Interactive Visual Analysis with different levels of complexity

Helwig Hauser, Delft, 2010-06-24

Introduction

Vis.: good for exploration/analysis & presentation

- exploration: visualize to detect the unexpected
- analysis: check hypotheses with visualization
- presentation: show/communicate what you've found
- Focus here: interactive visual analysis, IVA
- Goal today: understanding IVA
 - levels of IVA

. . .

patterns of IVA

■ Personal background: ≈10 years of IVA research SimVis, IVA of ..., etc., applications, ... VisMaster

Basis: Data Model, domain & range

- **Data model d**(\mathbf{x} , t), independent/dependent variables
- **Domain**: space x, time t **Bange**: attributes d_i (and ...)
 - where? when?
 - 2D/3D space 1D time
 - parameters

- what?
- several–many d_i (can be dozens)
- often somehow coherent across space-time locations (continuous, distributions)

Example:

- for each of one million grid cells at each of hundreds of time steps
- the simulated values of temperature, pressure, flow velocity, etc., are given

Main idea:

- enabling interactive & iterative exploration / analysis of complex (multi-variate) and often also large data
- allowing for visual information drill-down, cf.
 Ben Shneiderman's visual information seeking mantra
- built around a notion of the user's interest subjective & current degree of interest per data item

Different "levels" of IVA:

- show & brush (tightest IVA loop)
- relational analysis ("reading between the lines")
- complex analysis ("joining forces")

and more ...

... an example of IVA (level 1) first ...

First Example: IVA of Simulation Data

Important preliminary:

- multiple views onto the data (here flow simulation data)
- often at least one for *domain* variables (here 3D space) and one for *range* variables (here pressure & velocity)

First Example: Linking & Brushing

Next: first IVA loop

- visualization leads to "I see (something)!" effect
- user brushes "this something" (literally!)
- Iinked visualization reveals insight!

Render view	K Scatter plot	
this is the 1 st brushing (&) step	16.2302284	
Rindi Lindi		
nignlighted: last, rather high pressure	-47.985012 199.	178482
Channel Flow_5:Velocity	Y-Axis X-Axis Flow_5:Velocity Flow_5:Pressure	-

Show & Brush

(IVA level 1)

Tightest IVA loop

show data (explicitly represented information)

one brush (on one view, can work on >1 dims.)

A typical (start into an) **IVA session** of this kind:

- bring up multiple views
 at least one for x, t
 - at least one for d_i
- I see (something)!
- brush this "something"
- Iinked F+C visualization
- first insight!

Show & Brush

(IVA level 1)

Tightest IVA loop

- show data (explicitly represented information)
- one brush (on one view, can work on >1 dims.)

Requires:

- <u>multiple views</u> (≥2)
- interactive brushing capabilities on views (brushes should be editable)
- focus+context visualization
- Iinking between views

A typical (start into an) IVA session of this kind:

- bring up multiple views
 at least one for x, t
 - at least one for d_i
- I see (something)!
- brush this "something"
- Iinked F+C visualization

degree of interest

first insight!

.. leads to...

•... is realized via ...

requires...

Allows for different IVA patterns (wrt. domain & range)

(next slide)

IVA: Multiple Views

One dataset, but multiple views Scatterplots, histogram, 3D(4D) view, etc.

- Move/alter/extend brush interactively
- Interactively explore/ analyze multiple variates

- Move/alter/extend brush interactively
- Interactively explore/ analyze multiple variates

- Move/alter/extend brush interactively
- Interactively explore/ analyze multiple variates

- Move/alter/extend brush interactively
- Interactively explore/ analyze multiple variates

- Move/alter/extend brush interactively
- Interactively explore/ analyze multiple variates

IVA: Focus+Context Visualization

- Traditionally space distortion
 more space for data of interest
 - rest as context for orientation
- Generalized F+C visualization
 - emphasize data in focus (color,opacity, ...)
 - differentiated use of visualization resources

[Mackinlay et al. 1991]

F+C Visualization in IVA Views

- Colored vs. gray-scale visualization
- Opaque vs. semi-transparent visualization

In a scatterplot (left) or histogram (right): brushed data in red...

