical cohort dataset is to develop testable hypothe-
ses that can lead to better treatment options and outcomes for the patient. One of the
great difficulties with clinical datasets lies in the successful identification of interest-
ing measures and patterns, particularly in diseases where the etiology is not entirely
clear, e.g., in cerebral small vessel disease (CVSD). The current standard for analysing
this type of data consists of queries with complex statistical analysis packages. Of such
tools, our expert participants most frequently use SPSS. This and similar applications
typically require extensive processing times, and are not generally conducive to an iter-
ative, exploratory approach to the data. Having previously analyzed these data in SPSS,
one expert noted that for an efficient analysis with SPSS they need to already have in
mind the variables of interest and be familiar with the data characteristics prior to their
assessment.

The data consist of 307 patients collected from clinical routine in the university
hospital data management system. The data are mixed, consisting of 168 dimensions
containing demographic, laboratory, education, and lifestyle information. 24 additional
dimensions describe the volume of 24 brain structures, e.g., hippocampus and caudate,
as derived from T1-weighted magnetic resonance imaging data. As is typical with
this type of data, 76% of entries are missing due to, e.g., missed appointments, not all
patients needing the same tests, and other criteria.

We performed two joint analyses of a clinical cohort for the study of CSVD. After
a short presentation explaining the method and the prototype application, the experts
explored the application themselves using a “think-aloud” protocol. Our primary goal
with this study was to allow domain experts to freely explore their data in DimLift to
assess ease and speed of iterating and forming new insights into possible CSVD-related
measures and patterns. We highlight key aspects of their respective analyses; for further
demonstration we refer the reader to the supplementary video.

Analysis 1. The first analysis was performed alongside one MD/PhD clinical neu-
rologist specializing in cognitive aging and mixed cerebral pathologies, who is also
a co-author of this paper, and one master-level engineer in neuroscience in a paired
analysis session for one hour and 30 minutes. Both are experts in advanced statisti-
cal analysis of CSVD data; their workflow was particularly interested in the bundle
contents and loadings. On loading the data, experts first browsed the number and con-
tents of the created dimensional bundles. Noting from the glyphs above each axis that
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Figure C.11: In exploring a clinical cohort dataset for cerebral small vessel disease (CSVD),
experts select a bundle of primarily imaging data for closer examination and drill-down to
observe two distinct clusters. Swapping the axis to PC2 allows subset creation of the top
cluster; this corresponds to selection of non-imputed items within the bundle. Addition of
APOE-related dimensions to the bundle allows for correlation assessment of these interesting
dimensions within a single bundle.

many bundles suffer from missing data, the experts used hover features to assess bun-
dle variance and dimension contributions. The experts were surprised that lacunes and
microbleedings were bundled along with two Boston/STRIVE criteria dimensions and
thus, lifted together. However, their bundling makes sense since these have been shown
to correlate [392]. From this, they can hypothesize that lacunes and microbleeds in cer-
tain regions of the brain could be associated with a certain subset of Boston criteria.
This has implications on bleeds in certain areas of the brain being indicators for aspects
of CSVD. They stated, “We would have probably not seen this in another framework.”

Locating another interesting bundle containing primarily imaging data, as well as di-
agnosis and sex, they then drilled-down for further exploration. In this second level they
observed two clusters. While variables contributing to PC1 are mostly imaging-related,
PC2 contributing variables include Boston/STRIVE criteria at lumbar puncture, group,
and sex. They swapped the axes and observed how the item distribution (Fig. C.11) and
dimension statistical distributions are affected. They noted that brushing the top clus-
ter selects individual dimension values that are complete, i.e., Boston/STRIVE criteria,
Sex, and Group axes now exclude “not defined” items through this subset selection.
Experts then added APOE-related dimensions to investigate the relationships within
this bundle. However, they noted that the APOE dimensions do not provide strong con-
tributions (the loading glyph on the original dimension is white in color)—this implies
that these are not particularly correlated, and may indeed be better treated as separate
dimensions or dimensional bundles (Fig. C.11). This allows them to reject their hypoth-
esis that APOE genotypes are highly correlated to Boston/STRIVE criteria at lumbar
puncture, group, and sex for this dataset. However, they note that this would be more
interesting to explore in a larger cohort before fully rejecting this. They further noted
that this subcohort is characterized by generally mid-to-high range white matter and
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CSF volume values, but a broad range of volume data for other regions. From this,
they hypothesized that these volume ranges of white matter and CSF can act as poten-
tial biomarkers for CSVD. This requires additional followup with a larger cohort and
additional cognitive and clinical tests.

Analysis 2. Our second analysis session also lasted one hour 30 minutes, with a med-
ical expert who has one year of experience in CSVD research and who is less experi-
enced in statistical analysis. This user was primarily interested in generating a picture
of the typical patient for each diagnostic group in the dataset. As such, they were
less focused on the bundle loadings and differences in principal component loadings
for each bundle, and rather interested in the composition and linear correlations within
bundles. Their workflow generally went as follows: (1) Bundle overview, (2) Subset
within bundle to explore correlations, (3) Modify bundle contents, and (4) Repeat steps
1-3.

In their overview of bundles they observed that a high proportion of the data was
missing. They noted that this information is helpful because they know the statistics
they explore have reduced power in hypothesis generation. In the bundle comprised
largely of imaging data they were initially surprised that these were bundled, but rea-
soned that this was logical since these were tied to Boston/STRIVE criteria, which was
also grouped in this bundle. The user then created a subset of CAA/HA/Mixed patients
in the Group dimension, hypothesizing that if a patient has CAA that they are more
likely to also suffer from seizures, stroke, and dementia in the pathology dimension.
Direct correlation visualization between these parallel coordinate dimension axes al-
lowed them to confirm this; such a finding also corroborates clinical literature findings.
However, they stated that this would need to be verified in a larger and more complete
clinical dataset.

On exploring other dimensions in the same bundle, the user indicated that some
dimensions were not, in fact, particularly interesting to analyze, e.g., all of the imaging
dimensions except for the hippocampal and white matter volume measurements. The
ability to easily modify this bundle to remove these uninteresting dimensions for their
current hypothesis was extremely helpful for them. In doing so, they were able to
quickly note a slight positive correlation between these two dimensions that also related
to the diagnostic group subset; this allowed formation of a second hypothesis: that
hippocampal and white matter volumes correlate to this group of diagnoses in CSVD.

Having previously analyzed the data in SPSS, they noted that these preliminary
trends and relationships they found interesting with over one hour of using SPSS could
be found in five minutes using our approach, simply by drilling down into a bundle
that contained already most of the dimensions of interest and subsetting to a certain
diagnostic group, i.e., the CAA/HA/Mixed category.

Expert Feedback. Although clinical experts noted that our visual approach appears
very complex in the beginning, they were able to operate it independently after ten
minutes. They stated its usability to be very intuitive due to the visualizations, hov-
ering facilities, and interactions. However, they felt that dimensions with freeform or
prose text entry were not ideal for exploratory analysis with this tool. Not only is the
variance on these dimensions massive because there are no defined categories (every
entry can be unique), but readability may be problematic in the parallel coordinates
view. They felt also that tracking patients and variable changes over a longitudinal
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study would not be easy with this system, although they felt this approach serves a
different purpose. Experts felt that SPSS provided means for a more direct and tar-
geted analysis method, while DimLift takes a more open, discovery-oriented approach.
As such, DimLift may be unnecessary to use if one has already identified target vari-
ables and wishes to perform specific statistical analyses of significance. However, they
felt that for open exploration DimLift is a faster (e.g., Analysis 2 required 1.5 hours
in SPSS compared to ten minutes in DimLift to identify a new hypothesis) and easier-
to-use solution with visual aids that are neither readily or easily available with SPSS
and R. To use the DimLift approach to its full potential experts agreed it is important
to have a basic knowledge of statistics and dimensionality reduction techniques, other-
wise the rationale for the algorithmic bundles may be difficult to appreciate. This level
of statistical knowledge is common in clinical research. With our approach to high di-
mension space exploration and modification, all three experts were able to rapidly gain
new insights into the data via the dimensional bundles, and to easily reflect the princi-
pal components back to the original dimensions. They stated that this tool is especially
helpful for hypothesis generation, and recommended its usage within clinical research.

C.4 Discussion

Although we explored a number of possible algorithms to drive our technique, we
ultimately chose factor analysis of mixed data as it is quite general and allows the
analysis of mixed data by combining PCA and MCA. The broad applicability of this
algorithm makes it a clear first choice for exploring this type of hierarchical creation
for our visualization. However, this comes with an expectation for normally-distributed
data, which is not always the case. An interesting avenue for future investigation is how
our approach could be integrated with nonlinear dimensionality reduction techniques,
although this presents other challenges in mapping back to the original dimensions.

Our algorithmic approach furthermore treats all dimensions as active, i.e., all dimen-
sions are used in FAMD, and excludes the possibility for supplementary dimensions,
i.e., dimensions that are not used directly in FAMD. While supplementary dimensions
do not impact the eigenvalue of a bundle or dimension contributions, these can pro-
vide further insights by distinguishing correlations between active vs. supplementary
dimensions. This is particularly interesting to explore further in user-driven bundle
creation.

Our treatment of dimensional bundle labeling concatenates the names of all input
dimensions, producing long names which are not fully visible at a glance. The ordering
does not mirror the contributions of the dimensions, since we preserve the label for the
first and second principal component to avoid confusion. Descriptive labeling of the
new dimensions produced by dimensionality reduction poses an ongoing challenge in
the community, and our approach could benefit from more advanced solutions.

Handling of missing data is an active area of research, and imputation methods are
highly dependent on the particulars of the dataset. Our exploration of imputation meth-
ods involved a literature search, discussion with clinical collaborators, and testing of
four selected imputation methods in our clinical cohort dataset, chosen as the test impu-
tation dataset for its high proportion of missingness. The imputation methods we tested
included overall mean imputation, hot deck imputation, principal components method,
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Table C.1: Processing times required (MacBook Pro quad-core i5 processor) for three datasets
using our approach.

Dataset Items Dimensions Processing time (sec)
Plant 1758 13 132.4s

Nutrient 899 53 24.5s
Clinical 307 193 6.8s

using the missMDA R package [28], and multiple imputation of chained equations. In
our tests we found that each imputation method created 10-11 bundles, with big trends
or correlations generally preserved between each method, i.e., lacunes and microbleeds
from various regions of the brain were mostly bundled together. Although naturally
some differences were present between each method, the differences and bundling for
these generally followed an outcome that made conceptual sense. Although we ulti-
mately chose MICE as our default imputation method for its popularity in epidemiol-
ogy studies, which are known for their complexity with mixed data types and missing
elements [108], we have available as options the ability for the user to switch to any
other imputation method as necessitated by the characteristics of their data and their
analysis goals. We document in supplementary material details of our testing of these
different methods. A strong benefit that we found in this exploration of the effects of
imputation methods on our bundling is that it allowed us to discover more robust pat-
terns within data we analyzed. The exploration of different types of imputation presents
an exciting and challenging topic of research in visual analytics.

An additional challenge in missing data imputation is that there is not an established
threshold of missingness in literature for which statistical analyses become no longer
relevant [109]; this instead is highly dependent on the data itself. This problem was
particularly relevant to our clinical case study, which in several dimensions were only
3% complete. We experimented with threshold settings for degree of completeness for
each dimension, and used this threshold to determine whether we applied MICE or a
more simple single-imputation method.

Currently, data preprocessing uses the existing implementation of FAMD in R,
which provides adequate performance for moderately-sized datasets. We include Table
1, which lists the case study dataset number of items, dimensions, and processing time.
We tested all cases on a MacBook Pro quad-core i5 processor. As we can see in Table 1,
processing time is more sensitive to the number of items, rather than the number of di-
mensions. In order to more efficiently process high item datasets, a more optimized
custom implementation would be beneficial. However, wide and shallow datasets, i.e.,
low item but high dimensionality, are processed relatively quickly.

Parallel coordinates as the base design for bundles may begin to suffer with a very
high number of independent, uncorrelated dimensions in a dataset, as this would in-
troduce a high number of axes that would then be prone to issues already known with
visualization in parallel coordinates. Although we have explored the utility of our ap-
proach in datasets numbering into hundreds of dimensions, as befitting the data of in-
terest for our clinical partners, we imagine a future work exploring the extensibility of
this approach to even higher dimensional data. User interactions to structure their own
bundles by conceptual relatedness paired with the described view interactions may still
mitigate this dimensionality challenge; through a relatively small feature set we allow
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a comprehensive analysis of the structure of the data with enough flexibility to explore
and generate new hypotheses from this starting point. More complex interaction facil-
ities that could perform a combination of steps in one would save the user time, but
then run the risk of losing track of the semantics for the user to fully understand the
consequences of their adjustments in the visualization.

C.5 Conclusions

We presented DimLift, a novel approach to creating and interacting with dimensional
bundles that lifts interesting relationships to the user’s attention. While prior ap-
proaches allow exploration of data in both item and dimension space, dimensional bun-
dles provide an additional layer that reduces the analysis space in an expressive manner.
Our method is driven by an iterative factor analysis of mixed data (FAMD) that pro-
duces expressive subsets of dimensions contributing similarly to the overall variance of
a dataset. We provide a means to more transparently link data inputs and track trans-
formations of dimensional bundles during the exploratory process through visual and
interaction design elements grounded in a layered parallel coordinates plot. Through
these interactions, expert users are able to explore possible dimensions of interest in
the context of the structural hierarchy, and then proceed to dismantle and rebuild this
hierarchy through different views and levels in the hypothesis generation process to
meet their own hypotheses for bundle expressivity. We demonstrated our workflow in
a study of ecological and nutrient data and in a paired clinical case study with medical
experts. With each of these cases we were able to both corroborate existing findings,
and establish new insights.

