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Figure 1: Interactive zooming towards SF Bay, where at first all the traffic from the Bay Area is aggregated, to a view where we can separate traffic
from the three major airports, and even the distribution of traffic in each airports‘ cardinal direction. This interaction is enabled by automatically
updating the bandwidth of the KDE when the viewport changes.

ABSTRACT

In this paper, we discuss the extension and integration of the statis-
tical concept of Kernel Density Estimation (KDE) in a scatterplot-
like visualization for dynamic data at interactive rates. We present
a line kernel for representing streaming data, we discuss how the
concept of KDE can be adapted to enable a continuous represen-
tation of the distribution of a dependent variable of a 2D domain.
We propose to automatically adapt the kernel bandwith of KDE to
the viewport settings, in an interactive visualization environment
that allows zooming and panning. We also present a GPU-based
realization of KDE that leads to interactive frame rates, even for
comparably large datasets. Finally, we demonstrate the usefulness
of our approach in the context of three application scenarios – one
studying streaming ship traffic data, another one from the oil &
gas domain, where process data from the operation of an oil rig
is streaming in to an on-shore operational center, and a third one
studying commercial air traffic in the US spanning 1987 to 2008.

Index Terms: I.3.3 [Computing Methodologies]: Computer
Graphics—Picture/Image Generation G.3 [Mathematics of Com-
puting]: Probability and Statistics—Time series analysis;

1 INTRODUCTION

The scatterplot is one of the most prominent success stories in
statistics and visualization. Scientists and practitioners have used
scatterplots for more than 100 years to study the distributional char-
acteristics of multivariate data with respect to two data attributes or
dimensions [28]. However when datasets are large, scatterplots are
challenged by overdraw and cluttering. There are approaches to
improve this situation, e.g., by employing semi-transparency dur-
ing rendering or by subsetting prior to the visualization [8]. With
such approaches the number of data items that can be effectively
shown in a scatterplot can be pushed by one or two orders of magni-
tude. Beyond a certain point, however, at least when there are many
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more data items to be shown than there are pixels in the scatterplot,
the item-based approach is collapsing [20]. It has been shown that
switching to a frequency-based visualization metaphor is a useful
solution in such a case [20, 12, 19, 32]. Such frequency based visu-
alizations are e.g., histograms or density estimations.

While histograms are straightforward to implement and inter-
pret, the parametrization of data introduce a significant variance
in appearance, e.g.,the discretization of data into buckets/bins, may
cause aliasing effects. Corresponding interpretations depend on bin
count and interval range along the axis. [27]. Fig. 2 illustrates one
example of such a major change by showing two histograms of the
same data – one computed with 9 bins and the other one with 10.
To achieve a more truthful assessment of distributional data charac-
teristics, Kernel Density Estimation (KDE) [25] is commonly used
in statistics. Assuming that the distribution of the data items ad-
heres to a certain probability density function (PDF), KDE allows
estimating this PDF from the samples. The result is a function that
represents the distribution of the data items in terms of their den-
sity in the data space. Years of research has made KDE into an
important tool for statistical data analysis [30]. One of the major
advantages of KDE is that it directly evaluates the data, without im-
posing a model onto it, which, consequently has the advantage that
the data speak for themselves. (as Silverman says [25]).

Our goal of using interactive visual analysis on large amounts
of dynamic and streaming data, demanded a real-time KDE im-
plementation. Fast update rates for KDE is needed to highlight
the coherency of the temporal correlations. To support continu-
ously updates of streaming data, rules out techniques relying on
pre-processing.

With this paper we follow up on this opportunity in utilizing
KDE for visualization, and in the following: We propose a line ker-
nel for the KDE-based visualization of streaming data, and an auto-
matic adaptation of the bandwidth used for KDE, according to the
zoom level of the visualization. We present a KDE-based interac-
tive visualization, with real-time performance enabled by the GPU.
We demonstrate how to visualize the distributional characteristics
of another data attribute (instead of sample frequency) by adapting
KDE accordingly. The usefulness of this approach is showed in
three demonstrations, one on surveillance data from the maritime
traffic domain, one on real-time drilling data from the petroleum
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Figure 2: A kernel density estimation of petal width in the Iris
dataset [13] and two corresponding histograms, one with 9 bins and
the other with 10 bins.

industry, and one on air traffic data.

2 RELATED WORK

Both scatterplots and histograms have become a commodity in data
visualization, even for the general mass market. Ericson (from the
New York Times) even said that the scatterplot is the most complex
visualization technique that the general public can appreciate [9].