F+C Visualization in IVA Views

Diffu V

F+C Visualization in IVA Views

IVA: Linked Views

[Doleisch & Hauser, '02]

IVA: Degree of Interest (DOI)

■ *doi*(.): data items tr_i (table rows) \rightarrow degree of interest *doi*(tr_i) \in [0,1]

- $doi(tr_i) = 0 \Rightarrow tr_i$ not interesting $(tr_i \in \text{context})$
- $doi(tr_i) = 1 \Rightarrow tr_i \ 100\%$ interesting $(tr_i \in focus)$

Specification

- explicit, e.g., through direct selection
- implicit, e.g., through a range slider

• Fractional DOI values: $0 \le doi(tr_i) \le 1$

- several levels (0, low, med., ...)
- a continuous measure of interest
- a probabilistic definition of interest

x	y	d1	d2	doi
0	0	17,20	-0,22	0,00
1	0	12,10	0,10	0,00
2	0	7,70	0,45	0,00
3	0	2,10	0,90	0,00
0	1	24,10	0,02	0,00
1	1	21,90	0,36	0,00
2	1	15,50	0,87	0,74
З	1	11,10	1,20	1,00
0	2	27,20	0,12	0,00
1	2	24,10	0,66	0,18
2	2	17,30	1,35	1,00
3	2	12,10	2,20	0,60
0	3	35,50	0,67	0,00
1	3	30,90	1,30	0,00
2	3	24,50	2,10	0,10
3	3	20.80	2,90	0.00

(cont'd on next slide)

IVA: Smooth Brushing \rightarrow Fractional DOI

- THE R.S. I. P.S. S.
- Fractional DOI values esp. useful wrt. scientific data: (quasi-)continuous nature of data ↔ smooth borders
- Goes well with gradual focus+context vis. techniques (coloring, semitransparency)

Specification: smooth brushing [Doleisch & Hauser, 2002]
 "inner" range: all 100% interesting (DOI values of 1)
 between "inner" & "outer" range: fractional DOI values
 outside "outer" range: not interesting (DOI values of 0)

Three Patterns of IVA [more traffic exploration] • Preliminary: domain \mathbf{x} & range \mathbf{d} visualized (≥ 2 views) brushing on domain visualization, '... from **x** to **d** ..." e.g., brushing **"X**" special locations in the map view local investigation brushing on range visualization, e.g., brushing **"**… from **d** to **x**…" (-)outlier curves "**d**" in a function graph view feature localization "**X**" $(\mathbf{2})$ ".... within **d**...." "**d**" relating multiple range variates 1MON multi-variate analysis "**d**" (3)

A Layered Information Space

- Metaphor of a "sea of information"
- Explicitly represented information (the data) on top, implicitly represented information below (in layers)

user, task

Relational Analysis

(IVA level 2)

- iterative & relational exploration/analysis
- read between the lines (implicitly represented inform.)

A typical continuation of an IVA session:

- bring up more views
- add/combine brushes
- focus the analysis, drill deeper!

Relational Analysis

(IVA level 2)

Extended IVA loop

- iterative & relational exploration/analysis
- read between the lines (implicitly represented inform.)

Requires:

- multiple views
- feature definition language
- multiple levels of F+C vis.

... the example of IVA again (now level 2) ...

Allows deep(er) information drill-down

A typical continuation of an IVA session:

- bring up more views
- add/combine brushes
- focus the analysis, drill deeper!

IVA: Feature Definition Language

- Explicitly represented degree of interest (DOI) DOI: additional (synthetic) data dimension(s)
- Brushing results in DOI attribution(s), relational analysis through multiple brushes
- Tree structure through logical operators
 root, level 0 (OR node): set of features
 level 1 (AND node(s)): feature specifications
 - … (individual brushes)

• Compare to:

- natural language
- DB query

In/out: XML

FeatureSet Interesting features
 Feature Fast, rather high pressure
 A New AND selection

 S Selection on Flow_5:Pressure
 S Selection on Flow_5:Velocity

 Feature High turbolence

 S Selection on Flow_5:T.K.Energy
 Feature Rather slow flow

Selection on Flow_5:Velocity

Example:

interesting are ... flow regions where pressure is high AND velocity is high

IVA: Four Levels of F+C Visualization

In show & brush: one brush (focus), rest is context

- data in focus: colored, less transparent
- data in context: gray-scale, in background
- In relational analysis:
 - multiple features in a feature set (below top node)
 - multiple views define a feature
- ⇒ advanced F+C visualization
 - here: three views, two (a, b) for one feature, one (c) for one other...