While statistics remains a necessary tool in high dimensional data analysis, statis-
tical strength cannot itself dictate feature importance. User knowledge and semantics
remain critical elements of this process. Furthermore, we draw a distinction between
analysis and exploration. While analysis requires specific questions to leverage sta-
tistical techniques, exploration proceeds and utilizes statistics in a stepwise fashion,
allowing the user to disregard irrelevant information and lift relevant items to the sur-
face.

Dimensional bundles are a useful concept for interacting with high dimensional
data. This opens the door for a number of areas of future research, including their
possible connections to edge bundling for graph and network data visualization, as de-
scribed by Holten and Van Wijk [205]. While DimLift primarily focuses on formation
and interactions with dimensional bundles, a logical next step may allow for selections
made in dimension subspace to additionally drive dimensional bundle formation. Sim-
ilar to lifting of interesting dimensions, this could allow for interesting subspaces to be
lifted to a primary view level. Other areas of future work may focus on evaluating di-
mensional bundles in other domains as a field study. This may bring further insights on
the broad utility of such bundles in subspace exploration. We may also explore this in a
controlled study uniquely adapted for exploratory tasks, although by nature this is quite
challenging. Additional areas of future exploration includes the applicability of our ap-
proach in non-linear dimensionality reduction methods, where the interpretation gap
presents a major hurdle to understanding the data, as well as integration of dimensional
bundles with other interaction and visualization techniques.
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Abstract

The visual communication of biomedical processes draws from diverse
techniques in both visualization and biomedical illustration. However,
matching these techniques to their intended audience often relies on practice-
based heuristics or narrow-scope evaluations. We present an exploratory
study of the criteria that audiences use when evaluating a biomedical pro-
cess visualization targeted for communication. Designed over a series of
expert interviews and focus groups, our study focuses on common commu-
nication scenarios of five well-known biomedical processes and their stan-
dard visual representations. We framed these scenarios in a survey with
participant expertise spanning from minimal to expert knowledge of a given
topic. Our results show frequent overlap in abstraction preferences between
expert and non-expert audiences, with similar prioritization of clarity and
the ability of an asset to meet a given communication objective. We also
found that some illustrative conventions are not as clear as we thought, e.g.,
glows have broadly ambiguous meaning, while other approaches were un-
expectedly preferred, e.g., biomedical illustrations in place of data-driven
visualizations. Our findings suggest numerous opportunities for the contin-
ued convergence of visualization and biomedical illustration techniques for
targeted visualization design.

This article was published in Proceedings of EuroGraphics Workshop on Visual Computing for Biology &
Medicine, pp.1–12, 2021.
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D.1 Introduction

New technologies exposing novel aspects of science and medicine have increased de-
mand for visual methods and tools for both experts [362] and non-experts. While nu-
merous visualization works have been inspired by biomedical illustration [412], the
demand for science communication has driven an increasing convergence of these two
respective disciplines. For example, CellBlender [247, 480, 481], a molecular simu-
lation plugin for Blender [51], can be used by both biomedical illustrators and visual-
ization scientists for analysis and communication. Along with this increased demand
for new visualizations and tools comes a need to understand their utility for different
audience types. Differing values between audience types were apparent at the 2020
VCBM Workshop Image Competition, where the contest winner as selected by a jury
of biomedical illustrators received one of the lowest rankings according to conference
attendee popular choice. The two audiences clearly evaluated and prioritized different
aspects of the visualizations in the competition. As a whole, our community lacks a
clear understanding of the rationale behind differing audience preferences, and simi-
larly lacks a complete view of the various scientific and illustrative techniques used to
visualize biomedical processes.

Our goal is to gain insights into how visualization and biomedical illustration tech-
niques are used and assessed by differing audiences for visual communication. In an
interdisciplinary approach with biomedical illustrators and visualization scientists we
explored the similarities, as well as differences, in common approaches to visualize
biomedical processes. From this study we identify opportunities for further growth and
convergence of techniques. The five topics we surveyed (signal transduction, consti-
tutive activation, blood flow, aneurysm, and metastasis) span the micro- to macroscale
and include patho- and physiological processes to serve as a proxy for the large space of
representations of biomedical processes. For each topic, communication scenarios and
assets are designed in conjunction with expert focus groups. This approach controls
the design space while providing important in-depth insights on discipline-dependent
visualization practices. Specifically this study contributes:

• Insights into the design considerations necessary to develop materials for com-
munication of biomedical processes from both a visualization and biomedical
illustration pipeline.

• Curated assets demonstrating typical techniques used to depict five common
biomedical processes.

• A qualitative survey involving participants with diverse and creative expertise
to evaluate visualization preferences for scenarios targeting (1) expert and (2)
non-expert audiences.

• Reflection on patterns observed in preferences between different audience
types with suggestions for further research.

D.2 Related Work

Our work is rooted in visualization design principles to communicate science through
illustrative and data-driven means. We draw on prior ideas of abstraction spaces, with
aspects of our survey modeled on the existing body of qualitative visualization research.
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Purpose of Visualization. A number of theoretical frameworks guiding visualiza-
tion are largely data and task-centric. Both Tominski & Schumann [503] and Mun-
zner [354] frame the purpose of visualization as the exploration, description, explana-
tion, communication, and/or presentation of data. For visualization task identification
and validation, Brehmer & Munzner describe a multilevel task typology exploring the
what, why, and how of visualization tasks [66]. Munzner’s nested model of visualiza-
tion [353] provides a means for visualization scientists to evaluate their design choices
at four distinct levels, from domain characterization to algorithm design.

Several works [168, 231, 232, 239] place an emphasis on visualization for commu-
nication, education, and outreach using illustrative techniques which often come from
a practice-based perspective. Sousa et al. similarly include illustrative approaches in
their illustrative visualization framework to help scientists approach and solve visual-
ization tasks [471]. This parallels a traditional illustration pipeline of first receiving
and recording information, then sketching and refinement, followed by rendering and
addition of labels. Similar to these works, we take a broader view of visualization that
includes illustrative and data-driven techniques aimed towards communication.

Abstraction in Visualization. Abstraction is inherent to visualization. Viola & Isen-
berg provided a formalization of abstraction in visualization [531]. Their definitions
and updated formalization [530] of visual abstraction serve as the basis for the ab-
straction spaces in our study. Rautek et al. describe abstraction as a powerful visual
communication tool which can lend additional insights to one’s data [412]. Andrews
takes a similar view of abstraction from the perspective of biomedical illustration, dis-
cussing instances where illustration is an optimal medium to visualize certain concepts,
e.g., to easily remove “visual garbage” or to superimpose structures [17]. This discus-
sion is reminiscent of the data-driven principles of visualization stated by Tufte, e.g.,
avoidance of “chart junk” [509]. Abstraction, when fit appropriately to the task, lays
the foundation for a successful visualization that can be evaluated empirically.

Empirical Visualization Studies. While empirical studies are increasingly considered
as core elements of visualization research [87], the challenges to conducting a good
empirical study are numerous [549, 580]. For example, use of expert reviews, rather
than conducting a broader user study, is strongly dependent on the evaluated visual-
ization and its development stage. Tory & Möller found value in conducting expert
reviews particularly in evaluations of early prototypes [505]. Our survey targeted ex-
perts from diverse domains in order to focus our participant pool to those with sufficient
knowledge to understand and provide high quality feedback on all presented assets and
scenarios. Empirical visualization research may be conducted to understand the field
of visualization as a whole, e.g., studying visualization research keywords [219], or
specific terms, such as memorability [55, 56, 301]. Our survey design, and the use
of keywords, is inspired primarily by the broader approach presented by Isenberg et
al. [219].

Empirical studies on biomedical visualization are often controlled studies with nar-
row scopes, e.g., evaluating a specific technique. Such evaluation studies tend to focus
on perceptual and cognitive aspects, e.g., Baca et al.’s study assessing efficacy based
on usability, aesthetics, and iterability for a visualization of combustion [32]. Although
we included both expert and non-expert audiences and also considered aesthetics as a
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Figure D.1: Conceptual abstraction space. Model abstraction spans the relative knowledge
precision, i.e., the creator’s mental model, of the source data and its temporality, while visual
abstraction encompasses the relative visual simplification of the model (stars denote animated
assets).

variable, we took a larger, qualitative scope. Comparative studies may examine tradi-
tional illustration methods, e.g., pen and ink, relative to computational renderings that
mimic the traditional style [221]. Such an approach may also assess different compu-
tational techniques, e.g., semi-transparent structures in volume rendering [122], styl-
ization and color adjustments to improve the aesthetics of surgical field imagery [48],
or perceptually comparing aneurysm anatomy with embedded flow visualization [34].
Our survey focused on the comparison of assets produced using different visualiza-
tion or biomedical illustration techniques. As Baer et al. [34], we asked participants to
indicate personal preferences in their selections.

D.3 Abstraction Constructs

We apply two abstraction constructs to every asset: model and visual abstraction, as de-
picted in Fig. D.1. This creates a common foundation to compare audience preferences
both within and between the five biomedical topics. We draw from the terminology and
definitions of abstraction by Viola et al. [530]. The authors discuss abstraction of data
representations and abstraction of visual representations as two distinct phases in the
visualization process, beginning with entirely non-visual data representations. Here,
the authors conceptualize data abstraction as the steps to achieve a desired sparsity of
the dataset after acquisition, cleaning, and filtering. We expand on this data-driven
notion to encompass the data representation and abstraction process for biomedical il-
lustrations.
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Model Abstraction. Rather than thinking of data only in the context of its attributes,
we additionally consider the knowledge precision, i.e., the creator’s mental model, of
a given phenomenon. In addition, the temporal level of complexity plays a role in
the level of abstraction in the resulting model. This accounts for understanding of the
details and dynamics of a given biomedical process, e.g., signal transduction. These
aspects constitute a generalized type of data abstraction that we term model abstraction.
To illustrate model abstraction, consider the top-left and bottom-left assets in Fig. D.1.
The bottom-left asset, a rule-based stochastic visualization, requires a higher degree of
knowledge precision to produce than the top-left asset. With regards to temporality,
this asset is less simplified, as it captures the naturally dynamic process of signal trans-
duction more than the asset above with a reduced and static molecular environment.

Visual Abstraction. Visual abstraction can preserve and emphasize the most salient
information to allow the viewer to extract meaningful information. We consider visual
abstraction as the extent to which the underlying model is visually simplified. This in-
cludes shape abstraction, e.g., a molecule visualized from x-ray crystallography data
has a low visual abstraction (Fig. D.1, left), relative to a shape primitive representation
of the same molecule (Fig. D.1, right). Visual abstraction also applies to environments,
e.g., the removal or simplification of background elements to draw attention to the de-
sired elements as on the top-right of Fig. D.1. This is utilized in many focus+context
techniques [186, 412].

Abstraction Space. We place each abstraction construct along an abstraction axis.
Each axis describes a sequence of visual representations that incrementally depict de-
grees of reality [530]. These axes produce the abstraction space depicted in Fig. D.1
which provides the underlying basis for our survey design. We further segment each
axis into non-expert relative categories from low to high abstraction. An asset that is
high on both constructs is the most abstracted, e.g., Fig. D.1, top right.

D.4 Study Design

Our primary goal was to understand the differences in preferences between expert and
non-expert audiences in visualizations of biomedical processes. We summarize our
process in Fig. D.2. This study focused on spatial visual representations to enable a
fair comparison of data-driven assets and illustrations. Prior evaluation studies in med-
ical visualization have put less emphasis on illustrations, and have rather emphasized
data-driven visualization works [404]. Our equal emphasis of both visual represen-
tation types allowed us to consider audience preferences in an expanded abstraction
space. This approach included several challenges, the first of which was in establishing
the boundaries of the design space with respect to visual representation and topic.

Design Space: Representation Constraints. The design space for depicting biomed-
ical processes is enormous, and we do not intend our five topics to be comprehensive.
They instead are meant to sufficiently cover the space of different criteria that an audi-
ence uses to evaluate a given topic representation. To constrain the design space, we
first excluded interactivity; this has been explored elsewhere in a broader context [488].
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Figure D.2: Three-phase study pipeline. Setup: define the design space, create audience
scenarios and visual assets, and recruit survey participants, Survey: deploy survey asking par-
ticipants to rank, quantify, and describe their top and bottom asset selections for each scenario,
and Results: review survey results for patterns in selection abstraction space, scores, attribute
rankings, and frequent keywords.

We included short animations to reflect the reality in our model abstraction construct
that biomedical processes are highly dynamic. We included static elements that are
often used to depict dynamic processes, e.g., glows and arrows [231]. We excluded
animations that were only viewpoint changes, e.g., turntable animations, and focused
on motion of the biomedical assets themselves. We also limit the abstraction space
to typical representations of each topic without delving into stylistic methods, e.g.,
line, grayscale, or full color. This aspect of abstraction has been touched on else-
where [220, 221, 288].

Design Space: Topic Constraints. Topics in biomedical processes also span a massive
design space. Our aim was to evaluate the smallest reasonable topic set. Biomedical
processes occur at all levels of magnification, from micro- to macroscale. They can
be normal or pathological. To narrow the design space w.r.t. topic, we performed
a literature review as well as interviews with visualization and biomedical illustration
experts from both academia and industry. We also reviewed the Association of Medical
Illustrators Online Salon [27] and several biomedical illustration portfolios to determine
common topics visualized by both disciplines.