An interesting subset of previous work, which also is of special
relevance for our work here, comes in the form of examples for this
methodological change from an item-based visualization approach
(as the classical scatterplot) to a frequency-based approach (such as
the histogram). Fisher, for example, visualizes aggregated numbers
of downloads with the hotmap approach [12]. Novotný and Hauser
demonstrate how the transition to a frequency-based methodology
can enable the visualization of very large datasets in parallel coordi-
nates [20] and Muigg et al. show how this transition enables the vi-
sualization of hundreds of thousands of function graph curves [19].
Artero et al., who also use a frequency-based approach to visualiz-
ing large datasets with parallel coordinates [2], refer to kernel den-
sity estimation as an approach to compute the density values (but
eventually revert to a box function as their reconstruction kernel).
Kidwell et al. refer to KDE for reconstructing a smooth and space-
filling heatmap visualization of a small number of data items [17].
For a more thorough discussion on the use of KDE in visualization
we refer to the work by Scott [23]. Whittaker and Scott presented
the use of the Average Shifted Histogram (ASH) i.e., an alternate
and very efficient density estimation, that approximates KDE, for
the use in a geographical context [31].

Very interesting related work is an approach calledcontinuous
scatterplotsby Bachthaler et al. [4]. Assuming data that are con-
tinuous with respect to a spatial reference domain – such as the
distribution of physical or chemical quantities over a 2D or 3D ref-
erence space as acquired through measurements or numerical sim-
ulation – a mapping is computed that represents the data in the
form of anm-dimensional continuous histogram. KDE-based vi-
sualization, as discussed in this paper, is not a mapping from a con-
tinuous spatial domain, but rather a mapping of sparesly sampled
data, which is mapped into a spatial domain. Similar work on the
reconstruction of uniformly sampled data is done by Crawfis and
Max [7], where they investigate the use of texture splats with nor-
mal distributed values, as means to reconstruct the continuous data
field in 3D. Similarly, as in the work by Bachthaler et al. [4], a re-
quirement for this technique is the continuous spatial domain. The
work presented here also supports these continuous domains and
also extends to support streaming time-dependent data, attribute re-
construction, and non-uniformly sampled data.

Jang et al. investigated the representation of non-uniform, tetra-
hedral volumetric datasets, by weighted Radial Basis Functions
(RBF) [15, 6]. They introduce an algorithm on how to effectively
render such 3D RBFs by applying a slice based technique. In this
work, we investigate the use of a broader category of kernels than
those available as RBFs, namely the product kernel and our ex-
tended line kernel. We furthermore show that when applying ker-

nels to dimensions with different units or of different scale, RBFs
are impractical, e.g., when plotting meters over tonnes.

Andrienko and Andrienko defined a generalized method on how
to create abstractions from geospatial movement data [1]. This ab-
straction technique generates, from unstructured and unrestricted
movement data, potential nodes, where traffic can be aggregated,
similar to a node-link diagram. While, theirs and our technique both
share the same type of source data, the end result portray two dif-
ferent images, with similar, but still, different usages. The result by
Andrienko and Andrienko [1] show the total volume of traffic, and
how this volume is distributed, i.e., by counting all passing vessels.
With our technique we display, where the traffic spend its time, e.g.,
if a car stops, it will still contribute a kernel at that position. The
differences in these two techniques, as well as other techniques that
employ node-link diagrams for aggregation, are comparable to that
of the histogram on one side, and KDE on the other side. While the
aggregation techniques, similar to the histogram, provides a high
level of abstraction, and clear benefits in terms of quantitative read-
outs, they will potentially suffer aliasing effects and hide underlying
details which only a continuous representation can show.

3 KERNEL DENSITY ESTIMATION

In the following, we first briefly define kernel density estimation
(KDE), before we discuss KDE-based visualization.

KDE is a well-proven approach to achieve a non-parametric esti-
mation of data density that has been introduced to the field of statis-
tics by Rosenblatt and Parzen about 50 years ago [22, 21]. Given a
set ofn (1D) data samplesxi , 1≤ i ≤ n, the kernel density estima-
tor f̂h(x) is computed as

f̂h(x) =
1
nh

n

∑
i=1

K

(
x−xi

h

)
=

1
n

n

∑
i=1

Kh(x−xi), (1)

based on a kernel functionK and a bandwidth parameterh. Of-
ten symmetric kernels are considered asK, with K(x) ≥ 0 and∫

K(x)dx = 1, also often centered around 0. In such a case also
f̂h(x) is also nonnegative and integrates to 1. This enables interpre-
tation of f̂h(x) as a density function that approximates the PDFf (x)
of the data itemsxi from which it has been constructed. The KDE
of data attributepetal widthin the Iris dataset, as shown in Fig. 2
on the left, is considered to be a more truthful visualization of the
distribution of the considered data values, than a histogram.

