
Registration of ultrasonography sequences
based on temporal regions

Sebastian Schäfer∗, Paolo Angelelli†, Kim Nylund‡§, Odd Helge Gilja‡§ and Klaus Tönnies∗
∗Department of Simulation and Graphics, University of Magdeburg, Germany,

Email: sebastian.schaefer@ovgu.de
†Department of Informatics, University of Bergen, Norway
‡Institute of Medicine, University of Bergen, Norway

§National Centre of Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway

Abstract—2D Ultrasonography images with parallel contrast
enhanced sequences for analysis constitute a rapid and inexpen-
sive imaging technique with high temporal resolution to assess
perfusion of tissue. However, motion from various influences
corrupts the inter-pixel correspondences between different time
frames and therefore hampers computer-assisted analysis of
perfusion parameters. We present a user-supported method
applying a temporal similarity matrix to remove frames with
uncorrectable out-of-plane motion. For the remaining regions
of frames, motion influence can be compensated for by image
registration. Subsequently B-Spline based registration is applied
using the temporal regions with automatic determination of a
suitable reference frame image. Evaluation with ground truth
data of six datasets comparing a medical expert frame analysis
to the proposed technique yields 85.1 % sensitivity and 81.7 %
specificity in average. On average 6 % of the frames have been
erroneously included in temporal regions, although they contain
out-of-plane motion.

I. INTRODUCTION

2D ultrasonography (US) is one of the most widespread
medical imaging technique. It enables immediate and inex-
pensive examinations with high spatial and temporal resolution
and no contraindications or radiation exposure. US is also used
for perfusion imaging employing contrast agents, consisting of
gas-filled microbubbles that have a high degree of echogenic-
ity [1], [2]. This has become an excellent tool for delineating
the vascular structure in normal and pathological tissue, in
order to detect primary tumours and metastases [3] in various
organs, like liver [4] and pancreas [5]. The perfusion analysis
is performed by extracting and understanding the perfusion
kinetics of the blood in the tissue of interest from the acquired
multi-frame data. This is possible after the injection of the
contrast agent, that makes the blood traceable [6].

During 2D contrast enhanced US (CEUS) examinations
studying perfusion, the sonographer normally will hold the
probe still in a particular position and orientation, to image
a suitable slice of tissue of interest during contrast agent ad-
ministration. However, the data acquired with this examination
methodology often contains significant motion. The reason
is that patient movement through breathing and differently
induced movements (intrinsic induced motion) are present
in addition to the motion caused by tilting or moving the
US probe (extrinsic induced motion), since US imaging is
normally performed handheld.

While this motion can normally be interpreted by well
trained physicians [7], in computer-assisted analysis the differ-
ent image frames of a time-dependent acquisition are required
to be kept aligned in order to extract the signal intensity of
a voxel at different time points. Aligning this stack of time-
dependent cross sections is complicated by the fact that the 2D
US image plane can "miss" the region of interest during part
of the examination, due to the three dimensional nature of the
motion described above. Therefore, we distinguish between
two types of motion effects on the images:

• correctable image movement, when the image plane con-
tains the region of interest (ROI), but this region is moved
or deformed with respect to a reference image

• uncorrectable image movement, when the US image plane
does not contain the ROI at all

In performing computer-assisted analysis of CEUS data,
frames not imaging the ROI should be excluded from analysis,
as they would distort the results, while the others should be
aligned in order to improve the pixel correspondences between
different time steps [8].

In this paper, we present a two-stage approach for registra-
tion of 2D US sequences. The first stage is designed to assist
the user to identify those frames containing uncorrectable mo-
tion from the acquired image stack and group temporal regions
with frames where differences can be described with in-plane
motion only. In the second stage, automatic registration of the
remaining data is performed. This stage produces a registered
sequence within the bounds of the identified temporal regions.
This has to be taken into account in later analysis (Fig 1).

II. RELATED WORK

Registration of mono-modal image sequences is a common
task in medical image analysis [9]. For motion analysis, e.g.
to assess elastic and contractile properties of the myocardium
[10], only consecutive time frames are registered. In most
other cases, sequence images are registered to a predefined
reference frame and registration is performed including all
available time frames. Kolár et al. [11] investigate the ability
of mutual information as similarity measure to cope with the
contrast change of objects due to contrast agent administration.