We chose two topics at the microscale: (1) signal transduction, a normal process
whereby a signal is relayed between molecules in the body, and (2) constitutive acti-
vation, a process whereby one or more molecules in a signal chain is always switched
“on” to create an never-ending signal relay. At the mesoscale we chose (3) normal
blood flow and (4) an aneurysm. At the macroscale we chose (5) tumor metasta-
sis, focusing on the movement of tumors from their origin site to other organs. The
macroscale topic synthesizes concepts from both smaller magnification topics as it is
driven through constitutive activation processes and travels through the bloodstream.
Following topic selection we created audience scenarios for each topic that in turn
guided asset production.
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D.4.1 Survey Scenarios

We used scenarios to drive user comparison and selection, which we detail in Ta-
bles D.1 and D.2. This approach was inspired both by our expert interviews and by
Lam et al.’s [278] findings that scenarios can effectively capture specific goals and
research questions in a given domain. This corroborates well with biomedical illustra-
tion, where assets are most often created to fulfill the communication objective of a
clearly-defined scenario. Our aim with these scenarios was to target relatively generic
expert and non-expert audience use cases. We confirmed the validity of each described
scenario with senior domain scientists, visualization scientists, and biomedical illustra-
tors each with over ten years of experience. Our subsequent creation of visual assets
was based on these audience scenarios. This workflow mirrors the standard approach
to visualization production while also further constraining the design space.

Table D.1: Expert Audience Survey Scenarios

Topic Scenario

Signal Trans-
duction

An immunology researcher is publishing in an immunological venue on the newly-
discovered pivotal role that a ligand plays in a signaling pathway. Their goal is to
communicate the specificity of the activation pathway and its location in the cell
with a visual supplement to their publication.

Constitutive
Activation

An oncology researcher would like a visual supplement that demonstrates to the
readership of an immunology journal the mechanism of disease in which a key
molecule in the signal transduction chain is constitutively activated, which pro-
duces an unregulated positive feedback loop.

Blood Flow A researcher studying vascular flow would like a visual to supplement their pub-
lication that explains the variation of laminar flow (i.e. smooth movement of fluid
with no swirls), in normal hemodynamics (i.e., blood flow behavior).

Aneurysm A researcher publishing in a medical venue would like to include a supplementary
image or animation to describe the final shape of an aneurysm, resulting from
abnormal hemodynamic forces (i.e., blood flow in helical or swirling patterns) and
morphological properties of the vessel wall.

Metastasis A radiation oncology researcher publishing in an oncology journal is focused on
describing the metabolism and movement of metastatic tumors as the basis of val-
idation for their novel radiation therapy approach.

D.4.2 Survey Visual Assets

We produced all assets via a series of topic-oriented focus groups to define the relevant
design space and form consensus for each topic, following in part the framework for
creative visualization-opportunities workshops described by Kerzner et al. [249]. Fo-
cus groups consisted of three to four people for each topic comprised of biomedical
illustrators and/or visualization scientists. For each focus group we prepared sketches
or concepts from our prior literature search and interviews to guide the discussion. Our
interdisciplinary team of visualization scientists and biomedical illustrators enabled us
to produce assets in-house to ensure consistency and to limit the number of variables
in the survey. A key decision in our initial focus groups was to exclude labels and an-
notations, with the exception of occasional arrows when considered part of the model
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Table D.2: Non-Expert Audience Survey Scenarios

Topic Scenario

Signal Trans-
duction

An introductory biology student is studying for an upcoming exam. Their goal is
to understand how a “message” is relayed through a series of messengers inside a
cell.

Constitutive
Activation

The same introductory biology student is tasked with identifying where in the sig-
naling pathway a molecule is constantly activated when it should not be. This
causes the entire signaling pathway to be always switched “on.”

Blood Flow A person with little/no prior knowledge on the topic is interested in learning more
about their body. They visit a popular health and well-being website, e.g. WebMD,
to understand how blood moves and delivers nutrients throughout the body.

Aneurysm A person has recently been diagnosed with a cerebral aneurysm. Their doctor
shows them a visual to communicate what aneurysms are and why they must be
closely observed.

Metastasis A patient recently diagnosed with cancer has been told by their doctor that their
cancer may metastasize, meaning that the cancer may spread to a different part of
the body from where it began. To help them understand this concept, their doctor
shows them a visual.

abstraction axis, from all assets. This decision was made both to limit the variable space
and to prevent distraction from the actual interpretability of the assets themselves. Our
production pipeline included the Adobe Suite (Illustrator, Photoshop, AfterEffects) [5],
Blender [51], and 3D Slicer [250]. Animated assets were produced as short, looping
GIFs. The following briefly details the driving design concepts for each of the five
chosen topics. For high resolution assets we refer the reader to the asset directory in
supplementary material.

Signal Transduction. Signal transduction describes a cellular communication process
in the body by which a sequence of molecules are activated or deactivated in response to
an initiating signal. Visual approaches range from static to dynamic, from basic shape
primitives to realistic molecular shapes taken from the Protein Data Bank (PDB) [43].
The environment may be simplified to only the main molecules up to fully immersive
scenes with all molecules engaging in stochastic reactions with complex biomolecular
assemblies [61, 125]. Glows, such as those utilized in CellPathway [415], are fre-
quently used in biomedical illustration and less frequently in visualization to indicate
the concept of activation. For further details we refer the reader to Kozlíková et al.’s
survey of molecular representations [267].

We created 14 assets to represent common visualization options in this topic, shown
in Fig. D.4A. Half of the visualizations use realistic molecular models extracted from
PDB, e.g., C11, the other half use simple primitive shapes as often seen in biology
textbook and journal figures, e.g., C1. We use a key icon in the primitive shape assets
following a focus group discussion and our review of such illustrations in visualiza-
tion literature, where a key is often used to indicate the special status of a ligand [407].
We illustrated half of the assets in a simplified context while the others show the main
molecules in complete isolation. We used MCell to simulate molecule movement and
stochastic interactions with CellBlender [247, 480, 481], a Blender plugin [51], to visu-
alize our simulations. We excluded conformation changes in order to limit the design
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space. These scenes served as representatives for robust data-driven models of the
stochastic interactions in a real molecular environment. Although the simulation with
realistic-looking molecules and interactions (C14) is the least abstracted of the set, we
note that even this scene is heavily abstracted, as we just show the main molecules and
include only a basic cell nucleus and membrane. Our color choices for the glows ref-
erence contemporary biomedical illustration trends to use a saturated color in the same
hue range as the molecule base color.

Constitutive Activation. Constitutive activation describes a signal transduction pro-
cess that is always turned “on”, meaning that the factors that keep a signal flowing be-
tween molecules are always present in the cellular environment. Although a number of
processes in the body are naturally constitutively activated, mutations can cause a sig-
nalling pathway that is normally only conditionally activated to be constitutively acti-
vated. If left unchecked this process can lead to proliferation of tumor cells through un-
controlled cellular division. We created a corollary pathological variant that represents
constitutive activation for each of the original 14 signal transduction assets (Fig. D.4B).
We chose a generic mutation, showing a ligand that is not degraded or released from the
first molecule in the chain after having activated the molecule. We followed conven-
tions as indicated from our focus groups, showing the mutated molecule haloed in red
with a red glow to indicate activation instead of the typical same-hue saturated color
as in a normal signal cascade. We colored all other molecules and glows as in nor-
mal signal transduction, since they are not mutated. We kept all other scene aspects the
same for assets C1-12. Since C13 and C14 included a more complex molecular envi-
ronment with stochastic reactions, we factored in the effect of a constitutively-activated
molecule where the result consists of many more activated molecules relative to nor-
mal signalling conditions.

Blood Flow. The flow of blood allows for delivery of oxygen and other essential sub-
stances to cells as well as the removal of waste products. While biomedical illustra-
tors focus primarily on the appearance or on the constituents of blood cells, e.g., C4,
C5, C11, and C12 in Fig. D.3, visualization scientists focus primarily on visualizing
fluid dynamics that are linked to the acquisition modality, e.g., Phase-Contrast MRI
(PC-MRI). Oeltze-Jafra et al. [384] provide a comprehensive summary of visualiza-
tion techniques that are applied to blood flow. Our data-driven assets included stream-
lines, particles, streamribbons, streamtubes, and arrow glyphs using data from Berg et
al. [42]. While hemodynamics are the focus, we rendered the vessel structure itself as
translucent with ghosting of the mesh as exemplified by Baer et al. [34]. For closer
alignment with the color palette of the illustration assets we used the inferno matplotlib
color palette to render quantities.

Aneurysm. An aneurysm is an extensively visualized pathology caused by changes in
the arterial wall and/or abnormal hemodynamics [457] with numerous methods devel-
oped to better understand aneurysm pathogenesis and rupture risk [384]. Unlike the
microscale normal/pathological assets, the aneurysm/blood flow assets are not a 1:1
match. This was a conscious decision, as our goal for each topic was to produce the
typical set of representations that would be used to convey the described scenario for
an aneurysm. Some representations that are relevant for blood flow are irrelevant for
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Figure D.3: Blood flow abstraction space. Assets are arrayed in the space by degree of model
(y-axis) and visual abstraction (x-axis). Animated assets are denoted with a star glyph to the
right of the asset name. Values in the four corners of each asset represent a weighted score
for its selection frequency as the first, second, or third choice for an expert or a non-expert
audience scenario (see ‘How to read this chart,’ left). Encircled regions indicate assets with
scores in the 20th percentile of each scenario (see ‘How to read this chart,’ right).

communicating an aneurysm, e.g., the cellular composition of blood (Fig. D.3, C4).
The external shape of a blood vessel (Fig. D.4C, C4) is a necessary and common visual
representation to describe an aneurysm. While a number of the blood flow assets have
an illustrative counterpart to the data-driven representation, in some cases such data are
not available for aneurysms. For example, an aneurysm in the act of rupturing is diffi-
cult, if not impossible, to capture mid-rupture as in C6 of Fig. D.4C. We confirm from
focus groups that this is a common illustration created to educate a non-expert audi-
ence on the risk of an untreated aneurysm.

Metastasis. Metastasis, when visualized at the macroscale, offers a synthesis and
continuation of the lower scale topics: tumor proliferation is driven through consti-
tutively activated signaling pathways, and tumors metastasize, i.e., spread, to other
organs through the bloodstream. While we discussed using angiogenesis in early fo-
cus groups to represent tumor growth, the other four strongly movement-themed topics
made metastasis, with its strong sense of movement, a more consistent choice. Our
focus on the depiction of tumor spread exposed a notable visualization gap: medical
technology does not allow for detection of the actual movement of tumors, so we can-
not directly visualize this process. The closest available option for human subjects uses
PET/CT data. This multimodal imaging strategy indicates regions of high metabolic
activity, and is frequently used by clinicians to track metastasis.

Our illustrative assets demonstrate four levels of visual abstraction for tumor
metastasis—half with highly abstracted tumor shapes while the others show realis-
tic tumor shapes. We only included those organs and circulatory elements critical to
telling the story in the most complex of the illustrative assets (C10-12 in Fig. D.4D),
with gradual visual simplification of the organs at each step to the right of the visual
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abstraction axis until in C1-3 they are entirely removed. The scientific visual assets fol-
low the typical visualization techniques outlined by Lawonn et al. [287] in their state
of the art report on multimodal medical visualization.

D.4.3 Survey Design Structure

We followed the principles for a comparative survey design laid out by Tory [504]. Top-
ics are organized so that a healthy/normal physiological topic precedes a corresponding
pathological topic. This format provides the necessary context for the pathology. We
asked participants to rank only their top three and bottom three choices for each sce-
nario to keep the survey scope manageable. The bottom choices are just as valuable
as the top choices, as encouraging participants to explore negative aspects of a visual-
ization can be illuminating. For the top- and bottom-ranked choices we subsequently
asked participants to assign quantitative rankings of four variables: aesthetics, scien-
tific accuracy, visual clarity, and communication success. Our variable selection was
guided by works of Abdul-Ramen et al. [2] and by the judging criteria used for the As-
sociation of Medical Illustrators (AMI) juried salon. We additionally asked participants
to select or enter their own keywords to describe the strengths and weaknesses of each
of their ranked assets. We drew these keywords from the previously mentioned AMI
salon judging criteria (see supplementary material). Lastly, we included an option for
participants to add freeform comments.

We administered our survey via the Typeform [349]. Prior to deployment we con-
ducted a pilot study with five participants to test our survey design. Following pilot
study feedback we divided the survey into three segments by scale: micro-, meso-,
macroscale to improve the overall completion rate. A second pilot study with three
participants confirmed that the smaller segments kept average completion to 30 min.

D.4.4 Survey Recruitment

Our target participants included clinicians, biomedical illustrators, and domain and vi-
sualization scientists with familiarity in the selected biomedical topics. Our aim was to
collect at least 20 high quality responses for each topic to adequately create a picture of
audience preference. We recruited participants via the authors’ respective professional
networks. We collected only basic personal information, e.g., age, gender, and profes-
sional background. We additionally asked participants to report their expertise on each
topic on a scale of 0 to 5, with 0 indicating “no knowledge” and 5 represents “extremely
knowledgeable.” We used this information to create two audience groups: (1) expert
and (2) non-expert, where experts reported a 4 or higher and non-expert audience par-
ticipants reported a 3 or below. We used the reported professions and expertise as a
secondary check on the validity of their self-reported expertise level.

D.5 Study Findings

The survey ran for approximately three months, with each segment available to partic-
ipants for one month. Participation was roughly gender balanced (M=male, F=female)
for each topic (signal transduction: N=32, 16M, 16F; constitutive activation: N=28,
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Figure D.5: Expert and non-expert attribute rankings for top and bottom choices for all five
topics.

