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Abstract

With the advance of new data acquisition and generation technologies, our
society is becoming increasingly information-driven. The datasets are get-

ting larger and more complex as new technologies emerge and they are posing
new challenges to the analysts who are trying to build an understanding of them.
Automated computational approaches and interactive visual methods have been
widely used to extract and interpret the relevant information in data analysis.
However when these methods are used alone on complex datasets, their effectiv-
ity is limited due to several factors. Most of the commonly used computational
tools often lead to hard to interpret results that may not be reliable most of the
time.
This thesis aims to enhance data analysis procedures by integrating compu-

tational tools with interactive visual methodologies. The contributions of this
thesis are mainly focused on the analysis of (very) high-dimensional data, i.e.,
hundreds and even thousands of dimensions, and cluster analysis. We intro-
duce the dual analysis approach that makes it possible to analyze the items and
the dimensions of a dataset in parallel in two linked visualization spaces. This
methodology provides a basis to visually characterize and investigate dimensions
as first-order analysis objects. We describe structure-aware analysis procedures
that are facilitated by representative factors. Moreover, we present several mech-
anisms to achieve outlier-aware analysis routines. We describe the notion of
outlyingness for the dimensions of a dataset and discuss how they can be deter-
mined and treated properly. We then focus on enhancing the dialogue between
the analyst and the computer when computational methods are used interac-
tively. We describe how different human factors come into play in visual analysis
applications and propose optimized analytical processes that try to comply with
the human capabilities. All these different approaches are demonstrated with
various use-cases performed mostly together with experts from medical, genetic,
and molecular biology domain.
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Chapter 1

Introduction

Due to recent advances in computing power and data acquisition methods,
we are now living in an information-empowered society where the analysis

of complex datasets are becoming increasingly important. One perspective on
complexity is the growing size of the datasets in terms of number of the entities,
i.e., rows of the data. This “big data” challenge is frequently investigated by
researchers in visualization, data mining, and machine learning. However, there
are other perspectives, those that are not addressed very often, which add to
this complexity. This other form of complexity often stems from the fact that
the data is collected/generated through several channels each of which carries
different characteristics. In several domains of science, engineering, and busi-
ness, such challenging datasets are becoming abundant. Analysts often refer to
either automated computational methods or visualization techniques to explore
and dig out the information in their data. While automated methods rely on the
computational capabilities of the computer, visual analysis methods exploit the
perceptual and cognitive strengths of humans in detecting structures and making
associations. The successful analysis of the increasingly complex and heteroge-
neous datasets, on the other hand, calls for a tight integration of both of these
methodologies [187].
The integration of capabilities of humans and computers has been one of the

primary goals of the field of visual analytics [186, 113]. One common analy-
sis pattern in visual analytics (VA) is the “Analyse first, show the important,
zoom/filter, details on demand” mantra by Keim et al. [111]. This approach
initiates the process by computational analysis, provides interactive support to
investigate the important findings and then digs deeper into the data as the user
sees fit. The research in VA brings together methods from visualization, data
mining, data management, human-computer interaction, and human perception
and cognition to devise powerful approaches to extract relevant information from
data [111]. Several solutions from VA have been utilized in fields such as engi-
neering, physics, medicine, or finance to aid the analysis of the nowadays highly
challenging datasets [113]. The success of VA applications demonstrates that
the integration of computational power and the strengths of humans has a huge
potential in developing powerful analysis methods.
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4 1.1. Problem statement and challenges

1.1 Problem statement and challenges
The research in this thesis is motivated by a number of challenges and problems
arising in the explorative data analysis processes involving high-dimensional data
and cluster analysis. The primary focus of our work is related to the analysis of
high-dimensional data. With high-dimensional data, we refer to datasets with a
(very) large number of dimensions, such as hundreds and even thousands, and in
the context of this thesis, dimensions are considered as a mixture of dependent
and independent variables. The abundance of dimensions distinguishes high-
dimensional datasets from multi-dimensional (-variate) datasets which consist of
a couple of dozens of dimensions at maximum. This particularly large number of
dimensions in high-dimensional data leads to several challenges which we cover
later in this section.
Datasets that have a large number of dimensions are becoming increasingly

common in many application fields. One prominent field is biology, where high-
throughput studies are producing data at different scales (from genetic sequencing
to anatomical imaging) of the same samples [214]. For instance, the datasets to
study the activity levels of genes often consist of measurements related to thou-
sands of genes for a single sample [114]. In the field of medicine, large scale cohort
studies involve the imaging of the participants using several modalities, such as
magnetic-resonance or diffusion tensor imaging, complemented with a variety of
clinical data on the patients. Other fields that deal with high-dimensional data-
sets include spectral imaging studies [71], large scale socio-economic surveys, or
consumer activity data in business intelligence related analyses.
Most of the current computational and visual analysis approaches are tailored

for multi-dimensional datasets and they easily fail to provide successful results
when they are confronted with really high-dimensional data [2]. There are a num-
ber of factors that contribute to this limitation of the current approaches: relia-
bility and interpretability of analysis results, the inherent heterogeneity within the
dimensions, the underlying assumptions of computational tools, and no means to
perform local analysis and merge the outcomes to build a big picture of the data.
In the following, we discuss these observations and challenges in detail.

Reliability and interpretability: Both computational and visual methods do
not scale with the large number of dimensions. In computational analysis, the
results become hard to interpret and there are concerns about the reliability as
the dimensionality of the data increases. Consider, for instance, the clustering of
a 500-dimensional dataset (a 2D data table with 500 columns) using the popular
K-means algorithm [181]. It is not straightforward at all to correctly interpret the
resulting clusters when the computations are done on a 500-dimensional space,
neither is it possible to judge the reliability of the clusters when the distances
between the items are computed by a 500-dimensional distance metric [118]. This
issue with distance measures is known as the “curse of dimensionality” that states
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the fact that distances between items lose their meaning in truly high-dimensional
spaces [45]. On top of this, the number of samples could possibly be low in many
cases. This results in datasets with small number of observations (small n) but
a very high number of variables (large p). Since most of the statistical methods
need a sufficiently large number of observations to provide reliable estimates,
such “wide” data matrices lead to problematic computations [29].
In visualization, on the other hand, most of the methods that are widely used

in the visual analysis of multivariate data, such as scatterplot matrices, parallel
coordinates, or linked multiple views, can not successfully handle a large number
of dimensions mainly due to the large physical screen space required to visualize
the results, e.g., consider visualizing a 500 dimensional dataset where each dimen-
sion is an axis of a parallel coordinate plot. Although there has been significant
research focusing on the scalability of visualizations in terms of data items that
are visualized, truly high-dimensional datasets remain to be a challenge for most
of the visual analysis approaches.
In order to address these issues listed above, there is the need to develop

methods that can easily cope with the high-dimensionality of the data. Carefully
designed interactive visual methodologies can guide users to give “informed” de-
cisions while using computational analysis approaches.

Heterogeneity: The heterogeneous character of the set of dimensions is a chal-
lenge for both computational and visual analysis approaches. There are several
causes of this heterogeneity. Dimensions can have difficult-to-relate scales of
measure, such as categorical, discrete or continuous. Some can be replicates of
other dimensions or encode exactly the same information acquired using a dif-
ferent method. There can be explicit relations between the dimensions that are
known a priori by the expert. And there are usually inherent structures be-
tween the dimensions that could be discovered with the help of computational
and visual analysis, e.g., correlation relations or common distributions types.
Standard methods from data mining or statistics do not consider any known het-
erogeneity within the space of dimensions which could lead to results with limited
quality. In order to achieve “successful” analysis sessions, methods that enable
an analyst to investigate the heterogeneous nature of high-dimensional datasets
should be developed.

Underlying assumptions: Most of the computational methods make assump-
tions on the structure of the data. Popular Multivariate analysis (MVA) meth-
ods such as PCA or regression analysis, for instance, assume that the data are
normally distributed, or the variance is equal over all the data, known as the
assumption of homoscedasticity [95]. Most of the methods also assume that the
data is clean of errors, missing values, and outliers. The quality and reliability of
the analysis relies heavily on whether such assumptions are met in the data. How-
ever, in real world cases, it is not often that such assumptions are met. Therefore



6 1.2. Contributions

there is the need for methods to check and validate whether the data conforms
to such considerations. Moreover, it is also highly important to consider several
methods/measures while performing the analysis to increase the reliability. For
instance, when using descriptive statistics analyses can also incorporate robust
statistics and methods that are resistant against outliers and problems in the
data [59]. Along the lines of these issues, there is a need to devise methods to
enable analytical procedures that are aware of the different considerations related
to the data and that can handle these properly.

Local analysis: Due to the limitations of computational approaches, analysts
have to perform their analysis on a subset of the data and thus losing the overall
picture and having problems to relate the sub-analysis they carry out. On the
other side, if the user decides to use the whole data for analytical operations,
interpreting the results become a big challenge, i.e., applying dimension reduction
on a 500-dimensional dataset. At this point, mechanisms that enable analysts to
merge the results of several local analyses performed on subsets of the data can
improve the analysis quality considerably.
In addition to the challenges related to high-dimensional data analysis, this

thesis also focuses on problems related to cluster analysis. Cluster analysis divides
data into groups (clusters) where data items within a group are similar with
respect to certain criteria [181]. This analysis is one of the fundamental tasks in
many data analysis scenarios and used widely in several domains [100]. Due to
the variety of clustering algorithms and due to the fact that the notion of a cluster
varies greatly from domain to domain, the evaluation of clusters is an essential
step that needs to accompany cluster creation. Since the evaluation of clusters
depends mainly on the expertise of the analyst, interactive visual methods can
provide mechanisms to support this task.
Moreover, when the clustering of time series (temporal) data is considered,

the above mentioned issues are even more critical. We observe that most of
the algorithms developed for this task are either modifications of the static data
clustering algorithms, or time-series are converted into static representations so
that the existing algorithms can be used [125]. As a consequence, current methods
are highly limited to properly aid the interpretation and evaluation of clusters of
temporal data. There is a pressing need to develop techniques that communicate
the information in such temporal clusters and enable a comparative analysis of
several of these structures.