When 2D data is used, images acquired at different times
may contain mixed information from different planes. Conse-



Intrinsic induced Motion
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Fig. 1: Different types of motion influence in CEUS image
sequences

quently, registration of each frame to the reference image to
compensate for motion is only advisable if the same image
plane is depicted and thus, registration is able to produce a
valid result at all.

There are few approaches dealing with detection of possible
outliers or instances representing different content within an
image sequence. Renault et al. [7] propose a frame selection
method to identify frames belonging to the same point in
time of the respiratory cycle by using independent component
analysis to separate the influence of motion from the influence
of contrast uptake. An essential assumption is that no motion
other than breathing motion is present, because objects in the
scene must reach almost the same position at each time point in
the cycle. Frouin et al. [12] compensate for motion influence in
dynamic arterial perfusion studies. Registration of image pairs
is rejected if the standard deviation in a predefined region of
the difference image exceeds a certain threshold to prevent
registration of images with large motion shifts.

In contrast, we propose the identification of regions of
frames representing the scene with similar probe orientation
and containing, at the most, in-plane or cyclic occurring
motion. These could be consecutive time frames or time
frames from different positions during acquisition.

III. METHOD

In CEUS imaging, datasets are acquired using brightness
modulation (b-mode) and contrast modulation1 alternately
(Fig. 3a and 3b). Thus each frame has a b-mode and contrast-
mode representation acquired at the same time. Both image
sequences usually have a temporal resolution around 10 frames
per second. In this section the identification of temporal
regions and the registration for motion compensation are
described. The motion analysis and calculation of registration

1modality targeted at the detection of US contrast agent

transformations are computed using the b-mode data contain-
ing anatomical information. Results can then be applied to the
contrast sequence that represent the perfusion information.

A. Identification of related frames

The goal of the identification step is to detect subsequences
of frames acquired without changing the probe position ex-
hibiting in-plane motion only. The identification of those
temporal frames is based on normalized correlation (NC, eq.
1) that determines the similarity of time frames A and B with
i being the pixel index and N the amount of total pixels.

NC(A,B) =

∑N
i=1 (Ai ·Bi)√∑N

i=1A
2
i ·

∑N
i=1B

2
i

(1)

This measure has been widely used for similarity determi-
nation for image registration [9] using image intensity itself
or extracted features. It is also applied in case of US image
registration [7], [13] as it is robust against noise and allows
for relative comparison of values between time frames, as it
produces values in the interval [1, -1]. In most cases, analysis
is directed towards a particular region of interest (organ or
tissue region). Therefore, a mask for calculating similarity of
frames can be defined manually.
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Fig. 2: The matrix view depicts inter-frame similarity of all
available frames. Brighter color means higher similarity. The
timeline view is a projection (average) of the matrix columns
(or rows) representing the average similarity of each frame to
all other frames.

For the analysis of frame similarity two representations have
been developed. For the matrix view (Fig. 2) the similarities of
each time frame to all other frames of the dataset are computed



and depicted in a co-occurrence matrix plot (examples see
Fig. 3c-3e). Irregularly occurring square-shaped characteristics
(Fig. 3d, 3e) are indicative for extrinsic motion influences,
in particular caused by motion of the US probe and thus the
projection direction. Regularly occurring patterns in the matrix
which are visible in Fig. 3c and less strongly pronounced
in Fig. 3d are stemming from cyclic motion mostly caused
by heart beat. Often this represents the motion which should
be compensated, to establish valid perfusion measurement
in a specific organ or tissue type. In contrast, Fig. 3e does
not exhibit a regular occurring pattern as the related image
depicting a kidney is not influenced by motion induced by
heart beat.

To generate temporal regions of related frames, a projection
(timeline view, Fig. 2) is derived by averaging the matrix
row/column data into a 1D curve (Fig. 3i, 3j).

A watershed-based segmentation with a user set parameter
δ defining equidistant scanlines is used to divide segments of
the curve into different corridors (Fig. 3i) to automatically
generate the temporal regions (in ref. to Tab. II). Parts of
the curve lying in the same corridor are assigned to the
same region although they may not be connected temporally.
Regions with less than 10 % of the total number of frames are
omitted, as they will not contribute to functional diagnosis. By
reducing the scanline distance δ interactively, the intra regional
similarity and thus the number of required temporal regions
increases.