15M, 13F; blood flow: N=36, 20M, 16F; aneurysm: N=34, 19M, 15F; and metasta-
sis: N=22, 10M, 12F). Participant backgrounds were mixed and included MR physi-
cists, clinicians, visualization scientists, molecular biologists, and biomedical illustra-
tors with training and background ranging from professors and program directors to ex-
ecutives to medical journal and agency staff. Self-rated expertise (E=expert, NE=non-
expert) per topic varied (signal transduction: 12E, 20NE; constitutive activation: 7E,
21NE; blood flow: 25E, 12NE; aneurysm: 19E, 16NE; and metastasis: 8E, 14NE). The
microscale and mesoscale segments contained two topics each and averaged 34 min-
utes to complete. The macroscale segment contained only one topic and averaged 18
minutes to complete. Participation falloff ranged from 3 % to 26 % over the course of
a given segment. Higher falloff rates were likely due to a higher percentage of time-
constrained clinicians who were unable to complete the survey. We dropped responses
from participants who did not complete all questions for a given topic to avoid artificial
biasing of asset choices.

For each of the five surveyed topics we report the following, with detailed per-topic
results accessible at https://public.tableau.com/profile/biomedsurvey2021.

• Asset scores: Each asset received four weighted scores that represent the fre-
quency that it was selected in the top or bottom three options in each scenario.

• Average attribute ranking: Average ranking values for aesthetics, scientific ac-
curacy, visual clarity, and communication success for assets that were selected for
each scenario (either as a top or bottom choice).

• Keywords and comments: Dominant keywords and representative comments
used to describe the top- and bottom-scoring assets in each scenario.

Asset Scores. Asset scores are weighted such that final score = 3s1 +2s2 + s3, where
s1, s2, and s3 indicate the sum counts for an asset selected as 1st, 2nd, or 3rd for a given
scenario. These scores are shown in the corners of each asset in Figs. D.3 and D.4A-D.
We demarcate those assets falling in the top 20th percentile for expert top (dark blue),
expert bottom (dark red), non-expert top (light blue), and non-expert bottom (pink)
choice selections.

In all five topics we observe that the 20th percentile scores for both expert and non-
expert top asset selections form clusters that often fall in the medium range of either one
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or both abstraction axes. We see a dislike of the most extreme ranges of the abstraction
space, with a few exceptions. For example, in the lower left corner that denotes both
low model and low visual abstraction of the aneurysm abstraction space (Fig. D.4C),
we see a cluster of expert top choices comprised of C12 (animated particle flow) and C7
(pathlines). For each topic selection, we see one or two clusters, or one cluster with one
or more outliers. For example, blood flow in Fig. D.3 shows two separate clusters of
expert top choices. Interestingly, in this case the split in clusters seems to be associated
with the different professions. Clinicians/biomedical illustrators most often selected
C11 (animated blood constituents) and C12 (animated red blood cells), while visu-
alization/domain scientists selected C9 (streamtubes) and C10 (streamribbons) more
often.

In all topics we see an overlap in preferences between audiences in the 20th per-
centile of top selections. With respect to expert top selections, we occasionally see a
slightly larger spread in the abstraction spaces, particularly along the model abstraction
axis. This is apparent in the blood flow (Fig. D.3), constitutive activation (Fig. D.4B),
and aneurysm (Fig. D.4C) abstraction spaces. On the other hand, non-expert top selec-
tions that do not overlap with expert selections often fall into a higher abstraction space
region. We see this in blood flow C4 (static blood cell components) in Fig. D.3, and in
metastasis C4 (static abstracted tumors inside tinted organs) in Fig. D.4D.

We similarly see frequent overlaps in bottom scenario selections. Their spread in
the abstraction space is also similar between audiences, with two exceptions. In consti-
tutive activation (Fig. D.4B), we see a larger spread in bottom selections for the expert
scenario, while in signal transduction (Fig. D.4A) and aneurysm (Fig. D.4C) the spread
of bottom selections is larger for the non-expert scenario.

We additionally see occasional exceptions to top and bottom selection overlap for
the expert and non-expert scenarios. For the aneurysm topic, C12 (animated parti-
cle flow) was selected as a bottom choice for a non-expert audience while also as the
top choice for an expert audience (Fig. D.4C). Other interesting cases show selection
overlap within an expert audience. In metastasis, both C12 and C13 (CT slice with col-
ored PET heatmap overlay) falls into both expert top and bottom scenario selections
(Fig. D.4D).

Attribute Rankings. Fig. D.5 shows the average attribute rankings (aesthetics, accu-
racy, visual clarity, and communication) for the top and bottom choices for the expert
(top row) and non-expert scenarios (bottom row) for each of the five topics: signal
transduction, constitutive activation, blood flow, aneurysm, and metastasis.

We show top selections in a blue hue (dark blue for experts, light blue for non-expert
audience) and bottom selections in a red hue (dark red for experts, pink for non-expert
audience). Attribute rankings over all four attributes average at 4.1 for expert top selec-
tions while bottom selections average at 1.8. Average rankings across all four attributes
are similar for non-expert audience selections, with 3.7 for the top selection and 1.8
as the bottom selection. We observe similar average ranking assignments between top
and bottom choices in the non-expert audience evaluation of asset accuracy for signal
transduction, blood flow, and aneurysm. This makes sense, as a non-expert audience
is unlikely to have the necessary expertise to determine the accuracy of a given asset.
For the expert audience we see such similar ranking only in aesthetics in the top and
bottom choices for aneurysm.
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Figure D.6: Average attribute rankings to assets selected as either top or bottom for an expert
(blue) or non-expert scenario (orange) for accuracy, aesthetics, clarity, and communication
success.

The assigned attribute rankings in Fig. D.6 between expert and non-expert audiences
are similarly distributed, although expert top selections often show a narrower distri-
bution. Expert rankings for bottom choices show a long right tail, suggesting mixed
perceptions of communication success for selected assets.

Keywords and Comments. Fig. D.7 reveals similar keyword preferences for both ex-
pert and non-expert audiences in their top selections, with informative, easy to read,
and clear in the 20th percentile for both audiences. The only difference between the
two audiences is the selection frequency of these keywords: experts prioritized infor-
mative over easy to read, while for a non-expert audience this order is reversed. We
see a stronger difference in the 20th percentile of preferred keywords for bottom se-
lections between audience levels. Experts used confusing, simplistic, and pretty most
frequently to describe bottom choices. In contrast, the 20th percentile of keywords for
non-expert audience bottom selections included confusing, distracting and excessive.
Also intriguing is experts’ frequent use of pretty to describe their bottom choices.

Scenario comments indicated a strong preference for the inclusion of labels, leg-
ends, and captions. Feedback on the use of arrows was also positive, although many
participants felt that the positive feedback loop in constitutive activation was not effec-
tively communicated and that a different approach was needed, e.g., an additional arrow
that looped back from the last to the first molecule in the sequence. Comments were
generally positive w.r.t. animated assets, with several comments indicating a preference
for animated arrows particularly in non-expert scenarios. Comments related to data-
driven assets, e.g., metastasis PET/CT and blood flow visualizations, often stressed
that such assets were overly abstract for non-expert audiences, e.g., blood should not
be perceived as composed of wires and tubes. At times such assets lacked an aspect of
the stated communication objective. These included the lack of nutrients for blood flow
scientific assets, lack of visuals showing real-time spreading of tumors for metastasis,
or the lack of vessel wall layers and thickness for aneurysm.

Conversely, participant comments on illustrative assets that were expert top choices
often indicated a desire for additional realism, e.g., more accurate motion, more
accurately-sized cell or molecular components. One participant noted in their selection
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Expert Top Selections Non-Expert Top Selections

Expert Bottom Selections Non-Expert Bottom Selections

Figure D.7: Word cloud of keywords chosen to describe top and bottom choices for expert and
non-expert scenarios for all topics.

of the animated blood constituents asset (C11 in Fig. D.3), “The inclusion of multi-
ple kinds of cells/molecules is helpful for accuracy. The animation could include more
variability in flow among the objects for even more accuracy, but that could also po-
tentially hinder the main communication goal if it becomes too distracting or hard to
track." Other assets were selected as bottom choices for being too misleading for the
topic scenario, e.g., blood flow fluid illustrations in Fig. D.3 C8 and C13 “look too
much like a clot,” or the removal of organs creating too much uncertainty for where
tumors had spread in metastasis, “without any anatomy underneath, you have no way
of knowing what the dots represent, or how deep into the tissue they are. Is it a rash
spreading? Unclear."

However, there was a clear limit to desired realism for either audience. Numerous
comments focused on assets that were perceived as chaotic, noisy, and unnecessarily
complex, e.g., the stochastic molecular interaction scenes included for signal trans-
duction and constitutive activation (C13 and C14 in Fig. D.4A and B). This complex-
ity made meaningful interpretability regarding the achievement of the communication
goal impossible for both audiences. Assets with excessive realism occasionally veered
into “scary” for non-expert audiences, e.g., the greyscale PET scan image with high
metabolic activity regions (C17, Fig. D.4D).

D.6 Discussion

In the following we discuss the patterns we observed for audience preference and iden-
tify opportunities for improved visualization design for communication success, while
also reflecting on the limitations of our study.
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Preferred Abstraction. A meaningful visual abstraction eases visual processing and
reduces cognitive load [530]. Our results indicate for both audiences that preferred
abstractions often reside in a middle space of visual and model abstraction. They dislike
either extreme realism or extreme abstraction. Initially we thought that experts would
have a higher preference for these extrema for one of two reasons: (1) experts have
such intimate knowledge of a subject that they do not need or want to see the complete
picture, or (2) experts prefer completeness because their knowledge of a subject allows
them to tolerate more complex information. Ultimately neither was consistently true.
To some extent this corroborates previous works that found that the added value of
dynamic visualizations is questionable and highly dependent upon the audience and
communication objective [232, 402].

Selection Criteria. Interestingly, participant keyword choices indicate different se-
lection criteria for bottom choices, but similar selection criteria for top choices. This
matches our observations of the degree of selection overlap between the two audi-
ences: top choices overlapped more extensively than the bottom choices. This indi-
cates that participants may place equally high priority on positive visual clarity and
communication-related factors, i.e., informative, easy to read, clear. However, their
criteria to identify a poor visualization differ, and as does their idea for what constitutes
confusing. Experts consider oversimplification to be confusing, while a non-expert au-
dience reacts against overly distracting or excessive visualizations. The non-expert au-
dience preference against confusing or distracting visualizations makes sense–without
sufficient subject background, information-rich visualizations are often incomprehensi-
ble. Such information overload is exemplified in the molecular simulation assets (C13
and C14 in Fig. D.4A and B).

Aesthetics is not the only consideration in selecting a visualization. While the key-
word pretty was selected often to describe both top and bottom choices, it was notably
the third-most frequent keyword selected to describe expert bottom choices. For ex-
ample, the bottom-most selection by experts to describe blood flow, C8 (static fluid
visualization in Fig. D.3), was most described as pretty, but additionally as simplistic,
inaccurate, and misleading. Thus it seems that clarity and communication may carry
more weight for this audience type. This prioritization makes intuitive sense, as experts
rely often on visualizations for technical information exchange. A quantitative control
study focused on aesthetics relative to accuracy as perceived by different audiences
would be an interesting follow-on work.

Background Biases. Background expertise and training play a large role in asset pref-
erences, and likely affect our perception and understanding of a visualization. For
example, in the blood flow topic when both components and hemodynamics were iden-
tified as important, experts with mostly clinical or biomedical illustration backgrounds
prioritized the visualization of blood components (C11 and C12, middle region in
Fig. D.3) over information encoding hemodynamic forces (C9 and C10, bottom region
in Fig. D.3). In metastasis, we saw a similar background-based selection split for the
PET/CT heatmap asset (C13, bottom region in Fig. D.4D). The experts selecting this
as a top choice came from MR physics and visualization, while the experts selecting
this as a bottom choice came from biomedical illustration or life sciences. The expert
selection overlap with C12 in this topic is more difficult to explain. While background
expertise likely plays a role, which we infer from one comment that it looks “too good
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to be true,” its selection as both a top and bottom expert choice requires finer-grained
information than captured in our study.

Our backgrounds can also influence our perception of the meaning of visual marks
and channels, e.g., color. For example, while a clinician may be used to reading a
PET/CT layered slice image with high metabolic activity regions as bright (C13) or
dark (C17), someone without this background would interpret these differently, e.g.,
interpret the dark spots in C17 as dead tissue regions or the bright zones indicating
a strange event in the body. A quick solution to disambiguate color meaning may
involve labels and captions, but more immediately understandable solutions without
this addition may be interesting to explore.

Stylistic Preferences. Stylistic elements are frequently used to emphasize a biomedical
process. For example, while ubiquitously used in biomedical illustration, glows can
mean many different things. Our focus group on metastasis discussed whether a tumor
glow indicated pain, treatment application (radiotherapy), tumor metabolic activity, or
was purely to draw attention. This lack of clarity became apparent in the survey, with
one participant commenting, “It is unclear whether the glow in the tumors on the lungs
is meant to denote a new growth or stylistic radiation treatment. If it is treatment, then
perhaps there should be numbered steps or a device that provides the radiation." At
the microscale, the focus groups generally found glow indication to be meant to either
draw attention or to indicate activity/aberrant activity. While this mixed meaning is
convenient in our case, since we wanted to draw attention to areas of activity, it may
quickly become problematic if that is not the communication goal. This suggests that
glows should be used with care and their use reexamined in practice.