1.2 Contributions
The aforementioned problems and limitations in the current data analysis ap-
proaches motivate us to carry out the research in this thesis. With our contri-
butions, we enhance the procedures involving high-dimensional data and cluster
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analysis. This is accomplished with a number of interactive and visual method-
ologies that make the informed use of computational tools possible throughout
the interactive visual data analysis process. The contributions of this thesis can
be investigated under a number of categories.

1. In order to consider the structured, heterogeneous nature of high-dimen-
sional datasets, we proposed the dual analysis approach for the interactive
visual analysis of very high-dimensional data. This method enables the
simultaneous and linked visual analysis of both the dimensions and the
items of a dataset. This methodology extends the domain of multiple linked
views with visualizations that have the dimensions of a dataset as their main
visual entities. This novel approach to visualize the dimensions enables the
analyst to investigate the different characteristics of dimensions through
the use of statistics and computational measures. Moreover, the proposed
duality in interacting with both the data items and the dimensions leads
to analyses that provide deeper insight on the relations between the items
and the dimensions.

2. A method to enable the structure-aware analysis of high-dimensional data-
sets is proposed. We introduce the interactive visual exploration and cre-
ation of representative factors as a method to consider the structures in
high-dimensional data analysis. This approach involves the creation of rep-
resentative factors, each of which represents a sub-group of the dimensions.
These representative factors are then analyzed together with the original
dimensions through the same visualizations to understand the relations be-
tween the structures and the dimensions. We present a number of methods
to create, to represent, and to evaluate the representative factors. These
mechanisms provide the means to locally use computational tools and to
visually compare and evaluate their results.

3. We present how an outlier-aware analysis of high-dimensional data can
be carried out. With this work, we focus on the dimensions that carry
“special” properties and thus stand-out from the rest of the dimensions.
We describe the notion of outlyingness for dimensions through an according
categorization. The proposed outlier-aware analysis process outlines how
to characterize, how to determine, and how to treat outlier dimensions
in high-dimensional data analysis. We demonstrate how important it is
to consider the outlyingness of dimensions to achieve more reliable and
insightful analyses.

4. We present a methodology that moderates the temporal aspects of the
interactive visual steering of computational analysis tools. This modera-
tion is done with the guidance of human time constants that enables us
to address the perceptual capabilities of humans. Complementary to the
other contributions of this thesis which focus more on improving the way
computational tools are used interactively, this work focuses more on opti-



8 1.2. Contributions

mizing how computational tools operate to conform to human capabilities.
Our approach is realized through novel mechanisms such as the utiliza-
tion of online algorithms together with a suitable sampling mechanism,
the keyframed brushing technique, and the use of perceptually optimized,
animated transitions.

5. We devise methods to visually support cluster analysis, especially within
the domain of temporal data. Our approach enables analysts to both evalu-
ate and interpret the clusters that are produced within the cluster analysis
process. We utilize interactive visualizations together with measures that
provide insight on the quality of clusters. Even more specifically, we pro-
pose novel and interactive visualization techniques to analyze clusters of
temporal data. These views visualize the structural quality of temporal
cluster sets and provide visual summaries of structures over time.

Thesis Structure
This thesis is composed of two main parts. In the first part, an overview of the
research carried out within the course of this thesis is given. The second part
consists of seven papers where the contributions in the overview part is described
in detail.
The remainder of this thesis is structured as follows: In Chapter 2, the related

state of the art in interactive and visual methods for of high-dimensional data
and cluster analysis is discussed. The above listed contributions are detailed in
Chapter 3. Demonstrations of the proposed ideas and methods are presented in
Chapter 4. We discuss about the lessons learned during the thesis and conclude
with perspectives on future research in Chapter 5.
The second part of the thesis includes seven papers to detail on the contribu-

tions listed above. Paper A and Paper F provide the details of the first contri-
bution above. Paper B, Paper C and Paper D details on the contributions 2, 3,
and 4 respectively. Paper F and Paper G correspond to the details of the fifth
contribution. Paper E and also Paper F discuss how our methods are used in
different application fields.



Chapter 2

State of the art: Interactive Visual Analysis
of High-dimensional Data and Clusters

This chapter discusses the state of the art in the interactive and visual meth-
ods developed for high-dimensional data and cluster analysis. We start with

a discussion on the research related to using a combination of automated and
interactive visual methods and investigate the related studies in two categories.
We then move on to discuss the research in the visual analysis of high-dimensional
data with also a focus on the consideration of local structures and outliers. Sec-
tion 2.3 discusses how interactive visual methods support the cluster analysis
process. We then present how the interactivity is maintained within visual anal-
ysis frameworks.

2.1 Integrating Visual and Computational Analysis
Understanding the underlying information in the challenging datasets of nowa-
days have been in the focus of several research fields. Studies in statistics [100],
data mining [181], machine learning [6], and certainly in visualization [172] have
devised methods to help analysts in extracting information from the data. While
the first three fields rely on computational power, visualization relies mainly on
the perceptual and cognitive capabilities of the human in extracting information.
Although these research activities have followed separate paths, there have been
significant studies to bring together the strengths from these fields [110, 174, 129].
Tukey [188] led the way in integrating visualization and statistics with his work on
exploratory data analysis. Earlier research on integrating statistics [32] and data
mining [110] with information visualization have taken Tukey’s ideas further.
This vision of integrating the best of both worlds has been a highly praised goal

in visualization research [187, 113, 18] and led to the emergence of visual analytics
as a field on its own. Visual analytics brings together research from visualiza-
tion, data mining, data management, and human computer interaction [113]. In
visual analytics research, the integration of automated and interactive methods
is considered to be the main mechanism to foster the construction of knowledge
in data analysis. In that respect, Keim [111] describes the details of a visual
analysis process, where the data, the visualization, hypotheses, and interactive

9



10 2.1. Integrating Visual and Computational Analysis

methods are integrated to extract relevant information. In their sense-making
loop, based on the model introduced by van Wijk [196], the analytical process is
carried out iteratively where the computational results are investigated through
interactive visualizations. Such a loop aims to provide a better understanding of
the data that will ultimately help the analyst to build new hypotheses.
There are different surveys that characterize how the integration of automated

methods and interactive visualizations are accomplished. Crouser and Chang [37]
characterize the human computer collaboration by identifying what contributions
are made to the process by the two sides. In their survey, several papers are
grouped according to these types of contributions. According to the authors,
humans contribute to the analytical processes mainly by visual perception, vi-
suospatial thinking, creativity and domain knowledge. On the other side, the
computer contributes by data manipulation, collection and storing, and bias-
free analysis routines. Bertini and Lalanne [18] categorize the methods involving
data mining and visualization into three: computationally enhanced visualization,
visually enhanced mining, and integrated visualization and mining. Their cate-
gorization depends on whether it is the visualization or the automated method
that plays the major role in the analysis. In the following, we employ a simplified
categorization and discuss the related works in integrated methods depending on
the way the computational tool is utilized within the analysis: using automated
method as a standalone tool and interactive visual steering of the computation.
Kehrer et al. [106] demonstrates how statistical moments can be utilized to con-
struct and navigate between visualizations. Their approach is a demonstration
of how statistical aggregates facilitate the analysis of multi-faceted datasets.

Automated methods as a standalone tool

In this type of integration, the computational tool is used as a separate entity
either implicitly or explicitly (refer to Chapter 3 for a related discussion) within
the analysis and its inner working is not transparent to the user. In this setting,
the user interacts with the computational mechanism either through modifying
parameters or altering the data domain that the method is applied on. The re-
sults are then presented to the user through different visual encodings that are
often accompanied by interaction. There are several examples along the lines of
visual analytics that utilize such an integration. Perer and Shneiderman [144]
discuss the importance of combining computational analysis methods, in partic-
ular statistics, with visualization to improve exploratory data analysis. Their
study on a group of experts reveals that without interactive visualization, com-
putational results can become very hard to interpret. Jänicke et al. [94] utilize
a two-dimensional projection method where the analysis is performed on a pro-
jected 2D space called the attribute cloud. The resulting point cloud is then used
as the medium for interaction where the user is able to brush and link the selec-
tions to other views of the data. The use cases in this work also demonstrate that
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the analysis performed at a projected space leads to successful results. Johansson
and Johansson [99] enable the user to interactively reduce the dimensionality of
a dataset with the help of quality metrics. The visually guided variable ordering
and filtering reduces the complexity of the data in a transparent manner where
the user has a control over the whole process. The authors later use this method-
ology in the analysis of high-dimensional datasets involving microbial popula-
tions [57]. Ingram et al. [92] present a system called DimStiller, where there
are a selection of data transformations that are chained together interactively to
achieve dimension reduction. The presented framework treats the computational
tools as operators that perform particular tasks on data tables. Fuchs et al. [66]
integrate methods from machine learning with interactive visual analysis to assist
the user in knowledge discovery. Oeltze et al. [141] demonstrate how statistical
methods, such as correlation analysis and principal component analysis, are used
interactively to assist the derivation of new features in the analysis of multivariate
data. Correa et al. [36] consider the uncertainties that arise while transforming
the data. These uncertainties are integrated in the visualization to support the
interpretation of statistical analysis results. Guo et al. [76] enable the interactive
exploration of multivariate model parameters. They visualize the model space
together with the data to reveal the trends in the data. Gosink et al. [70] use a
query-driven visualization with a statistics-based framework. They utilize query
distributions to estimate trends and features.