A large variety of kernels has been studied, including the uniform
kernel (based on the normal, Gaussian distribution), the triangle
kernel, the Epanechnikov kernel [29], and many others. In many
cases, however, the normal kernel,

K(x) =
1√
2π

e−x2/2, (2)

is used in KDE. Even though it has been concluded [30] that vari-
ations in the choice ofK are less important than variations ofh,
there still are strong arguments for choosing the normal kernel [18],
e.g., when calculating the modes off̂h.

Bandwidthh is a parameter which influences the smoothness of
the density reconstruction. Fig. 3 shows four results from a 2D
KDE with increasing values ofh. Several authors have worked [29,
30] on (automatically) optimizing the choice of bandwidthh, e.g.,
Silverman describes the normal scale rule [25] to derive an optimal
value forh as

h := 1.06·σ ·n− 1
5 . (3)

This rule is leading to an optimal estimation if the data is normal
distributed. It will lead to an over-smoothed result, however, if
not [30]. There are also several other approaches to globally op-
timize h (several covered by Wand and Jones [30]), and in Sec. 6
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Figure 3: 2D KDE for the Iris dataset [13] with increasing bandwidth.

we briefly discuss why these are not sufficient for interactive visu-
alization, and propose a new approach.

Altogether, it is generally agreed that KDE is a very appealing
tool to investigate the distributional characteristics of data. Gray
and Moore write”In general, density estimation provides a clas-
sical basis across statistics for virtually any kind of data analysis,
including clustering, classification, regression, time series analysis,
active learning, . . . ”[14].

Up to here, we have discussed KDE in the one-dimensional case.
It is straightforward, however, to extend KDE to multiple dimen-
sions [23]:

f̂H(x) =
1
n

n

∑
i=1

KH(x−xi) (4)

with H being a symmetric and positive definite bandwidth matrix
andKH being defined as

KH(x) = |H|− 1
2 K (H− 1

2 x).

K is a multi-variate kernel function that integrates to 1. For the
2D case – central to all of the following –, we will consider the
following simplified form of the bandwidth matrix

H2D =

∣∣∣∣
h1,1 0
0 h2,2

∣∣∣∣

that leads to the following form of a 2D KDE:

f̂2D(x,y) =
1

nh1,1h2,2

n

∑
i=1

K

(
(x−xi)

h1,1
,
(y−yi)

h2,2

)

Also in 2D, the kernel functionK is usually chosen to be a proba-
bility density function. There are two common techniques for gen-
erating a multivariate kernelK from a symmetric univariate refer-
ence kernelK [30]:

K
P(x) =

d

∏
i=1

K(xi) and K
S(x) = K(|x|)/ck,d

whereck,d =
∫

K(|x|)dx. K P is known as the product kernel and

K S as the radially symmetric isotropic kernel. The latter of these
kernels is a radial basis function (RBF), and should only be used
when a single bandwidth can be devised for all the plotted dimen-
sions. When plotting two different units, or attributes of differ-
ent scale, we choose the product kernel with individual bandwidth
values for the two represented data dimensions. We have now de-
fined kernel density estimation, especially also in its 2D form, and

Figure 4: Visualizing over 165 000 monetary contributions to the
Obama campaign. Interesting areas with negative aggregates, i.e.,
locations where the returned amount exceeds that of the contributed,
are shown as blue.

we have compared KDE-based 2D visualization with scatterplots.
Later in this paper, as a technical contribution, we present an ap-
proach to compute KDEs on the GPU, achieving a speed-up factor
of about 100 (compared to existing KDE algorithms), and thereby
enabling interactive frame rates needed for this visual data explo-
ration and analysis; even for large datasets.

4 RECONSTRUCTING THE DISTRIBUTION OF A THIRD AT-
TRIBUTE

In the following we discuss an extension of the KDE concept that
allows the visualization of the distribution of a third data attribute
(with respect to two other data attributes as in the scatterplot).