Study Limitations. We set a number of limitations and assumptions in this study
given its large design space and broad topic range. For instance, our sampling of visu-
alizations and topics was not comprehensive but representative of the massive space
of creative and technological visualizations of biomedical processes. Additionally,
the granularity of expertise in our survey is relatively coarse, and non-expert partic-
ipants often had a higher basic scientific knowledge than someone from the broader
public. A logical next step would be finer-grained surveys by expertise/target audi-
ence. This may introduce additional challenges in visual representation design, as
many communication-oriented visualizations of biomedical processes that are aimed
at the general public with no scientific background are heavily annotated or narrated,
and often include multiple scales to orient the viewer, e.g., an initial view of the en-
tire body is provided before diving inside an organ and on to the interior of the organ’s
cell where a signal is passed between molecules in the cell. This type of visualization
was out of the scope of our study, and given this we felt that including participants with
a somewhat higher knowledge of biology would be beneficial for quality responses in
some cases.

In choosing comparatively broad expert and non-expert scenarios our study favors
those visualizations that are more flexible to interpretation. Even so, the visualizations
for each topic naturally have different degrees of effectiveness based on the audience
and the described scenario. Rather than identifying the single best visualization for a
specific audience scenario, our overarching goal was instead to find general preferences
and values for visualization selection.
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D.7 Research Opportunities

This study opens a number of exciting opportunities for visualization research of
biomedical processes. Gaps in biomedical illustration and visualization are readily
apparent in all our topics. Illustration-driven works are currently filling in spaces in
stories that cannot be easily told with data alone, e.g., aneurysm rupture, the cellu-
lar composition of blood, and the spread of tumors. These indicate that visualizing
data is not always sufficient, and may in fact lead to a mismatch between audience and
technique. However, data-driven visualization can offer a faster and realistic means to
present phenomena that are laborious or impossible to create with current biomedical
illustration workflows. While visualization research that applies illustrative techniques
to patient data is relatively mature [288], illustrative techniques applied to represent
a creator’s mental model of a given phenomena or to represent a cohort are an open
challenge [336].

Visualization research that intentionally considers layered messaging, e.g., one for
communication targeted for a non-expert audience and one for analysis that targets an
expert audience, may be interesting to consider. The overlapping preferences for as-
sets between expert and non-expert audiences suggest that this may be amenable and
more likely with increased demand for health communication. This layering may be
achieved by superimposing visualization techniques in a manner similar to Pixar’s sto-
rytelling approach: Pixar films are designed to entertain multiple levels of audiences,
with numerous adult messages sprinkled throughout that do not affect the messages
geared towards children. We imagine that this can be done with a thoughtful combi-
nation of data- and/or illustrative-driven assets. Linked juxtaposition may be another
avenue to explore. For example, linking the process steps visualized in a highly ab-
stracted asset, e.g., signal transduction with a basic glow sequence animation between
primitive shapes, to a complex stochastic interaction visualization may help both ex-
perts and a non-expert audience to understand the sequence of a reaction framed in a
realistic, complex environment.

D.8 Conclusion

The aim of our study was to better understand the development and evaluation pro-
cess for visualizations of biomedical processes by different audiences. We particularly
were interested in illuminating how visualization and biomedical illustration currently
diverge and converge. Our findings show that both audience levels we surveyed place a
high value on clarity and ability of a given asset to meet its stated communication objec-
tive. Moving forward, an optimal positioning for abstraction is likely in a middle space
of both model and visual abstraction. We additionally found that some conventions are
not as clear as we thought, e.g., glows can ambiguously indicate a call to attention,
a pathological event, activation, etc., while other approaches were unexpectedly pre-
ferred, e.g., biomedical illustrations in place of data-driven visualizations. This latter
preference occurred most often when the source data model was overly complex or did
not capture the mechanism required to achieve the stated audience objective. Much of
this study focused on communication. Future work that combines both biomedical il-
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lustration and visualization techniques in data analysis with domain experts also holds
great potential.
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Abstract

Biomedical illustration and visualization techniques provide a window into
complex molecular worlds that are difficult to capture through experimental
means alone. Biomedical illustrators frequently employ color to help tell a
molecular story, e.g., to identify key molecules in a signaling pathway. Cur-
rently, color use for molecules is largely arbitrary and often chosen based
on the client, cultural factors, or personal taste. The study of molecular
dynamics is relatively young, and some stakeholders argue that color use
guidelines would throttle the growth of the field. Instead, content authors
have ample creative freedom to choose an aesthetic that, e.g., supports the
story they want to tell. However, such creative freedom comes at a price.
The color design process is challenging, particularly for those without a
background in color theory. The result is a semantically inconsistent color
space that reduces the interpretability and effectiveness of molecular visu-
alizations as a whole. Our contribution in this paper is threefold. We first
discuss some of the factors that contribute to this array of color palettes.
Second, we provide a brief sampling of color palettes used in both industry
and research sectors. Lastly, we suggest considerations for developing best
practices around color palettes applied to molecular visualization.

This article is accepted to appear in Design X Bioinformatics Special Issue of Journal of Integrative Bioin-
formatics, 2022.



E

182 E

(a) (b)

Figure E.1: Two color choices and effects to illustrate a molecular reaction between a ligand
and its protein receptor. (a) Orange ligand with similar luminance and saturation to its receptor.
(b) Ligand and receptor with higher luminance and saturation, with additional highly saturated
glow effect.

E.1 Introduction

Suppose you have landed a project for the visualization of the mechanism of action of a
novel cancer treatment drug that is about to come to market. One of the key elements of
the brief is showing how the drug acts at a molecular level. The visualization you pro-
duce must be accurate, as well as beautiful, informative, and memorable: your client
wants hospital administrators, doctors, and patients to be interested in, and to opt in to,
this drug. In telling this story, color palette will be one of the main and most challeng-
ing creative decisions you will have to make in the production process. The brief may
include a suggested color palette that aligns with the drug’s branding, or you may be
free to choose colors that you feel are most appropriate to tell the story that you want
to tell. If you choose poorly, you risk a visualization that is unappealing, ineffective,
or incomprehensible. If you are a biomedical illustrator, this is a common scenario that
you are faced with. As a researcher who works with molecules, aspects of this sce-
nario may also be quite familiar. Color selection can be overwhelming, particularly for
novices, and outside of standard best practices for color there are no general guidelines
in place for the coloring of molecules. This paper identifies some of the rationale for
the broad use of color in molecular visualizations, provides a set of contemporary color
palette examples, and discusses considerations towards best practices to lead to more
interpretable, accurate, and consistent molecular visualizations without compromising
on aesthetics or overly limiting creative freedom.

Visualizations can tell stories that aid in exploration, analysis, and communication
of complex molecular phenomena to a range of audiences and user types [168, 169,
239]. For this paper, we generalize to three story features in a molecular visualization
where color is an important consideration:

1. Focus + context molecules. Molecular visualizations are often structured in a
visual hierarchy such that focus molecules are shown prominently and in full de-
tail. Context molecules or structures are de-emphasized and provide an overview
of and add visual interest to the scene. Both Fig. E.1a and E.1b use color to help
develop this hierarchy. Color increases the prominence of the focus molecules
(ligand and receptor) and allows the context molecules (lipid bilayer of the cell
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Figure E.2: Simple biomedical illustration depicting key molecules in a pathway.

membrane) to recede into the background while still providing locational context
for the scene.

2. Molecular reaction(s). Molecules can interact in reactions that fundamentally
change their properties, synthesize new molecules, or destroy molecules. A spe-
cific and commonly–visualized scenario is ligand binding, where a ligand is de-
fined as any substance that forms a complex with another molecule to serve a bio-
logical purpose [180]. The specific region of the molecule that the ligand binds to
is known as a binding site. This step initiates (or blocks) a series of reactions that
contribute to pathways integral to the life cycle and behavior of a cell, with natu-
ral implications in drug development and protein engineering research. Fig. E.1
shows two different color approaches for this event that experiment with satura-
tion and luminance to draw attention and semantically connect to the concept of
“binding and activation."

3. Molecular pathway. A sequence of molecular reactions, often which are ini-
tiated by a ligand binding event, describe a molecular pathway. Understanding
molecular pathways and their functions is critical to understanding the function-
ing of higher-order structures such as cells, tissues, organs, organ systems, and
even the entire body. An example of this is shown in Fig. E.2 with three key
molecules in a given intracellular pathway. Color helps provide functional se-
mantics to the visualization: similar colors show that the three molecules are
connected, and a color progression indicates the order of the molecules in the
pathway.

Color plays a vital role in conveying each of these story features. While it can be
represented in several formats, such as RGB (red, green, blue), CMYK (cyan, magenta,
yellow, yey: black), or HSL (hue, saturation, lightness) [417], for the purposes of this
paper it is most intuitive and useful to think of color in the HSL color space. This
encompasses the three color properties depicted on the 3D cylinder shown in Fig. E.3a.
Hue specifies a base color, e.g., cyan, that is localized by angle around the color wheel
illustrated in Fig. E.3b. Saturation defines the purity of a hue. Values span the inner to
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(a) HSL color space (b) Color wheel

Figure E.3: Color. (a) Source: https://en.wikipedia.org/wiki/HSL_and_HSV. (b)
Adapted from: https://commons.wikimedia.org/wiki/File:RGB_color_wheel_360.
svg

outer perimeter of the cylinder, from no saturation (grey) to full saturation, e.g., pure
cyan. Lightness specifies color brightness, ranging from the bottom (black) to the top
of the cylinder (white). Mixing black into a color produces a shade, while blending
with white produces a tint.

A color palette is the combination of colors used to design a visualization. A num-
ber of color harmony rules aid in creating visually pleasing palettes. Derived from
Itten’s seven models of color contrast [222], harmony rules may be monochromatic,
analogous, or complementary, among others. Monochromatic palettes are formed from
tints and shades of a single color, as in Fig. E.4a. Analogous palettes comprise colors
that are adjacent on the color wheel, as in Fig. E.4b. This type of palette is employed in
Fig. E.2 to indicate that the molecules are part of the same pathway, and are therefore
functionally connected. Complementary palettes are comprised of colors that are op-
posite each other on the color wheel, as in Fig. E.4c. Colors from these palettes can be
used to draw attention to a particular element, to guide the eye through a narrative, or
to establish a visual hierarchy of focus + context elements in a molecular visualization.

While the artist often has creative license to choose their palette, other factors come
into play. Clients from different sectors have different aims. A pharmaceutical com-
pany has different requirements than an educational or research institution. The in-

(a) Monochromatic (b) Analogous (c) Complementary

Figure E.4: Three common color harmony rules with base color blue. Created in Adobe Color:
https://color.adobe.com/create/color-wheel.
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tended audience may have certain cultural sensitivities, visual or cognitive disabilities,
or other factors to consider. While on an individual basis these requirements can pro-
vide guard rails that limit the color design space, color selection remains broad and
inconsistent overall. This leads to diluted semantic meaning of molecular structures,
which can impact a visualization’s interpretability and effectiveness on a larger scale.
For example, if COVID-19 spike proteins are colored blue, rather than the red used in
the well-known version produced by Alissa Eckert and Dan Higgins for the CDC, can
everyone still recognize it as the COVID-19 virus? What are the consequences if they
can’t?

Many education and research-oriented applications use the CPK coloring conven-
tion for atoms [92] when atomic-scale resolution is key to the visualization. At the
cellular scale there are established colors for certain cell types, where the red blood cell
is perhaps the most obvious example. This is always red, unless there is an express rea-
son to show it otherwise, e.g., deoxygenated cells. Immune cells are often shown in
cool colors that echo the soothing blue color often seen in the medical field. Molecules
can be similarly classified, to some extent, into related groups according to structure
or function. With a standard in place for semantically coloring atoms, and an infor-
mal semantic coloring practice for coloring cells, why not have something in place for
molecules? Limited works in visualization have addressed color treatment in molecular
visualizations. These consider the use of illumination models to cue features on molec-
ular surfaces [195, 490] and coloring of multiscale molecular visualizations [256, 535].
While the application of high luminance colors to focus objects is a consistent recom-
mendation of these works, color assignment on the whole is largely arbitrary and lacks
consistent semantic meaning. Such works, alongside the broad community of profes-
sionals who craft them, can form the foundation for a set of best practices. This would
enable easier creation of molecular visualizations that are more interpretable and effec-
tive, as well as aesthetically-pleasing.

E.2 Related Work

In this section we briefly discuss works that explore color associations, as well as the
use of color in molecular visualizations within the areas of biomedical illustration and
scientific visualization.