Interactive visual steering of computations

This mode of integration constitutes of mechanisms where the analyst interacts
with the inner working of the algorithms. This is often achieved by displaying
intermediate results where the user provides guidance for the algorithm to carry
the computations further.
Although not as common as the solutions in the first category, there are sev-

eral methods that fall under this category. In a recent paper, Endret et al. [50]
describe such methods as enabling the direct manipulation for visual analytics.
They describe three levels for interaction to enable such an integration: the ma-
nipulation of spatial constraints, parameter weights and model steering. They
suggest that such a multi-level interaction facilitates the symbiotic relation be-
tween the computer and the analyst.
In MDSteer [210], an embedding is guided with user interaction leading to an

adapted multidimensional scaling of multivariate datasets. Such a mechanism
enables the analyst to steer the computational resources accordingly to areas
where more precision is needed. Endert et al. [51] introduce observation level
interactions to assist computational analysis tools to deliver more reliable results.
May and Kohlhammer [133] present a conceptual framework that improves the
classification of data using decision trees in an interactive manner. The results
are iteratively improved through user input. Nam and Mueller [136] provides
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the user with an interface where a high-dimensional projection method can be
steered according to user input. In the analysis of streaming text data, Jamal et
al. [7] proposes a system that incorporates user input within the computations
on-the-fly.

2.2 Visual Analysis of High-dimensional Data
Multi-dimensional datasets, where the dimension count is a few to several dozens
approximately, have been studied widely in the visual analysis literature. Surveys
by Wong and Bergeron [211] and more recently Fuchs and Hauser [65] provide
an overview of multivariate analysis methods in visualization. The recent survey
by Kehrer and Hauser [107] covers a wider spectrum of research and discusses
the visual analysis of multifaceted data.
Frameworks with multiple coordinated views, such as XmdvTool [202], Jig-

saw [177] or Polaris [178], are used quite commonly by now in visual multivariate
analysis. Weaver [203] presents a method to explore multidimensional datasets,
where the analysis is carried out by cross-filtering data from different views.
In these multiple view systems, data is visualized through 2D scatterplots,

scatterplot matrices, parallel coordinate views, or histograms. One commonly
employed interaction mechanism is the linking & brushing [14], where the user
selects (or brushes) a subset of the data through one of the views and the same
selection is then highlighted in the other views using a visualization method called
focus + context [83, 43].
Compared to all these important related works there are however only few

studies published where really high-dimensional data are analyzed. One example
is the VAR display by Yang et al. [212], where the authors represent the dimen-
sions as glyphs on a 2D projection of the dimensions. A multidimensional scaling
operation is performed on the glyphs where the distances between the dimensions
are optimally preserved in the projection.
There are methods to reduce the set of dimensions with the help of visual anal-

ysis and measures to evaluate and reduce the possible visualization space. May
et al. [132] proposed a technique called SmartStripes where they investigated the
relations between different subsets of features and entities. Their method guides
the user in selecting suitable subsets for the analysis. Tatu et al. [182], on the
other side employ automated methods to rank visualizations of high-dimensional
dataset. Their approach suggest users a good subset of the dimensions to start
the visual analysis analysis process.
There are few other works where a duality within the analysis proved to be

useful. In parameter space exploration [17], the authors used two interaction
spaces, one for the parameters and the other for system output in the form of
predictions. In temporal data analysis, Andrienko et al. [9] perform the analysis
both on the spatial and the temporal domains. The analysis on two separate
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data domains is carried out in parallel by the introduction of interfaces in the
case of multi-run simulation data [109].
Performing the high-dimensional data analysis on derived attributes is a strat-

egy utilized in a number of studies. Kehrer et al. [106] integrate statistical mo-
ments and aggregates to interactively analyze collections of multivariate datasets.
Wilkinson et al. introduced graph-theoretic scagnostics [208] to characterize the
pairwise relations on multidimensional datasets. Scagnostics are powerful mea-
sures that quantify the relations in 2D scatterplots. These measures makes it
possible for the user to reduce the visualization space considerably via filtering
non-interesting scatterplots. In a later work [209], the same authors used these
features to analyze the relations between the dimensions. Scagnostics measures
are also utilized to analyze multi-variate temporal datasets [38].

2.2.1 Visual Analysis of Structures
The structure of high-dimensional datasets and the relations between the dimen-
sions have been investigated in a few studies, also. Seo and Shneiderman devise
a selection of statistics to explore the relations between the dimensions in their
Rank-by-Feature framework [168]. They rank 1D or 2D visualizations accord-
ing to statistical features to discover relations in the data. In their method, the
main focus is on the data items. One very interesting work is the visual hier-
archical dimension reduction method by Yang et al. [213]. The authors build
a hierarchy of the dimensions that is than used to create representatives and
construct lower-dimensional spaces. In a similar work, Huang et al. [90] utilized
the derived dimensions together with the original dimensions. The authors ob-
served the output of several dimension reduction methods with a special focus
on how they correlate with certain characteristics of the original dimensions. In
an related paper from the analytical chemistry field by Ivosev et al. [93], the
authors group variables depending on their inter-correlations and utilize them in
dimension reduction and visualization. Their method is applied only to principal
component analysis, however it demonstrates the benefit from a strategy that
groups variables together.

2.2.2 Visual Analysis of Outliers
Outliers have been in the focus of research in data mining and statistics fields [88].
However, there is a limited number of studies in visual analysis. One of the
most important papers that specifically address outliers in visualization is by
Novotný and Hauser [140] where they visually separate trends and outliers in
their extended version of a parallel coordinate plot. The trends in the data is
represented as context and the outliers are separated in the visualization. This
work demonstrates how visual analysis can benefit from the special treatment of
outliers. Another important study on outlier analysis is by Kehrer et al. [106],
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where the authors can identify outlying observations through the exploration of
multi-faceted data via aggregated statistics. In a recent study, Kandogan [101]
discusses how trends and outliers can be detected in his visualization level ap-
proach. His image-based technique reveals outliers in a 2D visualization where
the method automatically annotates the findings to make them apparent to the
analyst. Liao et al. [126] introduced a visually-guided active learning mechanism
to detect anomalies in GPS datasets. In all of these studies, however, the focus of
the methods is on observations rather than on the dimensions. We have not come
across any study where the outlyingness of dimensions has been investigated.

2.3 Visually Supported Cluster Analysis
Interactive techniques have proven to aid analysts in refining and building clus-
tering results. Sprenger et al. [176] introduced a visually supported hierarchical
clustering algorithm. Their visual clustering approach involves a two-stage pro-
cedure – a hierarchical clustering is followed by a visualization that uses blob
objects to reveal cluster shapes. Rinzivillo et al. [154] use a visual technique
called progressive clustering where the clustering is done using different distance
functions in consecutive steps. The progressive clustering technique provides a
convenient mechanism where potentially interesting portions of data are selected
to direct the algorithms. Schreck et al. [164] propose a framework to interactively
monitor and control Kohonen maps to cluster trajectory data. The authors state
the importance of integrating the expert within the clustering process in achiev-
ing good results. Fua et al. [64] propose a technique based on parallel coordinates,
which displays the required level of detail on the dataset using hierarchical clus-
tering results. Another method for structure discovery in large datasets by means
of clustering results and parallel coordinates is presented by Johansson et al. [98].
The authors exploit clusterings and high-precision textures to enhance apparent
structures in parallel coordinates thus avoiding the cluttering issue.
Visualization has generally served as the final step of cluster analysis where it

plays a critical role in enhancing the interpretation of clusters by enabling com-
parison and evaluation. gCluto [148] is an interactive clustering and visualization
system where the authors incorporate a wide range of clustering algorithms. This
system enables the user to store different clusterings and visualize the results in a
matrix or mountain visualization. Rubel et al. [159] introduce a framework called
PointCloudXplore that integrates clustering and visualization for the analysis of
a dataset that has a spatial mapping.
In Hierarchical Clustering Explorer [167], Seo and Shneiderman describe the

use of an interactive dendogram coupled with a colored heatmap to represent
clustering information within a coordinated multiple view system. The authors
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enable the comparison of two clusters through a specialized comparison view. Lex
et al. introduce MatchMaker [123], where they visualize and compare multiple
groups of dimensions. In their work, they provide a use-case where they use their
methods to compare clusters. In the follow-up of this work, StratomeX [124],
they demonstrate how such a visual encoding facilitates the analysis of cancer
subtypes.
Sharko et al. employed projections of data items on a vectorized radial visu-

alizations to investigate several clustering results. Their method helps analysts
to validate particular results when several clusterings of the same dataset exist.
Bezdek and Hathaway [19] developed an interactive dissimilarity matrix that is
extended by Siirtola [175] to analyze clustering results at different similarity lev-
els. Specialized heat maps called cluster stability matrices are utilized by Sharko
et al. [170] to visually determine most ’stable’ clusters in clustering results. In the
MultiClusterTree [195], Long and Linsen discuss how clusterings are utilized to
analyze multi-dimensional data. A radial layout that is linked with several other
views are utilized to explore hierarchical clusters. In the software visualization
domain, Telea and Auber [185] represent the changes in code structures using a
flow layout where they identify steady code blocks and when splits occur in the
code of a software.