We first forgo the normalization in Eq. 4, i.e., we omit the divi-
sion by the number of data itemsn, and thereby achieve an estimate
function that will integrate ton, accordingly. Next, we introduce
a weighting factorci to each of the accumulated kernels, that we
make dependent on a third data attributedi,c. The new estimate is
then defined as

ĝH(x) =
n

∑
i=1

ciKH(x−xi) (5)

Visualizing ĝH(x), e.g., as a height field over the 2D domain ofx,
will (as a whole) communicate the accumulated sum of all values
ci of data dimensiondi,c since

∫
ĝH(x)dx =

n

∑
i=1

ci . (6)

Due to its close relation to KDE, we achieve a continuous recon-
struction of the distribution of this “value mass” with respect to the
two other data attributesdi,a anddi,b. This leads to very interesting
visualization options for absolute quantities (not just relative den-
sities as with KDE). In Fig. 4, for example, we visualize the distri-
butional characteristics (here with respect to longitude and latitude)
of more than 165 000 monetary contributions to the recent Obama
campaign; data acknowledged FEC [10]. We achieve a continuous
reconstruction of a distribution function that tells in which places
how much was contributed. One strange result from this visualiza-
tion is the identification of locations where the overall aggregation
of all ci values is negative (resulting in blue color), meaning that the
average contribution per square mile is a negative amount of dol-
lars. The dataset contains transactions that represent contributions
that have not been accepted (and therefore returned, accordingly).
One valid explanation for these negative areas is that the agencies
have been more meticulously in registering the zip-code for cash
returns than the initial contribution (but additional analysis would
be required to fully understand this phenomenon).

5 RECONSTRUCTING TIME

In many cases, and also later in our application context, we are con-
fronted with streaming data from different types of processes. To
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Figure 5: Gaussian kernels with a bandwidth of 0.05 and their com-
bined integral (orange). Left 10 kernels and their sum, and right 15
kernels and their sum. These figures represents the super-sampling
approach, whereas Eq. 8 calculates the sum directly.

achieve a truthful visualization of time-dependent data of this type,
we need to integrate KDE with a proper representation of the con-
tinuous change over time. One approach could be to super-sample
the streaming data with respect to time, resulting in a reconstruc-
tion based on a large set of kernels. Instead we suggest using a line
kernel that amounts to a pre-integrated continuous solution to this
problem. Fig. 7 shows the proxy geometry needed to implement
this super-sampling (left) and our line kernel (right).

Accordingly, we adapt kernel density estimation to reflect this
reconstruction scheme. We suggest a kernelLk to reconstruct the
contribution of a line (instead of just a point). Then, assuming a
dataset ofn in-streaming data items, the time reconstruction esti-
matet̂(x) becomes

t̂(x) =
n−1

∑
k=1

Lk(x) . (7)

For every two consecutively in-streaming data itemsdi anddi+1,
and their associated point locationspi = p(di) andpi+1 = p(di+1)
in the 2D KDE domain, a line reconstruction kernelLk is placed
that is constructed as follows:

Lk(x) =
∫ 1

0
ciKH

(
x− ((1−φ)p1+φp2)

)
dφ (8)

KH is one of the kernels that otherwise are used for point recon-
struction, in our case we use the normal kernel here. Andci is
a scaling factor for each line segment, i.e., when reconstructing
time, the time passed, especially also to support uneven sampling.
Eq. 8 is the converged result of distributing point reconstruction ker-
nels evenly along the line segment. The converged result of super-
sampling is detailed, as a 1D example, in Fig. 5, whereas Eq. 8
directly evaluates the converged result. Fig. 6 illustrates the distri-
bution of time, when tracing a sequence of four points, or, three
edges, each weighted with one second. According to Eq. 8, these
three line kernels each contribute a weight of one second, to the to-
tal integral, but since the line on top has a shorter distance between
vertices, the density here is higher. Further below, in section 7, we
present examples from our application case, e.g., in Fig. 9, that was
also reconstructed with this approach.

6 INTERACTIVITY AND ANALYSIS

Defining interaction with a system requires one to first identify
the internal parameters that can be modified, and second, on a
higher level, identify the tasks that users would perform on that
system. The parameters available in a KDE-based visualization are
only data-samples, bandwidth, and viewport. Shneiderman listed
a set of tasks [24] that fit the information visualization workflow,
”Overview first, zoom and filter, then details-on-demand”. Creating
an overview from a KDE is simply ensuring that the shown range of
the two dimensions is spanning all samples and choosing an appro-
priate bandwidth. Zooming and panning are direct manipulations of
the viewport, and is closely related to filtering out those samples out
of view. Since data investigated often have different units or scale,
we suggest that zooming should be allowed individually per axis;

Figure 6: A line kernel density reconstruction of four samples, or
three edges. Each edge is weighted by one, e.g., one second, and
thus the integral of this entire figure is three. The time density at the
top edge is greater than the diagonals, since this distance is smaller,
and its weight is the same.