Color can elicit different emotional and psychological reactions and associa-
tions [4, 316]. According to Itten, in general, ’all tints (light colors) represent the
brighter and better aspects of life, whereas shades (dark colors) symbolize the dark
and negative forces [222].’ However, different cultures have often different affective
interpretations of color. This is well-summarized in the visualization “Colours in Cul-
ture” by David McCandless and AlwaysWithHonor.com. In this graphic, we see the
color black associating with, e.g., intelligence for Asian cultures and style for Japanese
and Hindu cultures. Even in the same culture, a color can take on different mean-
ing in different contexts, suggesting a more subjective and nuanced interpretation of
color. Considering black again for Native American cultures in the “Colours in Cul-
ture” graphic, we see it associates with both balance and death. As a Western culture

https://phil.cdc.gov/Details.aspx?pid=23311
https://informationisbeautiful.net/visualizations/colours-in-cultures/
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example, Wexner’s [553] study of color–mood associations with 94 psychology stu-
dents at Purdue University found that participants strongly associated the color black
to despondent, dejected, unhappy, melancholy as well as powerful, strong, masterful.
Adams & Osgood [4] conducted a ground-breaking study on the affective meanings
of color across 23 different cultural groups using bipolar adjectives. These adjectives
were grouped into three factors: Evaluation (E), Potency (P), and Activity (A). Exam-
ples for each factor include: good ↔ bad for E, strong ↔ weak for P, and active ↔
passive for A. They explored the perception of color in general, as well as seven dis-
tinct colors: white, grey, black, red, yellow, green, and blue. Among their findings,
blue, white, and green were associated across nearly all 23 cultures as good, while
black and grey more typically associated with bad. Black and grey furthermore were
associated with passive, implying a degree of subjectivity in assessing the mood of
these colors. Red is considered a strongly active color, although cultures disagree on
its evaluation. Yellow exposes similar cultural disagreements on its evaluation. Film-
makers frequently take advantage of such color–mood associations to define the tone or
mood of a film. Wei et al. [547] analyze the consistency of this on a global (entire film)
and local (short shot sequences) scale. In this study, the authors collected and clas-
sified multidimensional feature vectors, including movie pace, movie dynamics, and
dominant color ratio, to determine the mood of a film. Using the color-mood associ-
ations developed by Mahnke [316], an American psychologist, their approach found
approximately 80% accuracy for mood/film genre classification according to color.

Color affect is also well-studied in visualization, with studies such as Bartram et
al.’s work on the strength of associations between certain color palettes and affective
response [37]. For example, calm often associates with cool colors with high light-
ness and low saturation. This strong association was found again in a related study by
Kulahciogu & de Melo [275] investigating affective word clouds. In contrast, play-
ful or exciting do not exhibit such distinct color palette associations, and Bartram et
al [37] note the need for more nuanced analyses of color harmony patterns. Color
meaning can also be highly individual, particularly when associated with concepts or
lesser-known objects [456]. In their crowd-sourced study of color palette selection for
visualizations, Ahmad et al. [8] demonstrate this in quotes from two users who dif-
fer on the meaning of blue, red, and white in terms of agree, disagree, and neutral.
However, color can also have strong semantic associations that postively impact per-
formance. Lin et al. [303] found a faster response time for comparison–related tasks
when data are assigned semantically meaningful colors for fruits (e.g., yellow ↔ ba-
nana), drinks, vegetables, and brands. For concepts or objects which are often lesser
known and lack such strong semantic associations for the public, Schloss et al. [443]
have shown that, with sufficient context, audiences can still infer meanings of colors.
This holds promise for molecules, which are often unfamiliar to the public. Although
there remain myriad reasons for subjective and variable interpretations of color seman-
tics, e.g., culture, color blindness, ethnicity, we can use insights from these and similar
works to appropriately leverage context and semantics to tell more consistent stories in
molecular visualization.

Biomedical illustration is a field devoted to illustrating and animating biological
and medical topics, often with a human focus. Biomedical illustrators follow percep-
tual principles in color design of a molecular visualization, but frequently take artistic
license regarding the specific colors in a color palette. David Goodsell’s watercolor
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paintings of molecular machinery are foundational to the practice of illustrating and
visualizing molecules, which use color strategically to encode the spatial organization
of molecules [165, 169]. However, he notes that the majority of his colors are “com-
pletely arbitrary and are chosen solely for aesthetic appeal [168].” Biomedical illus-
trators also frequently employ perceptual color techniques to draw audience attention
to the main narrative of the visualization [231]. For example, Jenkinson et al.’s [232]
perceptual study on scene complexity versus learning outcomes uses desaturated, low
contrast colors for context molecules/scene elements, while applying complementary
and highly saturated/bright colors for focus molecules (ligand and protein receptor) in
all treatments. Johnson & Hertig suggest the same such approach in their guide to the
visual analysis and communication of biomolecular structural data [239]. Wong fur-
thermore notes that small scene objects need increased hue, saturation, and/or bright-
ness to stand out in a visualization [561], and suggests the simple trick of squinting at
a visualization to assess for color visibility and evenness. While these approaches are
useful for aesthetics and guiding the narrative, none suggest the use of specific colors
to semantically highlight particular structural or functional features.

A wealth of publications address the use and efficacy of colormaps, such as the con-
troversial rainbow colormap [57], in visualization. Our concern with color in this work
is specific to scientific visualization, and more narrowly to the coloring of molecules
and their environments. For an overview of color scales and guidelines for color use
in a general visualization context we refer to surveys by Silva et al. [465] and Zhou et
al. [579]. Biomedical illustrators and researchers who create molecular visualizations
often rely on tools such as ColorBrewer [185], Colourmap Hospital [128], Colorgori-
cal [173], or Adobe Color [6] to determine a color palette for their scene. Many of these
tools are designed for chart visualization, as opposed to complex molecular structures
in 2D or 3D. Palettes generated from such general–purpose tools can be ineffective
or difficult to interpret when applied to molecular visualization. Adobe Color [6] is
designed for artists and flexibly allows color selection according to defined color har-
mony rules, e.g., complementary colors. However, this still offers a staggering array of
choices and requires a degree of color expertise to use. A similar tool with additional
constraints for color selection could be more useful for content authors creating these
assets who lack a background in color theory.

Color is used to provide structural cues on a molecular surface. These cues are
aided by illumination models, such as Hermosilla et al.’s recent approach [195] that
includes realistic diffuse color bleeding over a complete molecular scene. Ambient
occlusion and directional lighting are shown by Szafir et al. [490] to help in interpreting
molecular surface colors that are in shadow, while stylization can make interpretation
more difficult. This study also found luminance-varying ramps to perform better than
isoluminant ramps, since shadows reduce the luminance range. This suggests that focus
molecules or regions may be better assigned high luminance values to direct attention
and improve readability of the molecule’s surface. These works show the importance
of selecting appropriate illumination models in a molecular visualization, and should
be discussed in future best practices.

Limited works address color application across spatial scales in molecular visual-
ization. Waldin et al. [535] present a technique that employs an systematically ad-
justable color scheme that mainly relies on hue shift across different levels of magnifi-
cation, from atomic resolution to a complete virus. Their technique allows the viewer
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to clearly distinguish between structures of interest at a given level of magnification be-
tween, e.g., atoms, domains in a single molecule, or structural compartments of a virus.
Colors are generally saturated, and luminance is used as a focus device for particu-
lar features, e.g., the quantity of amino acids in a scene, or to show structural details,
e.g., secondary structures in a protein domain. This use of luminance to drive a main
narrative aligns with conventions in biomedical illustration. However, some instances
may require greater contrast than an analogous color palette can achieve. Additionally,
Waldin et al.’s coloring technique is limited to structure, rather than function. Lastly,
the initial molecular color selections made by the user are arbitrary and lack semantic
association. Klein et al. [256] apply a similar adaptive multi-scale coloring scheme in
the context of microtubule dynamics, where molecules are mainly colored according
to structure and have similar arbitrary initial coloring assignments. Developing guide-
lines from some of the basic rules established in these works, in conjunction with more
specific structural or functional coloring rules, could lead to more effective molecular
visualizations.

E.3 Color Choices in Molecular Visualization

The colors used to visualize molecules are dependent upon a number of considerations,
such as corporate branding, personal taste, and cultural sensitivities. We demonstrate
the breadth of color palette choices with a brief sample of color palettes drawn from
the Association of Medical Illustrators 2021 Online Salon and from the 2021 VIZBI
Poster Gallery in the Proteins category.

E.3.1 Color Considerations

Numerous factors influence the choice of a molecular color palette. Pharmaceutical
marketing and research are major drivers for the production of molecular visualiza-
tions. Marketing videos for a new drug are contracted to specialty biomedical illus-
tration studios every year. In many of these instances, the brief requests color palettes
to follow the branding of the drug or the parent pharmaceutical company. In other in-
stances the client may focus less on brand colors but instead request a palette reflective
of a particular mood, e.g., comforting or dramatic. Such client–specific color requests
can be helpful in constraining a design space that is at times overwhelming, but are par-
tially responsible for the broad range of palettes and the lack of semantic consistency in
the coloring of particular molecules. Beyond the pharmaceutical sector, different tar-
get areas often play a role in color palette choices. A molecular visualization aimed at
academic/educational use often drives the author to make different color choices than a
visualization for pharmaceutical use, as the main goal for this sector is often to engage
and teach a broad, diverse audience. For example, Drew Berry’s work mainly targets
the educational and research sector, with visualizations for colorblind-friendliness and
frequent use of yellows, blues, and purples applied to lambert shaders with ambient
occlusion [546]. In contrast, XVIVO Scientific Animation Studio [570] tends towards
more high-end, flashier lighting, shading, and rendering techniques, which contribute

https://meetings.ami.org/2021/onlinesalon/
https://vizbi.org/Posters/
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to color palettes with greater drama and contrast for clients in the biotech and pharma-
ceutical sectors.

Culture is also a major driver of color selection, given its affective role in visual-
ization. Many molecular visualizations incorporate blue, or a close analogous color,
into their palette for the comforting, pleasant emotions that often associate with this
color [4, 96]. Various works have shown that cool colors, e.g., blue, green, are more
passive than warm colors, e.g., red, yellow, and orange [4, 37, 222, 332], and thus can
be good context color choices. While the color red is an active, i.e., highly visually
salient color [4, 332], depending on the culture it can indicate danger or, conversely,
luck or happiness according to Chinese culture. Biomedical illustrators based in North
America commonly use red to indicate aberrant molecular activity, e.g., constitutive
activation, where a molecule is always turned “on.” For East Asian cultures this is not
semantically intuitive, and may be taken to mean the opposite for audiences that do not
have this exposure to North American conventions.

Likely the most significant element of color choice for molecular visualizations
comes down to the author’s tastes and aesthetic preferences. Furthermore, biomedical
illustrators and studios often wish to develop a house style that sets them apart from
other studios. The decision process for color selection may often be guided by basic
perceptual principles, e.g., saturated focus and desaturated context, and color harmony
rules. However, the ultimate decision to color a ligand purple, orange, or another color
is the author’s decision with little to no semantics attached. Exceptions include the
case mentioned previously in a North American context, where red is often used to
indicate aberrant activity of a molecule [148], and the use of red to color hemoglobin,
which is the oxygen-bearing protein in red blood cells [165]. However, the majority of
molecular visualization color palettes are guided by the author’s aesthetic sensibilities
and their storytelling goals. The visualizations produced by Drew Berry, such as his
set of DNA animations [46], are one example of this, where color application is highly
aesthetic and tells a clear story, but the coloring of the individual molecules does not
necessarily tie to their respective structural or functional properties.

E.3.2 Color Strategies: A Contemporary Sample

To illustrate the broad use of color in practice for molecular visualizations today, we
conducted an informal study where we extracted the color palettes from 20 molecular
visualizations that were produced in the last year. This ensures that our sampling cap-
tures recent trends in color design. Since such works may be created by biomedical il-
lustrators, bioinformaticians, structural biologists, and visualization researchers [148],
we sampled from two venues that attract these professions, and sampled ten palettes
from each. The Association of Medical Illustrators (AMI) is a global, although primar-
ily oriented to North America, society of biomedical illustrators. Every year the asso-
ciation hosts a juried salon where student and professional work can be submitted, and
which is subsequently posted online. The ten palettes we sampled from the salon fea-
tured works where molecules were the main story element, and came from either static
images or stills from a larger animation. Visualizing Biological Data (VIZBI) is an an-
nual meeting that brings together diverse professions to discuss advances in research

https://informationisbeautiful.net/visualizations/colours-in-cultures/
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Figure E.5: 20 sampled molecular visualization color palettes. (a) 2021 AMI Online Salon
color palettes. (b) 2021 VIZBI Protein poster color palettes. Rule abbr: SC: split complemen-
tary, DSC: double split complementary, A: analogous, T: triad, S: square.

in biological data, including molecular data. Each year includes a large poster session,
which is divided into topical categories. The ten palettes we sampled came from the
2021 Proteins poster category. While VIZBI is advertized as an international venue,
we acknowledge a North American bias in our our sampling of biomedical illustration
work from the AMI, since this is a primarily North American-oriented organization.

We generated color palettes from each molecular visualization using the Adobe
Color tool [6], which has a feature to extract a color palette from an image. Palette
extraction can be done manually by user selection of pixels of interest in the image,
or semi-automatically according to color mood, e.g., colorful or muted. We used this
semi-automatic feature as a way to minimize subjectivity bias for this phase. Exper-
imentation with each of the five color mood options found that colorful consistently
yielded palettes that captured the broadest color range in the image and most often in-
cluded colors of molecules that may have proportionally occupied fewer pixels but were
important to include in terms of the story. Palettes from this mode were the closest to
what we, as experienced authors of molecular visualizations, would have generated by
eye. However, in some instances the system did not pick up an important story feature.
In these instances we manually adjusted the palette, replacing a redundant color, e.g.,
if the generated palette included two shades of a color, to include this color instead.
This manual adjustment to the palette introduces a possible subjective bias in the study
design.

After a palette is generated from an image, Adobe Color stores the resulting color
palette as only a “custom” color harmony rule. Our intervention was required to match
this custom palette to the closest-matching harmony rule, which we did by attempting
to duplicate the palette by eye for each rule setting. This involved at times changing
what the system had identified as the central color, or by making slight adjustments
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to a palette color to identify the harmony rule that was the closest, if not exact, match
for the generated palette. This human subjectivity is another possible source of bias,
although we did our best to limit this through consistency of choices and monitor use.
We further discuss this possible bias in Sec. E.5.