Analyzing temporal clusters

Wijk and Selow [198] presented one of the earliest works on cluster-based visuali-
zation of temporal data. The authors cluster time-series data and visualize the
results on a calendar. In a paper by Andrienko et al. [10], the authors discuss
how they perform the interactive clustering of trajectory data and they present a
user-driven clustering methodology. They use graphical summaries of trajectory
clusters to indicate the number of cluster members. These summaries provide
valuable information when the analyst is interested in changes of the cluster sizes.
Dynamically evolving clusters, in the domain of molecular dynamics, are ana-

lyzed through interactive visual tools by Grottel et al. [74]. The authors describe
flow groups and a schematic view that display cluster evolution over time. These
groups are observed to validate the quality of clustering results.
Self organizing maps (SOM) have been used to visualize the temporal cluster

changes by Denny et al. [41]. The authors create a set of SOMs for different
time instances over time and compare these set of maps to explore structural
changes in the cluster sets. However, this solution is limited to depicting only
cluster-cluster relations. Another work where self organizing maps are utilized is
by Andrienko et al. [9]. They propose the interactive utilization of SOMs that are
integrated in a visual analysis framework. Their solution aims to discover spa-
tiotemporal relations by analyzing the temporal evolution of a spatial situation
and the distribution of temporal changes sequentially.
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2.4 Maintaining the pace of interactivity in
integrated systems

The integration of computational methods within interactive systems brings the
challenge to maintain the pace of interactivity at an acceptable level, i.e., the user
should not wait a very long time for the computational results to be computed.
According to Shneiderman [173], interactive mechanisms need to give immediate
feedback to user inputs within certain temporal limitations. One mechanism
to maintain the interactivity of such systems is to improve the performance of
the computationally heavy tasks. Along this line, Chan et al. [27] made use
of predictive caching to improve the interaction with massive time series data.
Piringer et al. [146] present a multi-threading architecture where the visualization
and the background operations are carried out in separated threads to ensure
interactive response. Fekete and Plaisant [55] focus on improving the scalability
of visualization methods by incorporating GPU-supported computations.
Rosenbaum and Schumann [156] suggest a progressive refinement framework

in order to achieve a scalable system in terms of response times, visual clutter,
and available resources. The authors discuss that developing specific solutions
that employ progressive refinement approaches still remains as an open challenge.
Ahmed and Weaver [3] present an interactive cluster exploration system. The
authors display approximate clustering results to maintain smoothly running
interactivity. Similarly, Fisher et al. [61] present how an incremental sampling
strategy can be employed in a database query system. The authors also perform
a user study with analysts where they find out that their incremental approach
enables them to give certain decisions early and update/remove their queries
without waiting for the results to complete. In a recent work, Choo and Park [31]
discuss the challenges brought up by very large datasets along the same lines. The
authors suggest methods on how the responsiveness of systems can be improved
through using less precision, using iterative refinement for the representation of
results.



Chapter 3

Integrating Computational Methods in
Interactive Visual Analysis

Both automated and visual analysis methods have exactly the same goal: help-
ing the analyst to build a better understanding of the data. Automated com-

putational analysis tools achieve this by performing tasks such as summarizing
information, quantifying relations, finding structures, and classifying elements
in datasets. However, due to several factors introduced in Chapter 1, analytical
procedures that utilize these automated approaches alone suffer from certain lim-
itations and pitfalls. On the other side, visual analysis methods need the speed
and precision of automated approaches to carry on the complicated tasks that
are listed above. This thesis aims to join the strengths of both interactive visual
and automated methods and focuses on the integration of computational tools
in the interactive and visual analysis of data to help analysts in gaining insight
into complex datasets.
In this thesis, the integration of computational methods is achieved at two

different levels by utilizing their output either explicitly or implicitly. We refer to
the set of available automated methods as the computational toolbox. In the ex-
plicit use of computational tools, the output of the tool is treated as an extension
of the raw data and is subject to the interactive visual analysis process together
with the actual data. An example of such an integration is applying dimension
reduction to project a high-dimensional dataset to a 2D space and visualizing
the result within the visual analysis. The implicit use of computational tools
on the other side, involves the use of computed measures to enhance interactive
and visual methods. This approach uses the computational output inherently
rather than making it explicitly available for the analysis. An example of such
an implicit use can be coloring the data points in a scatterplot according to a
computed measure, f.i., how central they are in the data distribution.
This approach to utilize computational tools at two levels facilitates our goal to

tightly integrate automated methods with interactive visualizations. Figure 3.1
provides an overview of these two levels. Notice that, the interactive visual
methods together with the implicitly used computational tools operate on the
set of raw and derived data, i.e., the data domain. This data domain is extended
iteratively with the use of computational tools explicitly. We follow a strategy
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Figure 3.1: Integrating computational tools and interactive visual methods. One mech-
anism to use computational tools is to do it explicitly and extend the data domain
with their output for further analysis. The implicit use of the computational toolbox
enhances the interactive visual analysis approaches. The interactive visualizations are
also used to determine specifications for the automated methods, such as interactively
determining the data domain or parameters.

to make the output of several runs of computational tools available throughout
the analysis together with the raw data. Our two-level approach enables the
analyst to observe and interact with the results of particular computational tools
in relation to the actual data. One important aspect to pinpoint here is that the
explicit use of computational tools is supported by the feedback provided from the
interactive visual analysis cycle. All the interaction in this cycle is also enhanced
with the implicit use of specific computational methods. This mechanism in turn
enables the informed and reliable use of computational tools.
This iterative loop that is facilitated by the integration of computational tools

and interactive visual methods leads to an enhanced data analysis processes.
In the following we discuss how this integration enhances the analysis of high-
dimensional data and cluster analysis and we answer the question: How does
the integration of computational tools with interactive and visual methods lead to
enhanced data analysis procedures?
Here, we list the major points where the data analysis process benefits from

the integration of automated approaches with interactive and visual methods.
• The visual characterization of the space of the data dimensions through
statistics and computed measures. This enables an analyst to make in-
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formed decisions in each step of the data analysis process involving high-
dimensional data. These decisions involve initial data analysis steps from
how the data is pre-processed, e.g., normalized, to core analysis steps on
how a computational method is used most accurately, i.e., by checking for
assumptions on data.

• The visual analysis of the heterogeneous nature of high-dimensional data
spaces. This facilitates processes that are aware of local structures and
outliers. This in turn improves the reliability and the interpretability of
the analyses.

• The ability to compare several results from one or more computational tools.
Since different automated methods have various strengths and drawbacks,
resorting to several algorithms and comparing their results improves the
confidence of the analyst on the resulting findings.

• The visual communication of the quality and the certainty of computational
results. This provides the analyst to evaluate the findings and refine the
process accordingly.

In the remaining of this chapter, we introduce our approach and give the details
on how the above listed enhancements are accomplished. In Section 3.1, we intro-
duce our interactive and visual methodologies for the analysis of high-dimensional
data. We then continue to discuss visualization methods that improve the cluster
analysis process in Section 3.2. Section 3.3 focuses on the human side of the use
of integrated automated methods and discusses the importance of human factors
in interactive visual analysis processes.

3.1 Interactive Visual Analysis of High-dimensional
Data

In this thesis, we have a particular focus on high-dimensional datasets. As dis-
cussed earlier, when we mention high-dimensional data, we refer to datasets with
hundreds or thousands of dimensions. In order to be able to analyze such data-
sets, we introduce the Dual Analysis Methodology that enables us to characterize
and visually analyze the dimensions (Section 3.1.1). This methodology makes the
heterogeneity within the set of dimensions accessible to the analysts. Building
upon this mechanism, we extend our interest to the local (in Section 3.1.2) and
“special” (in Section 3.1.3) structures. We provide analysis procedures that put
special emphasis on such properties of high-dimensional spaces.
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3.1.1 Dual Analysis Approach: Analyzing dimensions as
first-order objects

In the course of this thesis, we consider high-dimensional data in a tabular form
where items are the rows and dimensions are the columns. The conventional
visual analysis of such data is to employ multiple coordinated views, where the
data items are represented through visualizations such as scatterplots, histograms
or parallel coordinates. Almost all the time, the data items are plotted in such
views as opposed to the dimensions of the data, e.g., a scatterplot where the axes
are two dimensions of the data and a point corresponds to a data item. The
visual analysis of data items is often carried out using interactive mechanism
such as linking&brushing and focus+context visualization. Here, we present a
visual analysis model where the analysis of items and dimensions is carried out
in two linked spaces, namely the items space and the dimensions space. We
utilize the current knowledge about the interactive visual analysis of data items
to also enable the interactive visual analysis of data dimensions. In our model,
we suggest a setting of linked views, where the analyst interacts with the items
in items space, e.g., by brushing items, and with the dimensions in dimensions
space, f.i., by brushing dimensions.
As illustrated in Figure 3.2, the visual analysis space is structured into two

spaces: items space I, and in dimensions space D. With items space we refer to
a visualization domain where each visual entity in a visualization corresponds to
a data item. In the dimensions space, however, each visual entity represents a
dimension of the data.
To illustrate how we construct the views in both of these spaces to enable

the dual analysis, consider a 2D table with n items (rows) and p dimensions
(columns). In order to be able to construct visualizations of dimensions, we do
the following: For each dimension, we derive a feature vector whose values are
either selected statistics or derived information computed using the original data.
In other words, we derive a p×k table S by assigning k values to each dimension.
Once we construct this statistics table S, we use its values to build visualizations
in the dimensions space. In Figure 3.3, the data is presented as a 2D table. Here, a
conventional scatterplot visualizes the data items (each point is an item) over the
values of two of the dimensions d0 and d1. Note that items space visualizations
are characterized by a blue background. In order to construct a scatterplot of
dimensions, we choose in this example to utilize the first two statistical moments
µ and σ. For each dimension, we compute the µ and the σ of the values in the
corresponding column. This gives us two values per dimension, which we then
visualize on a scatterplot (each point is a dimensions) with a yellow background.
Such a visualization provides an overview of the characteristics of dimensions.