IVA: Four Levels of F+C Visualization

gray: overall context green: other features (in the set) red: feature defined with this view

(and possibly with others, too)

yellow: brushed in this view, but not part of feature (only in combination with other views) (a) (b) (c)

⇒ advanced F+C visualization

 here: three views, two (a, b) for one feature, one (c) for one

but how to color in combination with smooth brushing?

IVA: Coloring Complex DOI Combinations

- How to combine colors, when fractional DOI values overlap?
- How to combine colors, when many data items make one pixel?

IVA: Coloring Complex DOI Combinations

- with
 - α_f = feature DOI
 - α_s = set DOI feature DOI // only the rest here!
 - $\alpha_c = \max(\text{comp. DOI} \text{set DOI}, 0)$ // only non-hidden parts! 0

IVA Example (repeated from level 1)

NU BERSTAND

Two views (domain, range), one brush

- simple feature localization
- here: fast, mid-large pressure

IVA Example, going level 2

More views, more brushes, logical combinations

IVA Example, level 2

Three brushes, complementary F+C vis., FDL

Iterative Exploration/Analysis

Iterative Exploration/Analysis

Complex Analysis

(IVA level 3)

Joining forces:

- integrate computational analysis
- extend brushing

Boosting IVA:

- derive information
- advanced brushes
- access a new level of exploration / analysis!

Complex Analysis

(IVA level 3)

Joining forces:

- integrate computational analysis
- extend brushing

Builds upon:

- advanced brushing
- attribute derivation

Very powerful analysis / exploration mechanism!

Boosting IVA:

- derive information
- advanced brushes
- access a new level of exploration / analysis!

IVA: Advanced Brushing

- Two ways to get more out of IVA:
 - bring the data to the interaction (attribute derivation)
 - bring the interaction to the data (advanced brushing)
 - angular brushing [Hauser et al., 2002]
 - similarity brushing [Muigg et al., 2008]

IVA: Attribute Derivation

Comprehensible ways to derive synthetic data dimensions from original data

- data transformations
 - linear transformations
 - to log scale
 - etc.

derivative information (against the domain variables)

- $dd_i / d\mathbf{x}$ gradient information (wrt. space)
- dd_i / dt change over time
- relative information
 - data normalization
 - differences, ratios
- model-related derivations
 - according to known relations, e.g., div = $\nabla \cdot \mathbf{v}$

Curve Sketching

Understanding function graphs:

- special values of f(x): zero, extremes, etc.
- relative properties positive/negative change f'(x)local maxima/minima – f'(x) = 0
- double-relative properties: the change of change e.g., local maxima ⇔ f'(x) = 0 & f''(x) < 0 inflection point - f''(x) = 0

Remember your days in school:

0-, 1st-, & 2nd-order Analysis

t=10s

55

t=15s

t=15s, smallest Δ²soot

_ 🗆 🗙

t=20s

t=30s

_ 🗆 🗙

t=30s, without slow changing

_ 🗆 🗙

t=30s, without (almost) done

_ 🗆 X

t=40s

_ 🗆 🗙

t=40s, "quite" negative Δsoot

_ 🗆 🗙

t=40s, slowest changing

_ 🗆 ×

t=60s

_ 🗆 X

IVA: Attribute Derivation

Further interesting opportunities

- re-projecting the data
 - f.i. according to PCA
 - data shear
- statistical analysis
 - moments of data subsets
 - data in relation to moments, e.g., z-score
- scale-space repr.
- Attribute derivation
 - + advanced brushing
 - = access to complex features

High-dimensional Scientific Data

- Considering "scientific" data f(x), i.e.,
 - some measured/simulated/modeled data f, e.g., f being temperature, pressure, velocity, etc.,
 - wrt. some domain x, with x being 2D or 3D space, time, parameters, etc.
- If x is high-dimensional (>3), then "low-level" IVA is hard
 - example: 100 runs of time-dependent 3D sim. data
 - reducing the dimensionality can help
- Means to reduce the dimensionality
 - selection, e.g., through sampling
 - aggregation, e.g., by averaging
 - etc.