Furthermore, generated regions are transferred to the simi-
larity matrix plot. Subsequently, the user can edit the proposed
result on the basis of visual exploration of the similarity co-
occurrence plot (Fig. 3g) which represents a more detailed
view on the frame relations. It is also possible to manually
define a new set-up of regions or to interactively separate and
merge existing ones. Regions can be adapted easily, using the
information provided by the matrix and timeline view and the
automatic region extraction. We refer to this approach as semi-
automatic (Tab. II).

Once the regions are defined, a reference image for each
region is determined by using the frame with highest average
similarity to all respective other frames in the same region in
order to minimize the size of required transformations. This
frame is used as reference image in the subsequent registration
process.

B. Registration

In the second stage of our pipeline from Fig. 1, the registra-
tion is performed considering the aforementioned regions of
frames and their respective reference images.

In all registration steps, we use the NC measure as quality
of fit of determined transformations between all frames of a
region and the computed regional reference image. As in the
previous step the same ROI mask can be used to perform
registration and calculate the similarity of images.

In-plane motion to be corrected within identified temporal
regions may be composed of an arbitrary combination of linear
shifts due to patient or probe motion. Cyclic occurring motion

causes non-linear deformations due to intrinsic motion. To
compensate for linear shifts, a rigid registration step allowing
translations and a rotation around the centre of the image can
be performed to pre-align the frames. This avoids unnecessary
distortion of the subsequent non-rigid registration using a
B-Spline-based transformation to compensate for non-linear
types of deformations.

We use a 5 × 5 point grid to represent cubic B-Spline
functions on the image. Additional points are placed on the
outside of the image to support calculation of the inner point
region resulting in an 8 × 8 point grid. A bounded limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm is used
to optimize the 64 point locations (128 parameters), whereas
we constrain each point to only move within half of the
spacing of the grid points, to disallow degeneration of the grid.
The transformation parameters of each frame registration are
initialized with the final transformation parameters from the
preceding frame for reasons of stability and efficiency.

IV. RESULTS AND DISCUSSION

For evaluation, six datasets showing the right iliac artery,
neo-terminal ileum, liver, pancreas or kidney have been used
with a spatial resolution ranging between 200 and 400 pixels
in x- and y-direction and a temporal resolution between 200
and 700 frames. To ensure that our approach works properly,
we expect datasets consisting of 40 % frames with in-plane
motion only and a maximum of 5 different temporal groups
of frames, in order to be differentiated with the co-occurrence
similarity representation.

As a proof of concept, we measured the average standard
deviation (STD) of all pixels over the different time steps in
the datasets a) unregistered, b) after applying our region-based
registration and c) after a registration covering all frames of
the dataset and registered to one fixed frame image (Tab. I).
STD is used as control measurement, as it expresses the size
of variation when the time frame images are composed of an
equal level of intensity. The average STD was measured in the
defined regions used for the region-based registration only, to
compare the performance of both strategies.

TABLE I: Evaluation of the standard deviaton within the
regions of interest before registration, after registration of
temporal frames to the reference frame of the region and after
registration of all frames to one still frame. Temporal regions
have been generated with the automatic method.

before temporal reg. (%2) all frames reg. (%)

dataset 1 7.13 5.61 (27 %) 5.67 (26 %)
dataset 2 11.84 7.29 (62 %) 7.85 (51 %)
dataset 3 15.66 11.98 (31 %) 12.95 (21 %)
dataset 4 13.22 9.45 (40 %) 9.77 (35 %)
dataset 5 18.61 12.70 (47 %) 15.82 (18 %)
dataset 6 9.16 7.34 (25 %) 7.62 (20 %)

average 9.06 (38.5 %) 9.95 (33.0 %)

2improvement compared to STD before registration



(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

(j)

Fig. 3: (a) and (b) are single frames of US images, b-mode and contrast modulation, respectively. (c) and (d) depict similarity
co-occurrence matrices of two different datasets. (f) represents automatically generated regions for dataset shown in (a) from
the derived timeline plot (i). (g) shows the regions adapted by the user. (h) represents ground truth data for the dataset in (a).
(i,j) projections of average similarities with regions from (f) and (g). Triangular markers indicate the reference image of the
region to be used.

For region-based registration it exhibits at least equivalent or
better values compared to a registration taking all frames into
account (avg. 9.8 %). This implies that registration of temporal
regions with the specially determined reference image yields
higher accuracy in terms of a reduction of intensity variation
at pixel locations compared to registration of all frames of
the sequence using just one reference image. Additionally, the
mean image of a sample dataset is shown before registration
(Fig. 4a), after standard registration to a single reference frame

(Fig. 4b) and our proposed temporal region-based registration
(Fig. 4c). Contours are clearer towards the right, indicating
better registration fits.