For instance, the dimensions that are placed to the lower right corner have often
higher values but at the same time show very small variety. And there is a single
dimension that has a large variety in its values that makes it stand-out from the
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Figure 3.2: Visual analysis is performed over two spaces, items space and dimensions
space. Visual entities correspond to items in items space and dimensions in dimensions
space. Analysis advances iteratively by selecting items and dimensions. The interactions
enable the joint and linked exploration of dimension statistics and multivariate analysis
(MVA) results.

rest of the dimensions. The observations obtained from such visualizations get
richer as we include more statistics into the analysis and interact with different
visualizations of dimensions. The variety of insight provided by different statistics
is discussed in the Statistical and Computational Toolbox section, Chapter 4 and
in Papers A, B and C.

Using Computational Means Interactively within Dual Analysis Approach

The duality facilitated by our approach opens up for new possibilities to use
computational tools both explicitly and implicitly in an interactive manner as
introduced earlier in this chapter. The user can interact with both the items and
the dimensions space visualizations. The brushing & linking mechanism across
views from the different spaces enables the interactive use of computational tools
in the analysis.
Interactive calculation of statistics – In order to link the selections in items
space to the dimensions space, we introduce a view called the difference view.
This view responds to a selection of items by recalculating the statistics/features
and displaying the changes in the values. This provides an interactive mechanism
to trigger statistical calculations on the data and assess the results instantly.



22 3.1. Interactive Visual Analysis of High-dimensional Data

A single item A single dimension

d0 d1

μ
σ

dpdp-1
...

 σd1

d0 μ

Figure 3.3: Setting up dual analysis views where the data is depicted as a 2D table for
illustration. In an items space scatterplot (with a blue background), two dimensions
are selected as the axes and each point is a data item. In a dimension space scatterplot
(yellow background), each point is a dimension. The values for a single dimension are
the µ and σ values computed over a single column.

In Figure 3.4-right, we see a difference view that displays the changes in µ and
σ values. The user first selects (brushes) a subset of items and we denote the set
of selected items as B. In response, the system automatically calculates the µ
and σ values for each dimension using only the set of selected items B (µB and
σB). At this point, we provide two options to build the difference view – two
different context subsets to compare to. In the first option, the user compares
µB and σB values to µ and σ values computed over all the items. As a second
alternative, we compare µB and σB values to statistics computed using the rest
of items. We denote the items that we compare against with C and the values
computed for this context with µC and σC . We then compute the differences
between the values with:

∆µ = µB − µC , ∆σ = σB − σC (3.1)

Note that ∆µ and ∆σ are both data vectors of size p, the number of dimensions.
When there is no difference for the values of a dimension for subsets B and C,
it is placed at the origin (0, 0) of the view. Similarly, for the dimensions marked
in Figure 3.4-right, the dimensions have larger values and higher variance for the
selection B.
The reason to enable two options for the context C is to provide suitable

comparative tests for different tasks. For most of the instances of the difference
view, we used the whole data to be the context. However, in specific cases where
overlapping samples are not preferred, such as comparing statistics over different
clusters, we choose to use the rest of the data items as the context. For instance,
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Figure 3.4: The difference view displays the changes in statistical computations after
a selection is made. Here, we select the items with high d1 values. µ and σ values
are computed for each dimension twice: using only the selection and using the rest the
data (or all, depending on the task). The differences between the two sets of values
are computed and visualized. The dimensions on the right upper corner are those that
have both higher values and higher variety for the selected items.

in the demonstration cases where we compare clusters using difference views in
Section 4.2, we use the rest of the items as C.
One very important consideration when differences between two subsets are

analyzed is the notion of statistical significance, i.e., whether the difference occurs
by chance or not. A variety of statistical hypothesis tests are often employed to
evaluate the significance of the differences between two groups of items, especially
in terms of their central tendency, i.e., mean (or median). Since the comparison
of means is one of the common tasks that is performed in several domains and
different types of analysis, we enhance our difference view with the implicit use
of the statistical hypothesis testing and introduce the significant difference view.
In order to compute the significance, we utilize the two-sample Welch’s t-test as
the integrated hypothesis testing procedure [161]. We choose this test since it
does not assume that the two subsets have equal variance, which makes it more
suitable for our application. We perform the statistical test on the two subsets
B and C (as introduced above), and test against the (null) hypothesis that these
two subsets have equal central tendencies. This test is performed for each of the
dimensions – showing whether there is a significant difference between the values
of the two groups of items for a particular dimension. Each dimension is then
colored accordingly. Dimensions that have significant differences are colored red,
while the others are shown in blue. This addition to the difference view enables
analysts to get immediate feedback on the significance of differences. This view
is one of the examples where a computational tool, i.e., hypothesis testing, is
utilized implicitly in a visualization to enhance the analysis process.
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Figure 3.5: The significance of the differences between the µ values for two groups of
items (not shown here) are depicted in the significant difference view. The dimension
is highlighted with red color if the difference is significant and with blue otherwise.

Interactive use of computational analysis tools – The linking of the se-
lections performed in the dimensions space to views in items space enables the
user to interactively use computational analysis methods on high-dimensional
datasets. This is achieved by the integrated use of several dimension reduction
and clustering algorithms operating only on the dimensions selected by the user
through the visualizations.
One of the examples of computational tools that we commonly use is principal

component analysis (PCA). It provides a representation of the data in a lower
dimensional space (often computed as a 2D projection). The result of PCA is
then presented as a scatterplot of data items. In order to make PCA a part of
interactive processes, the following steps are taken: The user makes a selection
of dimensions (through a dimension view), the PCA is computed automatically
using only the selected dimensions, and the resulting projection of the data items
is automatically updated with the new results. Figure 3.6 illustrates how such
computations are performed. We first bring up a dimensions view of µ against σ
values and a scatterplot of items that displays the first two principal components
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Figure 3.6: A µ vs. σ visualization of the dimensions and the data items on the first
two principal components of a PCA computation using all the dimensions in the data
(right). The system automatically responds to a selection of dimensions and re-applies
PCA using only the selected dimensions. Both of the projections are visualized together
in a single view. The new result (PCA on only the selected) is displayed in red while
the rest (PCA on all the dimensions) is displayed in gray.

(PC ) of PCA applied on all the dimensions (the initial state of this view is not
shown in the figure). We start with a selection of the dimensions with higher
average values. The system automatically applies PCA on the selection, projects
the items to the newly computed PC s, and visualizes the result. The new re-
sults (shown in red color) are presented together with the previous computation
(computed using all the dimensions) results (shown in gray).

In Figure 3.6, we display both of the results in a single plot to ease the compar-
ison of different computations. However, we implemented another strategy that
makes us of animated transitions. In this setting, the system responds to user in-
puts by performing the computations in the background and animating the data
items from one result to the other. The details of these animated transitions are
given in Paper D. In addition to PCA, we integrate a number of computational
tools that can be utilized in the same manner as described above. Next section
discusses these various tools.

This interactive mechanism is our main routine to utilize automated methods
explicitly. Analysts are able to save any intermediate result for further investi-
gation, i.e., the result of the computations are not lost as the user moves the
selection. By saving the results, the user extends the data domain with these
derived data columns and make them an integral part of the analysis.
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Statistical and Computational Toolbox

The richness and the success of the analyses carried out by using the dual analysis
approach depends on the variety of measures and statistics that are utilized to
analyze the dimensions. We determine a number of measures (statistics/derived)
that are important for different types of analysis we carry out in this thesis. We
group the measures according to the type of information they provide and or-
ganize them in four categories: characteristics of dimensions, summary of the
distributions, type of the underlying model and, uniqueness of dimensions. One
important point to mention is that we also consider the robust versions of statis-
tics. The field of robust statistics aims at statistical estimates and methods that
are more resistant to outliers [59].
The first category of measures relate to the inherent characteristics of dimen-

sions, such as the scales of measure (represented by the count of unique values
in a column, uniq) or the percentage of 1D outliers %out. The second class
of measures provides insight on the shape of the distribution of values through
summary statistics and their robust counterparts. The statistics in this cate-
gory include, first of all, the basic statistical moments to measure centrality, i.e.,
the mean µ and the median med, and different measures of variability such as
standard deviation σ, median absolute deviation MAD, and inter-quartile range
IQR. In this category, we also have statistics (also robust counterparts) on the
skewness of the distribution, i.e., skewness skew, octile-based skewness skewoct,
MAD based skewness skewMAD. These values encode whether the center of the
distribution leans to left or right. The fourth statistical moment, how steep the
distribution of the values is also represented with a number of statistics: stan-
dard kurtosis kurt, octile-based kurtoct, andMAD-based kurtosis kurtMAD. The
third category enables analyst to investigate the type of underlying distribution
model. We check whether the data is coming from a normal distribution through
a normality test score normshp, and check whether the distribution is uni-modal
through test called dip test [82] dip. The fourth category investigates the corre-
lation relation between the dimensions and aids an analyst to explore whether a
dimension is unique or shares similar characteristics with the rest of the dimen-
sions. In order to compute the measures in this category, we compute both the
Pearson correlation [33] and the Spearman’s rank-based correlation [33] between
all the pairs of dimensions. For each dimension we find the minimum correlation
(prmin, spmin), maximum correlation (prmax, spmax), and the number of signif-
icantly correlated dimensions (prsign, spsign). The statistics and the measures
are listed in Table 3.1. For further details on how the measures are computed,
refer to Paper C.
Within the context of this thesis, we use a number of computational analysis

methods in addition to PCA. We use multi-dimensional scaling (MDS) as an
alternative dimension reduction method that preserves the distances between the
projected items as well as possible. We also use MDS directly on the dimensions,
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Table 3.1: Statics and measures used in analyses are categorized depending on the type
of insight they provide.