Fig. E.5 shows the set of 20 palettes that we generated from this process. Palettes
a1–a10 are sourced from the AMI Salon, while b1–b10 are sourced from VIZBI Pro-
tein posters. For further details on the content authors, title and link to their original
work, color harmony rules, and resulting palettes we refer to supplementary material.
Although palettes are not always a precise match to a given harmony rule, we were able
to match all 20 to a closest harmony rule. Split complementary is the most common
rule, employed in 11 palettes in both groups, with two additional double split comple-
mentary palettes used in the AMI group. Palettes with an analogous rule are the second
most common (five), and occur more frequently in the AMI group. The VIZBI group
exhibits harmony rules that are closest to a triad (b4) and a square (b10) rule.

Generally, the palettes generated from the AMI group tend to be less saturated,
show a greater contrast range, and favor split/double split complementary rules in their
palettes. VIZBI group color rules for palettes are more variable, although split com-
plementary is the dominant rule for this group as well. This latter point could reflect
that some of the posters submitted were created in part by biomedical illustrators, e.g.,
b1 and b2. Cool base colors (purple, green, or blue) are more common (11) relative to
warm colors, but this is fairly evenly–balanced between both groups.

Although we did not observe consistent color semantics across all 20 visualizations,
some patterns emerge. We discuss these in the following, but note the need for a larger,
international study before using such findings as the basis for formal and actionable
guidelines. VIZBI posters that visualize COVID-19 more consistently use red for
the spike proteins (b2, b6, b9), although this is not true for all (b4). The AMI group
visualization of COVID-19 (a4), while using a warm color, uses pink instead. Purple
is a popular color for receptor proteins for the AMI group (a2, a3, a5, a8), although
also used for membrane molecules (a7, a8, a10), ligands (a4), or other elements (a9).
VIZBI posters use purple less frequently, and more often for a ligand (b1, b5, b7)
rather than for a receptor (b3) or other structural element (b8). In comparison, AMI
works favor yellow/orange for a ligand (a1, a2, a3, a8, a10) or other focus molecule
(a6, a7, a9). Yellow/orange is used more broadly, and less frequently, in the VIZBI
group. These findings show that, while color selection on the whole is largely arbitrary,
there is a clear aspect of peer influence in color selection, particularly in the AMI
group. Best practices could be formalized from this, particularly if a larger survey
with international groups and cultures uncovers a similar and stronger pattern of color
application. In both groups on a per-visualization basis, individual molecular coloring
is consistent for structural elements, e.g., molecules comprising a cell membrane are all
colored the same or analogously. However, the semantics behind the color choices are
unclear, except in the case of the COVID-19 spike protein’s red coloring. Emphasizing
a visual hierarchy or to focus attention on the main narrative appears to be the primary
factor in color selection, with only sporadic consistency in coloring particular types of
molecules, e.g., ligands.
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Base color: purple

Figure E.6: Example of 60-30-10 rule used in a biomedical illustration. Explorable color
palette at https://color.adobe.com/color-name_LG-color-theme-19646985/

E.4 Considerations for Molecular Coloring Best Practices

Molecular visualization remains a young and rapidly growing field. Allowing room
for creativity is important for biomedical illustrators, structural biologists, and experts
from related fields to innovate on the ways that we visualize molecules. However, fram-
ing coloring approaches within a set of best practices can provide a common ground
that aids in the aesthetics, interpretability, and ultimate effectiveness of a molecular
visualization while also simplifying the design process for content authors with limited
training in color theory.
Aesthetics. Aesthetics are integral to drawing and guiding attention in a molecular
visualization. Best practices can help content authors who lack formal training or intu-
ition in color theory to easily craft more aesthetically–pleasing visualizations. The 60-
30-10 rule from interior design is a useful rule of thumb to guide the composition and
harmony of a molecular visualization. In this rule, 60% of the scene should be a domi-
nant color, 30% a secondary color, and the last 10% an accent color, as demonstrated in
Fig. E.6. The split complementary harmony rule that is popular with biomedical illus-
trators aligns with this practice. Molecular visualizations that follow established color
harmony rules and basic perceptual principles can be more aesthetically–pleasing, and
furthermore may be easier to interpret in their ability to guide user attention to salient
story points [231, 239, 561].
Interpretability. Color is an important driving force in the interpretability, or readabil-
ity, of a molecular visualization. It can help the audience focus on the intended parts of
the story, which ultimately leads to a more effective visualization. For instance, read-
ability guidelines for text-based presentations recommend roughly 80% contrast be-
tween focus and context elements [459]. Additionally, employing active versus passive
color ranges can clearly define focus+context elements and establish a scene hierarchy.
Although different cultures or other contexts may assign different semantic meanings,
warm, saturated, or light value colors perceptually tend to draw attention, while cool,
desaturated, dark value colors often recede visually when positioned with active col-
ors [222]. This perceptual feature is already in broad use in biomedical illustration,
although, as we observed in our small study, the specific colors themselves are incon-
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sistent. Leveraging this natural perceptive feature can aid interpretability of a molecular
visualization by using color salience to draw attention to the most important, i.e., focus
elements, of a visualization. For example, ligands and their receptors can be assigned
high contrast colors relative to context molecules. Complementary colors can then be
employed to differentiate the ligand from its receptor. A split complementary palette of
yellow (ligand) and purple (receptor), such as in Fig. E.5.a2, is a colorblind–friendly
choice for clear differentiation of ligand and receptor. Molecules that comprise a path-
way can similarly be colored for high contrast against context elements, and these path-
way molecules could be analogously-colored to indicate functional relatedness, as in
Fig. E.2. Importance functions could be useful for rule-based methods to aid in gener-
ating a molecular visualization and assigning appropriate hue, saturation, and lightness
values to assets.

Effectiveness. Lastly, an effective molecular visualization is read correctly by the
intended audience. For example, in a given visualization, can the audience correctly
identify a ligand? Coloring best practices can help to create a semantic layer of commu-
nication that provides an intuition to a broad audience of certain structural or functional
properties of a molecule. This is particularly valuable since molecules are themselves
rather abstract, often looking like “partially-melted gummy bears” that are difficult to
relate to macroscale-world structures. Just as how a lay audience may not necessarily
know exactly what a red blood cell is or what it does at a technical level, through shape
and color cues they can recognize its basic properties and relate it to blood on a larger
scale. This strategy can be extended to the molecular level by coloring hemoglobin
red. Consistent coloring across multiscale may facilitate understanding of properties of
other molecules as well.

Coloring molecules according to the type of pathway that they are involved in is
another consideration. Certain color families and harmony rules could be applied to,
e.g., signal transduction pathways, while metabolic or gene expression pathways are
assigned a different color family. Further color treatment in the form of different ap-
plications of color fresnel or glow effects could then be used if the pathway is showing
aberrant activity, as is frequent in cancer. This guideline remains general enough to
allow for creative license and follows principles for aesthetic and interpretable visual-
izations, while adding additional semantics for greater understanding.

An alternative consideration could be assigning color families and harmony rules
according to structure. This could be related to the structure of a single molecule, e.g.,
the domains of a protein could be assigned particular shades or tints. This guideline
may also be applied to the structure of entire molecular scenes, e.g., membrane struc-
tures that are comprised of thousands of phospholipid molecules is assigned to a partic-
ular color family, while native internal molecular structures are allocated to a different
portion of the color space. Currently, coloring by structure is mostly consistent within
a given visualization, but this is not the case when comparing between the majority of
visualizations. Coloring according to structure has some natural overlap with coloring
according to function. Guidelines for both perspectives could be applied together to
give color greater meaning in a molecular visualization.

Lastly, cultural associations are important considerations in developing guidelines
to ensure the semantics come across as intended. In our globalized world, adoption
of best practices that generalize across cultures is preferable to, e.g., palettes biased
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towards Western sensibilities. Works such as Adams et al.’s [4] cross-cultural study
of the affective meanings of color are a useful starting point. The development of
guidelines for coloring of molecular visualization that help achieve these three aims
may also draw inspiration from works on color specification models for scientific data,
such as by Nardini et al. [360].

E.5 Limitations

This work presents a discussion and limited study of the space of color choices used
in industry and research, and additionally draws on the authors’ own experience in
crafting molecular visualizations. While our aim is to summarize and introduce con-
siderations for developing guidelines and best practices for semantically meaningful
molecular color palettes, we note some limitations in this paper.

The color palettes selected in our study and the rationales we discuss for authors’
color palette selection draw primarily from North American or European venues and
motivations. This bias is important to note, and acts as further motivation to conduct
larger, international studies and focus groups for the formal development of best prac-
tices. We do not comprehensively summarize the various rationales for color palette
selection, and rather discuss a subset of the most common rationales. Similarly, we do
not aim to comprehensively summarize the space of color usage in molecular visualiza-
tion. This is an interesting direction and may be useful in the establishment of robust
guidelines, but is beyond the scope of this work. Although limited, our considerations
are meant to provide a starting point for establishing and discussing the need for best
practices in coloring molecular visualizations.

A second source of possible subjectivity and bias is the generation of color palettes
from images that we sampled in our study. Although Adobe Color is a high-quality
tool popular in both research and industry for color palette creation, use of another
tool may lead to variations in the color palettes that we generated. Our decision to
use a particular color mood and subsequent minor adjustments we made to determine
color palettes and their closest harmony rules were based on the subjective opinion
of the researcher generating the color palette. Additionally, our criteria for adjusting
automatically-generated palettes to include a color important to the story is another
source of subjectivity in palette generation. This could have had an effect on the result-
ing harmony rule. Bias could have been mitigated in these instances by having another
researcher generate palettes and compare the results for consistency. However, we did
not incorporate this into our pipeline, as this is a preliminary study to explore color use
and to motivate future work in this space.

Despite the fact that we frame our discussion of color in this paper around the HSL
color space, this may not be the optimal color space. Although spatially uniform and
therefore easier to describe, it is not perceptually uniform. For the latter, a color space
such as HCL (hue, chroma, and lightness) [213, 577] may be a more suitable alternative.

The spatial range that molecular visualization covers is large, spanning from tiny
individual molecules up to large scenes of molecules that form even larger structures.
An extensive discussion of the multiscale nature of the molecular world falls beyond
the scope of this work, but this is a major challenge that best practices for coloring
molecular visualizations must account for. Audience tasks may also be different at
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each scale. For example, CPK coloring rules are useful to identify residues for binding
sites, but a different rule is necessary when exploring protein secondary domains, or an
entire cell at molecular resolution. Works such as Waldin et al. [535] provide a solid
foundation for best practices in coloring across spatial scales.

E.6 Challenges & Outlook

Establishing a robust set of guidelines that retain the flexibility for creative expres-
sion and innovation is challenging and requires further research in the form of per-
ceptual user studies. For example, Jenkinson et al. [232] present a perceptual study
that assesses the effect of molecular scene complexity on learning outcomes for under-
graduate biology students. Presenting four scenes of increasing complexity that depict
protein-ligand binding conformational changes in 3D, the authors found that the most
complex scene was the most effective in achieving the intended learning outcomes. A
similar study design could be adopted to assess the effects of different color palettes on
learning outcomes.

Focus groups on color use with experts in biomedical illustration, visualization,
structural biology, and bioinformatics are also necessary when developing guidelines
to ensure that all stakeholders have a voice in the process. Our prior work has explored
stakeholder perspectives from biomedical illustration and animation studios and visual-
ization researchers [148]. This was a limited study that centered on North American and
European molecular visualization conventions, and obtained these stakeholder perspec-
tives through 1:1 interviews and in small focus groups (3–4 people). Such qualitative
research methods should be used for the development of more formal guidelines, which
we envision could take place within a workshop format that invites stakeholders from
all relevant disciplines to achieve adequate representation. The Creative Visualization-
Opportunities (CVO) Workshop [249] is a promising model to follow to ensure diverse
stakeholder participation and engagement.

Colors are not interpreted in the same way in all cultures. Guideline development re-
quires numerous, inclusive discussions and perceptual studies with people from differ-
ent backgrounds. Further, international studies into the use of color and its meaning be-
yond Western aesthetics are necessary. As previously discussed, CVO workshops [249]
that recruit stakeholders not only from a diversity of professions but also a diversity of
cultures, genders, and ethnicities are imperative to developing guidelines that are glob-
ally relevant. Avoiding pitfalls related to color blindness is another challenge. For
example, red-green color blindness is well-known and accounted for in standard design
practice. Deciding to color hemoglobin red to enable its semantic mapping to red blood
cells and blood can be problematic if green is also a part of the visualization’s palette.
Further nuanced discussion of affective and perceptual conflicts is necessary.

The use of color in the context of glows, as demonstrated in Fig. E.1b, also requires
discussion. Glows are notoriously ambiguous in their semantics: they can indicate
generic activity, aberrant activity, metabolism, growth, pain, among others. Conducting
studies exploring the use and meaning of glows in the context of molecular events is
likely the best way forward to determine best practices for their use (or disuse).
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E.7 Conclusion

Current color palettes for molecular visualizations are largely arbitrary and determined
by a wide range of factors. Implementing coloring best practices can lead to more
interpretable and effective molecular visualizations that are stylistically and semanti-
cally consistent, without overly compromising on creative freedom or aesthetics. Such
guidelines can also simplify the color design process. These guidelines could be appli-
cable not only for communication-oriented tasks, but for exploratory and analytically-
oriented visualizations as well. Color can be a means to elevate scientific and health
literacy at individual and population levels. With molecular visualization becoming
more prevalent in mainstream culture, we feel that color best practices can, and should,
be implemented to improve public understanding of molecules.
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Web of Science Hot and Highly Cited Papers

The two tables on the following pages provide an overview of highly interesting application
domain research in the area of physiology, and which provide an indication of the opportunities
for visualization research, which we used to drive in part our literature search in PaperA. We
used Web of Science’s “hot papers” and “highly cited” filters with the keyword “physiology,”
where a “hot paper” is any paper published in the past two years that has received enough
citations to rank in the top 0.1% of papers in its field. A “highly cited” paper ranks in the top
1% of cited papers for its field and publication year.