Figure 7: Reconstructing two connected samples in time, on left,
super-sampling by filling the space with additional samples, and on
right, by drawing a continuous rectangle and two end-caps. Both
techniques produce the same result, but our line kernel density esti-
mate does so with a significant efficiency increase.

however there are cases where an enforced aspect ratio is desired.
When the unit of both axes is the same, and the scale is compa-
rable, keeping an aspect ratio of 1:1 would help to not introduce
any misleading scale impression. Another case where an enforced
aspect ratio is useful is when displaying maps, or lat-lon axes. In
this case we enforce an equidistant cylindrical ratio, which is ratio
varying on the current viewport’s latitude. This ratio ensures that at
least the area around the latitude line in the center of the viewport
is equal-area [26].

Often, the automatic generation of parameters is more important
than interaction, and two examples of automatic parameter gener-
ation are (1) generate decent initial / default values, and (2), have
parameters generated optimally, creating a nonparametric function-
ality, and even removing the need for user-interaction. Visualizing
large datasets often makes it impossible to create an optimal view-
port, showing all the data, which is why zooming and panning is
introduced. There are works trying to globally optimize the band-
width, e.g., the normal scale rule [25], but we find that this factor
is highly dependent on the viewport, e.g., if the bandwidth in either
dimension is less than a pixel, nothing is shown. Instead of calculat-
ing an optimal bandwidth based on the data-sample distribution, we
propose a method that is tightly coupled with the viewport, that will
update the bandwidth when the viewport changes. In a right-hand
system, a viewport is defined by two points, the lower-leftp1 and
upper rightp2. The range,r, of this viewport is thenr = p2−p1.
We then define the pixel size,s, asr divided by the screen size. We
then have two observations. One, if the bandwidthH is less than
s, i.e., less than a pixel, the sample is not shown, and thus we rec-
ommendH > s. Second, if the bandwidth is larger, by a factork,
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than the ranger of the viewport, the observed result will be a near
constant sum of the kernels within, and around, the view. By defin-
ing thatk · r > H > s we can assert a viewport independent density
estimation of the prominent visible features. If we continue to en-
force a bandwidth tied tos, i.e., a pixel bound bandwidth, through-
out interaction, we can zoom out to aggregate more features for an
overview, and zoom in for a more detailed view. An example of
this interactively changing bandwidth is shown in Fig. 1, and in the
supplementary video. It our experiences, a bandwidth from approx
2 to 20 times that of a pixel, works well, and is in fact representative
for all the figures in this paper, relying on line kernels.

The next task is filtering, i.e., showing only a subset of the sam-
ples. When dealing with time dependent data, the most common
filter allows temporal selection and animation. Animating tempo-
ral trends can be achieved by setting three attributes, namely,time,
time windowand time step. Time is the current point in time that
samples are shown until. Time window is the how far back in time
from timesamples should be visible, and time step is the increment
per animation step. E.g., when showing weekday trends, the time
window should be set to 24 hours, but the time step could be set to
one hour, so that one would, in a video with 24 fps, get a smooth an-
imation from day to day with a day lasting a second in the animated
visualization.

The last task we facilitate is details on demand, however since
KDE is not an item based visualization, selection is not available.
Instead we propose a simple integration scheme where a bounding
box is drawn, and the area within this box is integrated. From Eq. 6
we see that the open integral is the sum of all sample-weights, and
similarly the bounded integral gives a sum of the selected region.
This interaction enables accurate quantitative analysis of the distri-
bution of this third attribute.

7 DEMONSTRATION

In this section we cover three different cases involving streaming
data. The first case covers ship traffic off the coast of Norway,
the second case investigates data from drilling operations in the
petroleum industry, and the third all commercial air traffic in the
US spanning two decades from 1987 to 2008.

7.1 AIS Ship Traffic

The Automatic Identification System (AIS) is a radio based system
used by ships and other vessels for collision detection and identifi-
cation. The International Maritime Organization requires all ships
with a gross tonnage of 300 or more, in addition to all passenger
ships, regardless of size, to be equipped with this system. With the
KDE-based visualization approach described here, we enable the
real-time filtering, analysis, and rendering of large sets of stored
as well as of streaming AIS data. The AIS signals that we study
are picked up by the Norwegian shore based network. Here we
visualize 14 days of AIS data in which a total of 5000 ships are reg-
istered, sending 850 thousand position updates. Willems et al. re-
cently presented a technique for convolving kernels along AIS ship
paths [32]. Our visual results are similar to theirs in terms of AIS
data. Their implementation, however, takes approx. 10 minutes to
compute (data for one day, i.e., 100 000 line segments). Our tech-
nique calculates similar results for 14 days (850,000 line segments)
in 43 ms (23fps). Because of the rendering speeds we achieve, and
since we do not need pre-processing, we can connect to the live feed
for streaming AIS data. Fig. 8 shows a small section of the area
covered by the Norwegian AIS system, outside the south-western
coast. These two figures clearly show the advantage of our line ker-
nel reconstruction. On both images, the traffic close to the coast,
enclosed by headlands, are clearly defined, but out in the open sea,
where the radio signals are weaker, the samples become so sparse
that it is hard to detect where the ships move. By zooming to a
smaller region, with the sample bandwidth reduced automatically,