Category Statistics/Measures
Characteristics of

dimensions uniq, %out

Summary of the
distributions

µ, σ, skew, kurt, med, MAD, IQR,
skewoct, kurtoct, skewMAD, kurtMAD

Type of the underlying
model normshp, dip

Uniqueness of dimensions prmax, prmin, prsign, spmax, spmin,
spsign

similar to the VAR display by Yang et al. [212]. We use the correlations between
the dimensions to compute a distance matrix, where this distance information is
used as an input to MDS. Moreover, linear discriminant analysis (LDA) is used
as a supervised discrimination algorithm and different clustering algorithms, such
as k-means and hierarchical clustering, are utilized to find groups in the data.
Note that, all these tools are integrated with the interactive mechanisms and
operate only on the selected dimensions/items as described above for PCA.

3.1.2 Considering structures in high-dimensional data
Since the dual analysis approach enables an analyst to visually investigate the
characteristics of dimensions, it provides us the foundations to discover and to
consider the structures within the space of dimensions. The structures can be
based on different properties, for instance, they can be an explicitly known cat-
egorization of the dimensions, e.g., collected through different data acquisition
methods, or it can be dimensions sharing similar information, e.g., same mea-
surements but in different scales. In order to achieve a structure-aware analysis
of the data, we represent the underlying structures with representative factors,
or factors, for short. We then analyze and evaluate these factors together with
the original data to achieve a more informed use of the computational analysis
tools. In the conceptual illustration Figure 3.7, we start by analyzing the dimen-
sions on a s1 vs. s2 scatterplot (1). We notice a structure (a cluster in the lower
right) which we then represent with a factor (2). With the help of a computa-
tional method, e.g., PCA, we generate the representative factor for the selected
group of dimensions and replace these dimensions with the generated factor (3).
We continue the analysis by exploring the relations between the factor and the
represented dimensions, as well as the other dimensions (4).
Constructing factors that are useful for the analysis is crucial for our method.
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Figure 3.7: An illustration of our representative factor generation method. A view of
the dimensions over two statistics s1 and s2 (1) reveals a group that shares similar
values (2) and this group is selected to be represented by a factor. We generate a
representative factor for this group and compute the s1 and s2 values for the factor
(3). We observe the relation of the factor to the represented dimensions and the other
dimensions (4) and continue iteratively.

Since factors are representatives for sub-groups of dimensions, they are con-
structed to preserve different characteristics of the underlying dimensions. We
use three methods to construct representative factors where each method is a
mapping from a subset of dimensions D′ to a representative factor DR. We de-
scribe three types of factors: projection, distribution model, and medoid factors.
Projection factors are generated using the output of projection-based dimen-

sion reduction methods that represent high-dimensional spaces with lower dimen-
sional projections. Projection factors are preferred when we want the resulting
factor(s) to represent most of the variance of the underlying dimensions [100].
This type of factors are suitable to apply computational analysis methods locally,
especially concerning dimension reduction methods.
Distribution model factors represent the underlying dimensions with a known

distribution where the distribution parameters are derived from the underlying
dimensions. Distribution model factors are suitable to represent groups of di-
mensions that share similar underlying distributions. This type of factors are
suitable for distribution fitting tasks.
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The third type of representative factors, medoid factors, are generated by se-
lecting one of the members of D′ as the representative of D′. Such factors are
preferred when the dimensions in D′ are known to share similar contextual prop-
erties or some of the dimensions could be filtered as redundant.

Performing analysis locally

The mechanisms to detect and create factors enable the analyst to use computa-
tional tools locally and represent/compare the results in a shared visualization.
We include the factors into the dimensions visualizations by computing all

the statistics that we already computed for the original dimensions also for the
representative factors. We add these values on DR as a row to the table S. This
enables us to plot the factors together with the original dimensions.
Figure 3.8-a shows the dimensions of a dataset with 264 dimensions in a plot

of med vs. IQR. Here, it is known that the dimensions consist of 12 subgroups,
which are represented explicitly in the form of meta-data. In order to apply
the analysis locally on these 12 structures, we create a representative factor (of
projection factor type) for each of these subgroups of 7 dimensions D′. Here,
we prefer to use PCA to compute the representatives using the following steps:
i) For each representative factor, PCA is applied on the 7 dimensions and the
data is projected onto the first principal component. ii) med and IQR values
are computed using the projected values. iii) The original dimensions (the 7
dimensions) are replaced in the visualization with this representative (Figure 3.8-
b).
The representatives are colored in shades of green to distinguish them from

the original data dimensions. In order to see how a single factor relates to the
represented dimensions over the med and IQR values, the factor is expanded and
connected with lines to the represented dimensions (Figure 3.8-c). The relations
between the factor and the represented dimensions are also observed on a skew
vs. kurt view (Figure 3.8-d). To communicate the quality of the constructed
factors, two color mappings are used to indicate the strength of the relation
(via correlation calculations detailed in Paper B) between the factor and the
represented factors.
Our goal with representative factors is not to solely assist dimension reduction

or the use of computational methods but rather to enable an informed use of
automated approaches on the explicitly known or observed local structures to
achieve a better understanding of the data. Moreover, this mechanism is one of
the early examples where derived data attributes, i.e., the factors, are visually
analyzed together with the actual data dimensions. This enables a seamless
integration of computational results within the analysis of raw data.
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Figure 3.8: Integrating factors in the visual analysis. a) The normalized dimensions of
a high-dimensional dataset (the ECG data introduced in Paper B) are visualized in
a med vs. IQR scatterplot. b) Each sub-structure in the data (known explicitly by
the analyst) is represented by a factor. The coloring is done based on the aggregated
correlation. c) The factor for one structure is expanded and visually connected to the
dimensions it represents. The coloring is done on the mutual correlations between the
factor and the represented dimensions. d) The relation is different when skew and kurt
values are considered.

3.1.3 Outlier-aware analysis of high-dimensional data

We have seen in the earlier parts of this thesis that the set of dimensions is
usually heterogeneous. This might be due to the structures as discussed above
– a single large subgroup or several smaller subgroups of these dimensions may
contain related data and thus be highly correlated with each other. In addition to
such heterogeneity, there may be dimensions that have “special” characteristics
that are not shared with the others. When analyzing high-dimensional datasets,
understanding the related groups of dimensions and those that stand out from the
rest is highly important. In this section, we focus on understanding these outlier
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dimensions. We are motivated by the fact that outlier dimensions can easily skew
and/or dominate the results of computational analysis tools. An example of this
is PCA, where dimensions with very high variance tend to be highly expressed
in the results, suppressing the structures in dimensions with low variances [30].
As for this example and for others that involve the use of computational tools,
being aware of outlier dimensions could improve the analyses significantly.
Due to the significance of such special dimensions, we present a methodology to

analyze high-dimensional datasets with a special consideration of outlier dimen-
sions. An outlier-aware analysis process is possible by addressing three differ-
ent stages: characterizing, determining, and handling outlier dimensions. These
stages are important steps in an analysis session, where the analyst progresses
through these stages with the help of the interactive visual methods introduced
in the remaining of this section. We now follow with a detailed description of
these stages and corresponding methods.

Characterizing outlier dimensions

We provide a concrete definition of outlier dimensions by a categorization of
the dimensions based on the sources of outlyingness and propose three types:
characteristic, distribution based, and structural outliers.
The first perspective in the evaluation of the outlyingness of dimensions is

to consider their characteristic properties. With characteristic properties, we
refer to the inherent properties of dimensions such as the type of data values
(numeric, textual, etc.), the number of missing data values, or, the percentage
of 1-dimensional outliers. If most of the dimensions in a dataset have continuous
data values (e.g., floating point numbers) and two of them have categorical data,
the latter ones can be considered as characteristic outliers.
The second perspective of outliers is related to the distribution of the items in a

dimension. This type encompasses the dimensions that have distinct distributions
compared to the rest of the dataset. For example, if most of the dimensions in
one dataset are normally distributed and there is a couple of dimensions that are
uniformly distributed, these dimensions could be considered as distribution based
outliers.
As the third perspective, we consider the correlation relations within the di-

mensions. If a single dimension, or, a group of dimensions that are very strongly
correlated, has very little correlation to the rest of the data, then this dimen-
sion(s) can be marked as of type structural outliers.

Methods to determine outlier dimensions

In order to facilitate the visual investigation of outlyingness of dimensions, we
firstly make use of the categorization of statistics/measures introduced in Sec-
tion 3.1.1 and determine which measures can provide insight on which type of
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Figure 3.9: Our z-score view to visualize the z-scores for the dimensions over: med, IQR,
skew, and, %out. Here, each line is a dimension and the dashed lines indicate the [−2, 2]
interval to ease the selection of potential outlier dimensions.

outliers. This mapping between the measures and the outlier types provide the
analyst a guideline on which dimension space views to use while building the
analysis setup. Details of this mapping can be found in Paper C.
In addition to the analysis of the dimensions through the multi-view setup, we

also develop a number of novel interactive visual analysis mechanisms that make
use of the state-of-the-art tools from statistics domain. These tools facilitate the
outlier analysis performed on the statistics table S which has k values for each
of the p dimensions. Depending on how many of the k statistics are considered,
we resort to different methods for the evaluation of outlyingness. Notice that the
following approaches can be considered as implicitly using computational tools.
z-Score view: Dimensions can be outlying with respect to a single statistic,
e.g., if the σ values of all the dimensions are considered, dimensions with excep-
tional σ values are considered outliers with respect to σ. In order to determine
the outlyingness of dimensions with respect to a single statistic, we compute the
z-scores for all the dimensions for all the k statistics and visualize these values
through an extended parallel coordinate plot called the z-score view. In this view
dimensions with z-scores lying outside the [−2, 2] range are highlighted as poten-
tial outliers. In Figure 3.9, each axis corresponds to the z-score values that are
computed for 4 different statistics, med, IQR, skew, and, %out. Note that here,
each line corresponds to a dimension. We enhance the view with two dashed lines
that pass through -2 and 2.
Depth-based view and brushing: In order to support the identification of
outlier dimensions through scatterplots, we enhance them with data depth cal-
culations. Depth of a data item represents how central it is with respect to the
distribution of the other items. The depth value computations are communicated
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Figure 3.10: a) The dimensions are colored according to their depth values. The
“deeper”, i.e., central, points have a whitish color and the points on the outskirts
(marked 1), i.e., possible outliers, have a saturated green color. b) Depth based brushes
snap to different depth levels to aid the selection of different structures in the data.

via coloring: The possible outlier dimensions have saturated green colors (e.g.,
point marked 1 in Figure 3.10) and more central dimensions have less saturated
colors.
We enhance the selection mechanism in scatterplots with depth-based brushes.