In a second investigation, we compared ground truth data
to the result of the temporal regions defined by the proposed
method. The ground truth data was generated through in detail
analysis of the datasets by medical experts. They identified
out-of-plane frames manually and grouped the remaining
frames exhibiting in-plane motion only. The overlap between
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Fig. 4: Mean of Contrast image sequence before registration (a), after a global registration to a single reference frame (b) and
after temporal region registration (c). Only registered frames are included in mean image (for b and c).

TABLE II: Evaluation results for the six datasets: temporal
regions compared to ground truth data. Overlap in percent
between both and the amount of frames included in the
analysis although they exhibit out-of-plane motion (overseg)
and the frames which have been left out (underseg) by our
method.

overseg (%) underseg (%) overlap (%)

dataset 1
automatic 12.8% 5.5% 94.5%
semi-automatic 0.9% 30.6% 69.4%

dataset 2
automatic 0.0% 11.4% 88.6%
semi-automatic 0.0% 11.6% 88.4%

dataset 3
automatic 19.9% 1.8% 98.2%
semi-automatic 7.7% 6.1% 93.9%

dataset 4
automatic 25.9% 19.0% 81.0%
semi-automatic 25.9% 19.0% 81.0%

dataset 5
automatic 0.0% 15.2% 84.8%
semi-automatic 0.0% 20.2% 79.8%

dataset 6
automatic 1.9% 3.8% 96.2%
semi-automatic 0.0% 2.9% 97.1%

average
automatic 10.1% 9.4% 90.6%
semi-automatic 5.8% 15.1% 84.9%

automatically generated regions and the ground truth data is
calculated counting all frames, which have been declared to
belong to a temporal region in both.

Evaluation yields 91 % average overlap for automatic frame
selection with 10 % of the frames being erroneously declared
to belong to an in-plane motion subsequence. This is mainly
caused by datasets 3 and 4 (Tab. II) with a high level

of different cyclic occurring motion yielding more than 20
different temporal regions and thus, does not meet our initial
assumptions. For the semi-automatic approach an average
overlap of 85 % is achieved. The automatic approach generates
more regions with a size over 10 % of the total number
of frames. Thus the coverage is higher compared to the
semi-automatic method. However, the amount of erroneously
segmented frames is lower (6 %) using the semi-automatic
method.

On average, 9 % of the frames (automatic) and 15 %
(semi-automatic) have not been included in an in-plane motion
subsequence by our method, although they have been included
in the ground truth data. Thus, the temporal regions to be
registered and analysed are simply smaller, but are lying within
ground truth temporal regions (Fig. 3g and 3h) and most
notably do not contain data of other planes. As the semi-
automatic approach includes manually defined regions and
users tend to keep a safety gap, this number is higher for
the semi-automatic method.

V. CONCLUSION

We proposed a semi-automatic method for US sequences to
remove frames with uncorrectable motion and identify regions
of frames where motion influence can be corrected by regis-
tration. The automatic calculation of frames is proposed to the
user, who can adjust, merge and change the regions by the help
of a co-occurrence similarity matrix. This helps to establish
valid temporal alignment between time frames to allow for
quantification and diagnostic purposes. In comparison to a
detailed frame analysis, our method is much faster.

Good accordance was achieved when comparing the results
to ground truth data (acquired by an in detail analysis by
medical experts). After establishing the temporal regions,
registration is performed within these regions using the frame
with highest similarity to all other region frames as a reference
image. This ensures the compensation for motion artefacts
in areas where a valid inter-pixel correspondence can be
established.



The matrix view provides a more detailed overview of frame
similarities. Currently, the definition of temporal regions from
the matrix view requires interaction with the user, although
region are initially proposed by an automatic approach. If there
are more than 5 temporal regions, a lot of manual work has
to be done to select and group the frames. It is desirable, to
extend the automatic method to work on the co-occurrence
matrix view.

Moreover, we plan to integrate contrast images in the cal-
culation of registration to improve the quality of fit especially
in areas where contrast enhancement is present. Therefore, as-
sumptions about perfusion characteristics could help to guide
registration and the determination of transformation quality in
particular [14].
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