Figure 9: A side by side comparison: an overpopulated scatterplot
with semi-transparent points (left) vs. our visualization with line KDE
(right). Compared, the bottom of these two gives a clear overview of
where time is distributed with regards to hook-load and depth. The
dark blue areas to the left indicate non-productive time.

this sparseness increase even to affect the dense areas in this fig-
ure. Using this side by side visualization highlights where the dead
zones of the AIS radio system is, and thus where perhaps this could
be extended.

Statistics on AIS data have several times proven useful, e.g.,
when calculating the risk new offshore installations face with re-
spect to collisions. Using our technique we have increased the
speed of calculating these probability plots to such a degree that one
can interact with them (i.e., recalculate them) at real time speeds
(for this dataset, 23 fps). As Norway aims to invest in several new
offshore windmill parks, our techniques will enable both manual
investigations, and faster and more complex automated placement
algorithms.

7.2 Drilling operations

In a project with partners from the Oil and Gas industry we investi-
gate the distribution of time in drilling operations. The dataset that
we visualize here contains several measured and derived attributes
from this process. In this context we look closer at three of these,
namely,depth, hook load, andtime. Depth is the length of the drill
string that is in the bore hole (and not true vertical depth) and hook
load is the measured weight of this drill string. In Fig. 9 we present
the visualization of these three attributes in two different versions,
a regular scatterplot using transparency and a KDE-based visual-
ization using line kernels. The vertical scale is depth, down being
deeper, and the horizontal scale is hook load. The most prominent
visible features are the two bands, one vertical and one diagonal.
The vertical band, at approx. 35 tons, is the weight of the hook
when the drill string is not attached to it, and is thus an indicator of
the time spent attaching or detaching a new pipe segment to/from
the string. The diagonal band is the weight when the drill string
is attached to the hook, indicating weight increasing with depth,
since there are more pipes attached to the hook. This dataset was
acquired when the drilling crew decided to pull the entire string up,
from 3500 meters down. This operation is performed every time
there is something wrong, or, they want to set a new casing, or
change the drill bit. It is important to do this as fast as possible, as
time efficiency is paramount to have a good return on investment.
When presented to the domain engineers, the first feature discussed
was the visualization of unscheduled stops, shown as local peaks.
To analyze further, the biggest of these, at about 1000 meters, was
zoomed onto (see Fig. 10) and the integral shows a total of one
hour, as compared to normally approx. two minutes for removing a
90 feet pipe. One scenario that makes good use of this tool is for the
onshore team that monitors the ongoing process, or for the change
of shifts, where a new team takes over the drilling, and they would
need to get an overview of the recent history of progress and events.

5



To appear in an IEEE VGTC sponsored conference proceedings

Figure 8: Two KDE-based visualizations using the same bandwidth and data, of ship traffic off the coast in western Norway. The left image
shows the position samples as point kernels, and the right image shows the same data using our line reconstruction kernels.

Figure 10: Three line kernel density estimates, showing the distribution of time over depth in a drilling hole (wellbore) and hook-load, the weight
of the entire drill string. The leftmost image is a detailed view, with a small kernel, showing the curve with varying tons on the hook, used e.g.,
to calculate friction. The user then zooms out, and goes to an overview mode with a large kernel, on right, and selects an overwhelming time
density, integrates and finds that over an hour was nonproductive at this depth.

7.3 Commercial Air Traffic

In this section we show how our line kernel density estimate enables
insights into a dataset containing all commercial air traffic in US,
from October 1987 to April 2008. This dataset [3] contains 120
million flights and makes out 12 gigabytes. The distances flown are
calculated by Haversine distance from airport to airport, and goes
from 16 trips to the sun and back in 1987 to 28 round-trips in 2007.
One interesting note about the summary of all flights is that while
the total flight hours shows an increase of 172% from 1988 to 2007,
the number of takeoffs only increased by 142% in the same period,
i.e., the more recent average flights travels longer.