These brushes enable us to easily (de)select points which are in the center or at
the outskirts of the distribution of points. Since depth values are usually used to
categorize data points into layers called depth contours [160], we develop brushes
that are able to snap to such depth-contours. This mechanism can be seen as a
step towards a context-aware interaction approach where the selections have an
inherent “meaning”, e.g., which depth layer the brush selects.

Outlier-aware analysis strategies

We describe a number of strategies to approach outlier dimensions to achieve the
outlier-aware analysis of high-dimensional data. When an analyst determines
outlier dimensions using the methods described above, we suggest four different
approaches to treat the outliers: leaving out, transforming, treating separately,
and treating hierarchically.
One of the first options that is commonly used in the analysis of the data

items is to leave out outliers. Although this option could be practical for cer-
tain tasks, it might lead to the loss of relevant information. So this is a valid
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option for cases where the outlyingness is caused by severe problems in the data
acquisition stage. The second alternative transforms the outlier dimension such
that the source of outlyingness is “cured”. The related literature in statistics
and data mining suggests methods such as replacing missing data [163] or trans-
forming data items via log or inverse transformations [149]. In certain cases, the
outlier dimensions might be considered as the main focus of the analysis and
treated separately in a parallel analysis session. One might gain further insight
by performing the analysis with vs. without outliers. And a final approach in-
volves an hierarchical consideration, where the analysis is carried out locally in
sub-structures that contain outlier dimensions. Methods presented in the pre-
vious section, i.e., representative factors, could be incorporated to perform this
strategy.
All these methods and approaches together are the enabling building blocks

of outlier-aware analysis processes. Without properly determining and handling
outlier dimensions, analysis results are often skewed. In Paper C, we include a
number of cases where the careful consideration of outliers improve the analysis
results.

3.2 Interactive and Visual Methods for Cluster
Analysis

Cluster analysis is a widely used method that reveals underlying structures and
relations of items by assigning them into several groups called clusters. The group
of items in a cluster are similar with respect to certain features of the data. In
the context of this thesis, we consider cluster analyses that are performed over
both static and temporally varying data. Conventionally, cluster analysis starts
with selecting a clustering algorithm and setting a set of parameters to produce
an according clustering. To achieve a successful cluster analysis, however, it is of
great importance to be able to both evaluate and interpret the resulting clusters–a
task that analysts can benefit greatly from interactive and visual methods.
Ideally, any cluster formation step should be followed by an evaluation phase

where the user decides whether she is satisfied with the clustering, or not. The
evaluation of the clusters is important due to the fact that the choice of the
algorithm and the parameters greatly affect the analysis outcome. Moreover,
clustering algorithms provide the analyst with a grouping structure with lim-
ited information on what brings the members in the cluster together and what
characteristics the grouping has. This makes it hard to interpret the resulting
clusters. In the case of temporal data, these tasks are even more challenging.
Unlike clusters of static data, temporal clusters have temporal spans in addition
to the group of items they represent. Due to the fact that temporal clusters
do not usually exhibit stable structures, both cluster-cluster relations and the
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structure of temporal clusters vary. Since current techniques do not address the
challenges in analyzing the structural variations in temporal clusters, there is a
need for methods to answer questions such as: “How does the quality of clusters
vary over time?” and “What type of structural changes do clusters exhibit?”.
We enhance the cluster analysis process by incorporating interactive and visual

methods to aid the evaluation and interpretation of clusters. For temporal clus-
ters, we propose two novel and interactive visualization techniques. Firstly we
introduce the temporal cluster view that visualizes the structural quality of tem-
poral cluster sets over time and secondly we present temporal signatures which
are visual summaries of temporal cluster structures. In addition, we describe how
significant difference views are utilized to characterize clusters in the analysis of
heterogeneous data.

3.2.1 Analyzing Temporal Cluster Structures
Our solution for the analysis of temporal clusters is based on the temporal cluster
view (in the following just “cluster view”) and temporal signatures. The cluster
view visualizes the quality of clusters together with structural changes that are
related to item-cluster and cluster-cluster relationships. And temporal signatures
are visual summaries of the statistical properties of clusters over time. The
variations of these statistical properties reveal structural changes in groups of
items.
A temporal cluster represents a group of items that display similar properties

over a time interval. In order to generate such clusters, the clustering algorithm is
applied to a temporal subset of the data. In this thesis, we use both hierarchical
and k-means clustering [181]. As these algorithms are originally developed for
static data, we modified the distance measures to incorporate the temporal nature
of the data as suggested by Liao [125].

Temporal Cluster View

The temporal cluster view enables the visual exploration of clusters that are
defined over time intervals. It depicts the evolution of cluster memberships and
also encodes the commonly used cluster quality measure, silhouette values, in the
visualization.
In a cluster view, each axis represents a clustering result over a different tem-

poral span. Each curve between the axes represent a single data item and all the
axes contain a set of clusters where each cluster is represented by a rectangle.
The clusterings are ordered according to the start of their temporal span, i.e.,
clusterings applied on the beginning of the sequence is placed to the left. The
duration of a clustering in time is visualized on top of the visualizations and
connected to the axes with colored curves. This visualization enables the user
to compare consecutive clusterings over time and observe how the membership
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Figure 3.11: The temporal cluster view colored with silhouette values. The temporal
ranges of clusters are ordered from left to right, earlier clusters to the left. Group
structures change as items move over time. Since two separate groups merge and
there is no clear clustering in the middle of the sequence, the silhouette values are low
(yellowish color) – indicating that the clustering might have problems. In the beginning
and the end, the two groups are well separated, so the clusters in these time zones have
higher quality.

relations evolve. Figure 3.11 shows how the cluster structures and the members
of these clusters change as the items move over time (two separate groups merge
and split later within the sequence). The cluster members change when the two
groups meet and form a group of items that is harder to cluster (the middle plot
in Figure 3.11). Similar visualizations have been used in the literature to inves-
tigate the set of clusters [122] and we extend such visualizations with temporal
clusters and the communication of quality measures.
In order to encode information about the structural quality of clusters, we uti-

lize the silhouette coefficient [157] that indicates how well an item fits a particular
cluster within the set of available clusters. Silhouette values are computed per
each item of a cluster and they are in the range [−1, 1]. Items close to cluster
centers have higher values, items on the borders of a cluster with close neigh-
boring clusters have values close to 0, and items that are likely to be placed
wrongly have values close to −1. In the cluster view, we use silhouette values to
color code curves and cluster rectangles and the higher quality items/cluster are
rendered in more saturated shades of green. This encoding enables an analyst
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to investigate the structural quality of the clusters over time. An example of
how silhouette values vary can be seen in Figure 3.11. As the distribution of
items where two groups meet is quite uniform, we see that the colors of items
and clusters are not green – silhouette values mostly below 0, thus indicating not
so strong cluster members. However, near the beginning and at the end of the
sequences, the overall cluster quality is high, and this is clearly visible from the
coloring where items have saturated green color, i.e., silhouette values close to
1 due to the nicely separated groups. This observation yields to the fact that
clusters performed over the merging interval are lower in structural quality and
therefore, have to considered with more care when further analysis is performed
on them.

Temporal Signatures

Temporal signatures are visual representations of statistical properties of clusters
over time. These structural properties are: cluster cohesion which represents the
tightness of its items, and cluster homogeneity which correspond to the uniformity
of the distribution of the member items [181]. These properties are important
in detecting events such as cluster merging/splitting, and also in evaluating the
stability of the cluster over time.
In order to construct these views, we rely on a qualitative approach and com-

pute measures over time for each cluster. We compute the minimum and the
maximum of the distances between each cluster member and the other members.
We then aggregate these measures to estimate a diameter of a cluster. In addi-
tion, we compute how compact a cluster is by the vicinity measure. We compute
these measures for each time frame independently.
A temporal signature represents the changes in these statistics over time to

depict the structural variations within a cluster. Figure 3.12 shows how the
temporal signature for the set of points mentioned earlier (separated in the be-
ginning, merging and splitting later on). Here, the x-axis represents time and
the y-axis the diameter of a cluster. The coloring between the upper and lower
bands indicate how compact the cluster is, i.e., red indicates a compact and blue
indicates a loose group. Notice in Figure 3.12 that as the two groups merge, the
distribution of the points become more compact and small as indicated by the
visualization.
When an analyst tries to analyze a large collection of clusters, these temporal

signatures provide a quick overview on the set of temporal clusters. It is possible
to quickly decide to either use, discard or update a cluster by observing their
temporal signatures. Figure 3.13 shows how certain clusters within a selection of
15 clusters can be discarded (marked with X) due to their instable behavior.
In Section 4.3, we demonstrate the use of our methodology in the analysis of

temporal clusters within molecular dynamics simulation data.