We took the top 20 papers from each of these filters and excluded works that did not relate
to humans or other mammals. Papers are keyed to an area of physiology, e.g., molecular
pathways or heart function, following standard medical physiology textbooks [180].
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Table A1: Web of Science Hot Papers, Top 20 (Non-mammal works excluded)

Rank Title Authors Year Publication Venue Topic Area
1 COVID-19 and its implications for thrombo-

sis and anticoagulation
Connors &
Levy

2020 Blood Blood Flow

2 Reactive oxygen species (ROS) as
pleiotropic physiological signalling agents

Sies & Jones 2020 Nature Reviews
Molecular Cell Bi-
ology

Molecular in-
teractions

3 mTOR at the nexus of nutrition, growth,
ageing and disease

Liu & Saba-
tini

2020 Nature Reviews
Molecular Cell Bi-
ology

Molecular
pathways

4 Metabolic regulation of gene expression by
histone lactylation

Zhang et al. 2019 Nature Molecular
dynamics,
Molecular
pathways

5 Angiotensin-converting enzyme 2
(ACE2),SARS-CoV-2 and the patho-
physiology of coronavirus disease 2019
(COVID-19)

Bourgonje et
al.

2021 Journal of Pathol-
ogy

Molecular
pathways

6 The PI3K-AKT network at the interface of
oncogenic signalling and cancer metabolism

Hoxhaj &
Manning

2020 Nature Reviews
Cancer

Molecular
pathways

7 Mitochondrial TCA cycle metabolites con-
trol physiology and disease

Martinez-
Reyes &
Chandel

2020 Nature Communi-
cations

Cell dynamics

8 The role of short-chain fatty acids from gut
microbiota in gut-brain communication

Silva et al. 2020 Fronties in En-
docrinology

Molecular
pathways,
*Organism

9 The brain’s default network: updated
anatomy, physiology and evolving insights

Buckner &
DiNicola

2019 Nature Reviews
Neuroscience

Brain function

10 Diet-microbiota interactions and personal-
ized nutrition

Kolodziejczyk
et al.

2019 Nature Reviews
Microbiology

Cell inter-
actions,
*Organism

11 Identification of region-specific astrocyte
subtypes at single cell resolution

Batiuk et al. 2020 Nature Communi-
cations

Cell interac-
tions

12 Ferroptosis: mechanisms, biology and role
in disease

Jiang et al. 2021 Nature Reviews
Molecular Cell Bi-
ology

Cell dynamics

13 Organs-on-chips: into the next decade Low et al. 2021 Nature Reviews
Drug Discovery

Tissue inter-
actions

14 Perivascular spaces in the brain: anatomy,
physiology and pathology

Wardlaw et al. 2020 Nature Reviews
Neurol.

Brain function

15 Social determinants of health and survival in
humans and other animals

Snyder-
Mackler et al.

2020 Science *Organism,
Population
physio.

16 3-month, 6-month, 9-month, and 12-month
respiratory outcomes in patients follow-
ing COVID-19-related hospitalisation: a
prospective study

Wu et al. 2021 Lancet Respiratory
Medicine

Lung function

17 Microbial Regulation of Host Physiology by
Short-chain Fatty Acids

van der Hee &
Wells

2021 Trends in Microbi-
ology

Molecular
pathways

18 A human-airway-on-a-chip for the rapid
identification of candidate antiviral thera-
peutics and prophylactics

Si et al. 2021 Nature Biomedical
Engineering

Tissue dy-
namics

19 When the human brain goes diving: using
near-infrared spectroscopy to measure cere-
bral and systemic cardiovascular responses
to deep, breath-hold diving in elite freed-
ivers

McKnight et
al.

2021 Philosophical
Transactions of the
Royal Society B:
Biological Sciences

Heart func-
tion, Brain
function
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Table A2: Web of Science Highly Cited Papers, Top 20 (Non-mammal works excluded)

Rank Title Authors Year Publication Venue Topic Area
1 2013 ACCF/AHA Guideline for the Man-

agement of Heart Failure
Yancy et al. 2013 Journal of the

American College
of Cardiology.

Heart func-
tion, Blood
Flow

2 2014 AHA/ACC/HRS Guideline for the
Management of Patients With Atrial Fibril-
lation

January et al. 2014 Circulation Heart function

3 2014 AHA/ACC/HRS Guideline for the
Management of Patients With Atrial Fibril-
lation

January et al. 2014 Journal of the
American College
of Cardiology.

Heart function

4 mTOR Signaling in Growth, Metabolism,
and Disease

Saxton &
Sabatini

2017 Cell Molecular
pathways

5 Diversity, stability and resilience of the hu-
man gut microbiota

Lozupone et
al.

2012 Nature Cell interac-
tions

6 Interactions Between the Microbiota and the
Immune System

Hooper et al. 2012 Science Cell inter-
actions,
*Organism

7 Macrophage biology in development, home-
ostasis and disease

Wynn et al. 2013 Nature Cell dynamics

8 Physiology of Microglia Kettenmann et
al.

2011 Physiological Re-
views

Cell dynam-
ics, interac-
tions

9 Mind-altering microorganisms: the impact
of the gut microbiota on brain and behaviour

Cryan & Di-
nan

2012 Nature Reviews
Neuroscience

Cell inter-
actions,
*Organism

10 Lipid Peroxidation: Production,
Metabolism, and Signaling Mechanisms
of Malondialdehyde and 4-Hydroxy-2-
Nonenal

Ayala et al. 2014 Oxidative Medicine
& Cellular
Longevity

Molecular in-
teractions

11 Control of apoptosis by the BCL-2 protein
family: implications for physiology and
therapy

Czabotar et al. 2014 Nature Reviews
Molec. Cell Biol-
ogy

Cell dynamics

12 From Dietary Fiber to Host Physiology:
Short-Chain Fatty Acids as Key Bacterial
Metabolites

Koh et al. 2016 Cell Molecular
pathways,
*Organism

13 Hypoxia-Inducible Factors in Physiology
and Medicine

Semenza 2012 Cell Molecular
pathways

14 Prone Positioning in Severe Acute Respira-
tory Distress Syndrome

Guerin et al. 2013 New England Jour-
nal of Medicine

Lung function

15 Normal gut microbiota modulates brain de-
velopment and behavior

Heijtza et al. 2011 Proceedings of the
National Academy
of Sciences of the
USA

Cell interac-
tions, Brain
function

16 The gut microbiota - masters of host devel-
opment and physiology

Sommer &
Baeckhed

2013 Nature Reviews
Microbiology

Cell interac-
tions

17 The landscape of long noncoding RNAs in
the human transcriptome

Iyer et al. 2015 Nature Genetics Molecular
pathways

18 Microfluidic organs-on-chips Bhatia & Ing-
ber

2014 Nature Biotechnol-
ogy

Tissue dy-
namics

19 Proteomic comparison defines novel mark-
ers to characterize heterogeneous popula-
tions of extracellular vesicle subtypes

Kowal et al. 2016 Proceedings of the
National Academy
of Sciences of the
USA

Cell interac-
tions

20 Pro-resolving lipid mediators are leads for
resolution physiology

Serhan 2014 Nature Molecular
pathways
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Survey Structure
The following describes in detail the structure of our survey that we conducted in Pa-
perD. Screenshots of all pages of the three surveys are available at https://github.com/
lauragarrison87/Biomedical_Process_Vis/tree/main/5-survey-screenshots.

1. Welcome screen/GDPR information
Welcome! In this survey we will ask you to compare the different ways that we represent
two physiological phenomena: [normal topic] and [pathological topic].

We will present you with two task-based scenarios, (1) expert and (2) general audi-
ence, an ask you to identify the (1) most and (2)least effective visual representations
for each scenario’s communication objective for both blood flow and an aneurysm, re-
spectively. We will furthermore ask you to provide some basic ratings and keywords for
your choices. We will use these data to analyze and develop a set of recommendations
for more effective physiology representation methods driven by audience and task. Fol-
lowing the conclusion of this study we plan to make these results and assets available to
the broader research community.

In compliance with GDPR regulations in the EU, we will not collect or store any per-
sonally identifying information about you unless you choose to provide it. We will keep
private any personal information that you provide (i.e., profession, age, gender, email).
We will use this optional information to identify possible demographic-related patterns
in perception; provision of your email is only if you are will for us to contact you if
we have a question for you on any of your survey responses. Your data will be stored
on secure servers with multi-factor authentication through Typeform (for more infor-
mation, visit https://help.typeform.com/hc/en-us/articles/360029259552-
Security-at-Typeform and will be moved to a secure server at University of Bergen
following the completion of this study.

We will only use your responses for the purposes of this research and our stated aims. By
proceeding into this survey, you indicate your agreement for our use of your responses
for this purpose. If you have any further questions, would like to view, change, or delete
your responses, you may contact us (email laura.garrison@uib.no) at any time.

This survey should take around 30 minutes. Thank you in advance for contributing your
time and feedback to this research.

2. User profile
First, please tell us a bit about yourself.

(a) Please briefly describe your profession or background. For example, "Clinical
researcher in immunology, 10 years in the field."
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(b) What gender do you most identify with?

i. Male
ii. Female

iii. Prefer not to say

(c) Please tell us your age using the following categories:

i. < 24 years old
ii. 25-34 years old

iii. 35-44 years old
iv. 45-54 years old
v. 55-64 years old

vi. 65-74 years old
vii. 75 years or older

viii. Prefer not to say

3. How would you rate your expertise regarding [normal topic], relative to the general
population?

(a) 0 - no knowledge

(b) 1 - some knowledge, I’ve heard of this

(c) 2 - I enjoy reading/hearing occasionally about this topic

(d) 3 - I know this area relatively well

(e) 4 - I know this area extremely well

4. Expert audience scenario – normal topic
Consider the following scenario and learning objective describing [normal topic] for an
expert audience: [scenario . . . ]

(a) In your opinion, which of the following assets BEST visually describes and support
this scenario and communication objective?

(b) What is your second choice for this scenario and communication objective?

(c) What is your third choice for this scenario and communication objective?

(d) Now we will ask you to provide a few ratings of only your top choice.
NB: Rating is done according to the following scale (these are heavily referencing
the AMI salon judging guidelines).
1 - (poor/minimal)
2 - (fair/low)
3 - (average/adequate)
4 - (very good/high)
5 - (excellent/very high)

i. Rate your top choice for aesthetics (i.e., How visually appealing do you con-
sider this to be?).

ii. Rate your top chocie for visual clarity (i.e., How well does it convey the de-
scribed scenario?).
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iii. Rate your top choice for scientific accuracy.
iv. Rate your top choice for communication success (i.e., How well does it meet

[scenario]’s stated communication/learning objective?).

(e) Use the below keywords to describe the strengths of your top choice. Choose as
many as you feel are relevant:
Accurate, Clear, Detailed, Direct, Easy to read, Informative, Precise, Pretty, Visu-
ally pleasing

(f) Use the below keywords to describe the weaknesses of your top choice. Choose as
many as you feel are relevant:
Confusing, Distracting, Excessive, Inaccurate, Intricate, Misleading, Simplistic,
Visually unappealing

(g) If you have further comments on the options or your top choices for this expert
scenario, please write them here. Otherwise, simply write N.

5. Consider again the same scenario and communication objective in describing [topic] for
an expert audience. In your opinion, which of the following assets LEAST visually
describes and supports this scenario and communication objective (i.e., your bottom
choice)?

(a) Repeat questions 4a–g for expert audience bottom choice

6. General audience scenario – normal topic
Now consider the following scenario and communication objective in describing [topic]
for a general audience. [scenario . . . ]

In your opinion, which of the following assets BEST visually describes and supports
this scenario and communication objective?

(a) Repeat questions 4a–g for general audience top choice

7. Consider again the same scenario and communication objective in describing [topic] for
a general audience. In your opinion, which of the following assets LEAST visually
describes and supports this scenario and communication objective (i.e., your bottom
choice)?

(a) Repeat questions 4a–g for general audience bottom choice

8. How would you rate your expertise regarding [pathological topic], relative to the general
population?

(a) 0 - no knowledge

(b) 1 - some knowledge, I’ve heard of this

(c) 2 - I enjoy reading/hearing occasionally about this topic

(d) 3 - I know this area relatively well

(e) 4 - I know this area extremely well



E

242 Appendix D

9. Expert audience scenario – pathological topic
Consider the following scenario and learning objective describing [pathological topic]
for an expert audience: [scenario . . . ]

(a) Repeat questions 4a–g for expert audience top choice

10. Consider again the same scenario and communication objective in describing [pathologi-
cal topic] for an expert audience. In your opinion, which of the following assets LEAST
visually describes and supports this scenario and communication objective (i.e., your
bottom choice)?

(a) Repeat questions 4a–g for expert audience bottom choice

11. General audience scenario – pathological topic
Consider the following scenario and learning objective describing [pathological topic]
for a general audience:[scenario . . . ]

(a) Repeat questions 4a–g for general audience top choice

12. Consider again the same scenario and communication objective in describing [pathologi-
cal topic] for a general audience. In your opinion, which of the following assets LEAST
visually describes and supports this scenario and communication objective (i.e., your
bottom choice)?

(a) Repeat questions 4a–g for general audience bottom choice

13. Thank you for your participation! If you have questions or are interested in updates on
this work please feel free to reach out to laura.garrison@uib.no
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