Integrating Statistics and IVA

[from IPCC AR #4, 2007]

- Statistics allow to assess distributional characteristics of sets of data, e.g., along one data dimension
- Examples:

2090 - 2099

- map showing the average temperature in ten years
- accumulated sea ice in summer 2008¹²
- Statistics can be reintegrated into IVA through attribute derivation
 - mean, variance
 - median, 1st & 3rd quartile, IQR
 - min, max, min–max range

etc.

Brushing "Boxplots"

[J. Kehrer et al., submitted]

Example: multi-run climate simulation data

10•10=100 runs of time-dependent (250 time steps) ocean simulation (3 2D sections:

Atlantic, Indian, Pacific)

Considering statistics wrt. the multiple runs

- derivation on demand
- visualization, e.g., glyph-based (⇔)
- basis for complex analysis (next slide)

Brushing "Boxplots"

[J. Kehrer et al., submitted]

Analyzing outliers

derivation of IQR / (max-min)

- large, i.e., ≈1: no outliers
- small, i.e., ≈0: some far outliers
- derivation of upper/lower outlier range, for UOR = (max-q₃) / (max-min), LOR = (q₁-min) / (max-min), and ULR = UOR-LOR
 - positive, if max far awaynegative, if min far away
- scatterplot of both and brushing
- The according IVA loop
 - show, derive, show, brush, …
 - very powerful analysis approach

focus on small IQR

size: IQR (inverted) above: UOR; below: LOF

IVA beyond Complex Analysis (level 4)

• Of course there's more:

- approaches that "leave" the field
- specialized feature extraction [Post et al., 2003]

etc.

- A lot of good literature available
- Much can be embedded within IVA, also!
 code as field [Bürger et al., '07]

Discussion of IVA Levels

(1)

Example:

Show & brush:

- satisfies KISS principle
 - one brush
 - simple linking
 - conceptually simple
- solves (maybe)
 80% of all problems
 (Pareto rule)
- implemented in many cases
Discussion of IVA Levels

Example:

Show & brush

Relational analysis:

- coherent data / interaction metaphor space,
- but allows for more complex queries
- logical combinations match natural language

Discussion of IVA Levels

- opportunities
- combination of computational and interactive analysis very powerful!

Discussion of IVA Levels

Really attractive to have all in one (IVA) framework!

Applications

- IVA of time-dep. 3D CFD data (engineering)
- IVA of industrial ensemble simulation data
- IVA of medical perfusion scans (3D+time)
- IVA of meteorological / climate research data
- IVA of sensor network data
- IVA of customer relation management (CRM) data

Conclusions

- IVA useful in many application scenarios
 follows common patterns (x⇒d, d⇒x, d⇒d)
- IVA enables a visual dialog with the data
 - from data to information / knowledge (and back)
- Iterative concept enables steered analysis
 - conquering the unexpected
 - both in terms of findings,
 - but also in terms of analysis approaches
 - facilitates reasoning, leads to additional learning, empowers the expert user (even makes experts!)
- IVA as useful exploratory research methodology
 - hypothesis generation
 - analysis prototyping

Acknowledgements

- You! Thank you for your attention! ;-)
- Funding agencies, cooperating companies/..., FFG, AVL List GmbH, EU(SemSeg, VisMaster), ...
- Many bright colleagues & students Helmut Doleisch, Krešimir Matković, Robert Laramee, Raphael Fuchs, Philipp Muigg, Martin Gasser, Martin Ilčík, Johannes Kehrer, Matej Novotný, Matej Mlejnek, Ivan Viola, Zoltan Konyha, Markus Hadwiger, Steffen Oeltze, …

The Meister!

final plug:

we are hiring!

see www.ii.UiB.no/vis !!