This dataset is particularly interesting to investigate using line
kernel density estimation (as opposed to regular KDE) because of
both the large spatial distance between points. As defined here,
one flight is a scheduled takeoff; this dataset contains the origin
and destination airport of all flights. From the airport codes and
all actual takeoff and landing times we created a new dataset. This
dataset is a temporal line-segment dataset. A temporal line-segment
consists of two points with values for latitude, longitude and time,
each.

Our prototype can show temporal animations at real time, con-
currently with interaction, which both require reconstruction of the
KDE for every frame. An example interaction is shown in Fig. 1,
where the kernel size/bandwidth of the estimate is tied to pixel size,
instead of, e.g., km. This bandwidth enables the user to zoom in,
while simultaneously refining spatial information. This Fig. 1, con-
tains the automatic aggregated flight hours over the Bay Area at the
initial zoom level, and after zooming in, can determine the distribu-
tion among the different airports, and their respective distributions

along the different cardinal directions as such.
The top row of Fig. 11 shows hour by hour as dusk moves over

the US, the air traffic picks up from east to west, a pattern that
repeats itself at night, as well. The bottom row of Fig. 11 shows a
more dramatic pattern, at September 11th, 2001.

8 TECHNICAL DETAILS AND ACCURACY

In the following, we discuss how we implemented the above pre-
sented approach on graphics hardware and discuss performance and
accuracy of this solution.

8.1 Kernel Density Estimation on the GPU

The use of modern GPU-accelerated techniques in data visualiza-
tion is a promising step [11], especially since interactive visual
analysis relies on interaction, and thus on interactive rendering. In
our prototype we developed a two step technique for computing
and visualizing KDE. The first step is to generate a floating point
field by evaluating the 2D KDE equation, and the second step is to
appropriately visualize this KDE field with one of several options.

Calculating KDE on the GPU requires the support of floating
point, or double precision textures, as we need to store results with
an appropriate precision. Evaluating the 2D KDE function to a 2D
matrix (a texture), can be done in one of two ways, with one cell
being one element/texel in our matrix with the properties of a value
v and a positionp:

a)
for c in cells:
for k in kernels:
c.v+=k.eval(c.p)

b)
for k in kernels:
for c in cells:
c.v+=k.eval(c.p)
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Figure 11: Temporal animation of air traffic on the 10th and 11th of September 2001. The top row shows a normal pattern of how the traffic
evolves, following the timezones. These views show a time-window of the two hours leading up to the given time. The bottom row all traffic is cut
short, lasting several days, due to the tragic events at this date.

I.e., we can either first iterate over the grid cells, or over the ker-
nels, respectively. The latter case is identical to rasterizing on the
GPU, and thus this is our selected approach. To create the result,
we first allocate a grid, as a 2Dframe buffer object(FBO), with
floating point precision. Then, with this FBO bound, we render all
the kernels. All of them are then aggregated with an additive blend
operator. To create an optimized implementation, we allow for an
approximation of KDE by limiting the extent of all kernels (we will
return to this subject in the next section). To further optimize this
implementation as well as, to enable distinctive kernels, we pre-
compute the kernel and store them as a floating point texture. The
geometry needed for point kernels can be created by either using
the point sprite extension, drawing quads, or more efficiently us-
ing geometry shaders. The use of point sprites or geometry shaders
reduces the necessary vertices to one. Fig. 7 shows the necessary
vertices needed to construct a line kernel, which we construct out
of three quads. Here the use of a geometry shader reduces the nec-
essary vertices to two,p1 andp2.

To enable a fair comparison to other KDE algorithms, we have
created a Python interface, that stores the result as NumPy arrays.
Fig. 12 shows the result of a comparison of three different algo-
rithms for the 2D kernel density estimation in the Iris dataset, con-
taining 150 samples. The three different implementations we used
are the SciPy [16] implementation, a MatlabTM file implemented by
Botev [5], and our implementation on the GPU. As this table shows,
there is a significant, up to approx 300 times large speed-up, e.g.,
compared to the Matlab implementation for the 10242 grid.

8.2 Error Estimation

In this section we investigate the computational accuracy of our
GPU-based KDE (based on a Gaussian kernel as discussed in
Sec. 3), in addition to an overall discussion on the errors or draw-
backs that can arise using KDE. As a kernel with infinite extent, the
Gaussian is defined over the entire real lineR. As an approxima-
tion, a windowed kernel can be considered, e.g., by truncation [7].
To investigate how good bounded approximations are, we look at
their integral for comparison. The finite integral of the Gaussian

2D product kernel,N(x,y) = 1
2π e−((x

2+y2)/2), is:

∫ n

−n

∫ n

−n
N(x,y)dydx= erf

(
n√
2

)2

(9)

Technique 162 642 2562 5122 10242

KDE-plot GPU 6.1 E –4 8.5 E –4 3.9 E –3 1.9 E –2 7.9 E –2
matlab KDE2D 6.2 E –2 9.3 E –2 0.5 1.6 5.8

SciPy 2.4 E –2 0.19 2.1 6.5 22.4

Figure 12: Run times (in seconds) for evaluating grids of different
sizes, for three different implementations of kernel density estimation,
all using same dataset, kernel and bandwidth. KDE-plot GPU is our
proposed technique.

n/interval 1 2 3 4 5
error 0.53 8.9 E –2 5.39 E –3 1.27 E –4 1.15 E –6

Table 1: Error introduced by using a truncated Gaussian.

Technique 22 42 82 642 1282

Central 0.97 0.163 1.33 E –5 1.12 E –6 1.14 E –6
Preintegrated 0.0 0.0 0.0 0.0 0.0

Table 2: Error introduced by integrating (summing) textures of differ-
ent sizes. Results show one minus integral.

where erf is the “error function” (encountered when integrating the
normal distribution). Using Eq. 9, we can calculate that the use
of a texture with interval[−n,n]2 will result in an error as shown
in table 1. In cases were normalized kernels are used, the interval
[−5,5]2 with an error of 1.15E−6 is sufficient. However since we
are scaling every kernel by a factor, this error would also be scaled
linearly.

When representing a kernelK as a discretized texture, the inte-
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gral is the sum of all texels, multiplied by the texels’ size (e.g., on
an interval[−5,5]2 and on an 1282 texture: 102/(1282)). Using a
discretized 2D Gaussian in the interval[−5,5]2 can ideally never
achieve a better integral than eq. 9, but we now look into the actual
integrals using different techniques. We compare two techniques
for creating and integrating kernel textures. The first, calledcen-
tral, gives every texel its value after evaluatingK with its central
position. In the second technique, calledpreintegrated, the integral
over the the area spanned by the texel is assigned to the texel. Table
2 shows the errors introduced using different techniques and texture
sizes. The errors presented for the central technique will, for larger
texture sizes, converge towards the error presented in table 1.

Kernel Density Estimates, reconstruct a continuous distribution
from a discrete set of samples, essentially by smoothing. In several
cases, this smoothing can introduce errors. As an example of this
smoothing error, we can think of a shipping lane, where the ves-
sels are passing through a very narrow straight. If we smooth out
these vessel paths, we have a low tolerance, before we introduce
a probability of finding vessels on land. While not covered in this
paper, there is several existing works, on variable kernel density es-
timation, on how to specify an individual, and optimal bandwidth,
for every sample. In our implementation of the line kernel, de-
fined in Eq. 8, we allow for an individual bandwidth per sample,
enabling support for varable kernel density estimation. However,
for purposes on streaming data, without pre-processing, this indi-
vidual bandwidth cannot be implmented, in a trivial fashion.

Another source of errors lies in our restriction to a simple band-
width matrix, in Eq.4. If the data modeled contains a diagonal dis-
tribution, the correct kernel to use would be one with skew, and thus
cannot be modeled using our simplified bandwidth. It is however
trivial to extend, the line kernel to allow the full bandwidth matrix.
Our rationale for not utilizing this however, lies in the lack of pre-
processing, so, we, because of streaming data, cannot pre-process
to find this optimal bandwith matrix.

9 SUMMARY AND CONCLUSIONS

In this paper, we discuss the challenge of intuitively visualizing
large amounts of discrete data samples. We discuss a KDE-based
visualization, defined from the statistical concept of kernel density
estimation (KDE), as an elegant solution. We adapt this concept to
also allow for investigating the distributional characteristics of an
additional, third attribute over two dimensions. Additionally, we
show how KDE-based visualizations can be extended to visualize
the distribution of time in the context of streaming data (with a new
type of a line kernel). We explain and demonstrate how KDE-based
visualizations can be computed on the GPU, leading to speed-up
factors around 100 (and up to approx 300 in one of our cases). We
briefly report on our prototype in the maritime, the oil & gas do-
main, and air traffic and show that useful results are achieved.

We demonstrate that due to our improvements to both regular
and streaming KDE-based visualizations, utilizing modern GPUs,
it is now possible to utilize advanced concepts from statistics for
improved visual data exploration and analysis, for large data at in-
teractive speeds. With respect to KDE, in particular, it would be
great to see more interesting related future work in visualization.
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