38 3.2. Interactive and Visual Methods for Cluster Analysis

t0

t1
t2

Max

stdev(Max)

D

Min

Time

D
is

ta
nc

e

stdev(Min)

avg

avg

t0 t1 t2
Figure 3.12: The temporal signature visually communicates the structure of the moving
items. The top and bottom boundaries indicate the minimum and maximum distances
within the items. In the beginning and the end, the two groups of items are further
away from each other, and this is depicted with higher distance values at t0 and t2. At
t1, the group is tight (communicated with the red color) and the within item distances
are minimal.

3.2.2 Characterizing clusters
Due to the increasing availability of different data acquisition methods, the anal-
ysis of groups over heterogeneous data is becoming common practice. With het-
erogeneous data, we refer to several datasets each of which is high-dimensional
and linked with the other datasets over common identifiers. In order to under-
stand the grouping structures, researchers apply clustering algorithms on each
of these high-dimensional dataset separately and try to compare the results over
different datasets.
The “Temporal Cluster View” introduced earlier and other similar visualization

tools [116, 124] support this task to a certain level. In these approaches, the
visualization provides insight only on the membership overlaps. However, in
order to characterize a cluster, it is also important to analyze which dimensions
contribute to the forming of a cluster and which characteristics the member items
have in a cluster.
In order to support this task, we integrate the dual analysis views (of both the
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Figure 3.13: A number of clusters are evaluated by observing their temporal signatures.
Depending on the observations, we discard some of them (marked with X). Some of
these clusters show irregular structures, e.g., 2nd in 1st row, and others have loosely
located members, 1st in 2nd row. Tightly distributed, stable clusters are selected for
deeper investigation (marked with dotted circles).

items and the dimensions of a dataset) in a visualization framework that provides
insight on the membership overlaps between clusters of heterogeneous datasets
called StratomeX [124]. In StratomeX, clusterings are represented as columns.
Each column consists of multiple stacked “bricks”, where each brick corresponds
to a group of item members (a cluster) in the column’s clustering. Ribbons with
varying width visualize the overlap between groups of neighboring clustering.
We extend this by incorporating two types of views as bricks in StratomeX: i)
scatterplots of statistics depicting either the genes or the samples, ii) significant
difference plots. This integration provides a deeper characterization of clustering
results by an analysis of distinctive elements and statistical profiles of cluster
members.
The embedded dual analysis views in StratomeX can be seen in Figure 3.14.

If the embedded scatterplot is a visualization of the samples (having a yellow
background), it only displays those samples that are members of the represented
cluster (see columns 1 and 2 in Figure 3.14). In this type of plots, the samples
are visualized with respect to their median and IQR values computed for each
row of the dataset. Notice that each point in a scatterplot represents a data item
and the number of points in each of the scatterplot brick is equal to the number
of members of the cluster.
On the other hand, if a scatterplot of dimensions is preferred, the brick dis-
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Figure 3.14: Embedded dual analysis views in the StratomeX view [124]. The first
column shows a 4-cluster stratification for a dataset. The scatterplots show median
versus inter-quartile-range for the items in the cluster. The second column shows a 3-
cluster stratification for another type of dataset, again showing items. The third column
uses the same 3-cluster stratification for the same dataset, but shows the dimensions
instead of the items. The scatterplots of items (yellow background) depict the statistical
characteristics of the members of each cluster and the scatterplots of dimensions (light-
green background) depict statistics computed for the dimensions using only the items
from the cluster represented by the brick. The selection of items is highlighted in the
first two columns and also in the ribbons. The selection of the dimensions makes it
possible to investigate the distribution of the values for the dimensions for different
clusters in a stratification.

plays the statistics (again median and IQR) for all the dimensions computed
using only the members of the cluster being represented. In these embedded scat-
terplots with a blue background, each point represents a dimension of the data
and each scatterplot contains the equal number of points, i.e., the total number
of dimensions p. However, all the scatterplots look differently since the statistics
for the dimensions in each plot are computed using the subset of items in the
represented cluster. In the third column in Figure 3.14, dimensions with lower
variety (lower IQR values) are selected in the second cluster and we see that these
dimensions have usually higher variety for the first cluster. This observation can
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be interpreted as: the selected dimensions have common properties, i.e., lower
values, for the second cluster and thus can be good discriminative features. How-
ever for the first cluster, these dimensions have no observable distinctive value
due to the high variety. Such observations are not straightforward to make with
conventional methods although they are critical to interpret the clusters.
We also embed difference plots as bricks in StratomeX. While doing this, we

compute the ∆µ and ∆σ values for each of the dimensions using Equation 3.1 in
Section 3.1.1. Here, however, B corresponds to the samples that are members
of the cluster being represented while C corresponds to the rest of the samples
in the dataset. We choose to use the rest to perform the comparisons on non-
overlapping subsets, i.e., members are not repeated in the two subsets. The
resulting difference view bricks communicate which dimensions are more distinc-
tive for each cluster. Moreover, the selection mechanism enables the analyst to
compare these distinctive dimensions between different clusters.
Our approach facilitates the characterization of clusters by enabling an in-

vestigation of them over both the items and the dimensions. This duality in
representing clusterings provide deeper insight on the characteristics of clusters.
This new approach not only leads to higher quality clusters but also provides a
better reasoning why clusters exist and relate to each other. Demonstration of
how this is achieved is discussed in Section 4.2.

3.3 Considering human factors to enhance
interactive data analysis

Most of the contributions of this thesis up to now focus on the integration of com-
putational methods within visual analysis without addressing how this integra-
tion can be achieved optimally according to cognitive and perceptual capabilities
of the users. The three human-time constants (perceptual processing, immediate
response, and unit task) introduced by Card et al. [25] provide us a solid basis to
address this aspect of the integration we describe in this thesis. These constants
determine the temporal characteristics of human-computer interaction (at three
different time scales) such that an optimal communication between the human
and the computer can be achieved. With our method, we show how interactive
visualization processes can be realized in visual analytics such that they adhere
to these human time constants.
It is of vital importance to properly address the perceptual and cognitive capa-

bilities of humans in visual analytics (VA), since it is an interactive and iterative
dialogue between the human and the computer [84]. With our three levels of
operation for analytical processes, we aim to moderate the temporal aspects of
such integrations in order to meet the three human time constants. The third
level manages the time involved in completing an analytical task, e.g., observing
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the relations between several variables in a dataset. This level is based on the
unit task constant. The second level moderates the human-computer dialogue
and ensures that it occurs at a temporal pace where the human can give immedi-
ate responses, i.e., occurring within the limits of the second immediate response
constant at which the parts in a communication are exchanging without being
interrupted. The first level is responsible to make sure that the updates in the
visualizations happen at a rate that is perceptually suitable for the human and is
based on the perceptual processing constant. These levels of operation, the human
constants and the corresponding temporal durations can be seen in Table 3.2.
The unit task completion level (Level 3) determines the temporal range in

which an analytical unit task is completed. Such an analytical task is performed
to answer a specific question related to the data. We moderate the activity at
this level by a novel interaction mechanism called keyframed brushing. In this
mechanism, the user defines two or more brushes (according to his/her analytical
goal), similar to defining key frames in computer-assisted animation [26]. Using
these key brushes, a sequence of in-between brushes is generated automatically.
After the brush sequence is computed, the system starts traversing through this
sequence without the need for further input by the user. The complete sequence
is traversed in 10 sec., 20 sec., or 30 sec., and moving from one brush to the next
takes 1 second in accordance with the human time constants. The sequences
are generated using four different methods as seen in Figure 3.15: moving brush,
extending brush, no in-betweening, constrained brushing. Keyframed brushing
enables the user to focus on the linked views that display the results of the ani-
mation rather than paying attention to moving the brush in a particular fashion.

The human-computer dialogue level (Level 2) is mainly responsible to maintain
the dialogue nature of the visual analysis process. It ensures that the communica-

Level Operation Level
Human
time

constant

Response
time
(sec.)

Level 1 Visualization
update

Perceptual
processing 0.1

Level 2
Human-
computer
dialogue

Immediate
response 1

Level 3 Analytical task
completion Unit task 10 - 30

Table 3.2: The three levels of operation, the corresponding human time constants [25],
and the associated time limitations
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Figure 3.15: Four modes for keyframed brushing (according to the user interaction as
illustrated in Figure 3-b). a) Moving brush mode: the position of the in-between brushes
are linearly interpolated, b) Extending brush mode: the brush extends at every step, c)
No in-betweening: the final sequence consists of only the three brushes, d) Constrained
brushing mode: the path of the selection automatically snaps to one of the fixed lines
(parallel to x-axis, y-axis, or to the diagonal)

tion between the user and the computer is not interrupted. This level focuses on
maintaining a guaranteed response time (1 sec.) when integrated computational
tools are utilized. Our solution to achieve this is to compromise the quality of
the results by computing “only” the best possible result within the limited time
frame. We achieve this by utilizing online algorithms that are capable of process-
ing the data piece-by-piece sequentially [4] and do not need to access the whole
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Figure 3.16: An example for optimizing an analytical process against the three human
time constants [25]. In a conventional approach (left), a (re-)computation of PCA
results is triggered (with a selection of variables), then the user waits a certain time for
the results. When this time is long, this could potentially break the dialogue between
the user and the computer. Our suggested optimization (right) addresses such issues
by computing PCA results as good as possible within 1 sec. in response to a selection
by the user. And whenever new input is received, the re-computation is done in no
more than 1 sec. and the results are presented by animated transitions in 1 sec. The
H–C–H–. . . - abstraction indicates the pattern of interaction (the lengths indicate the
time spent).

data. We use the online algorithms with a suitable sampling strategy to provide
the user the best-possible approximate result in no later than 1 second. And de-
pending on the interpretation of these first approximate results, the user might
either wait for more accurate results to compute or continue to explore the data
by updating his/her interactive inputs. This temporally constrained mechanism
enables the analysis to run smoothly at a pace that conforms to the immediate
response time constant.
We make use of animated transitions between different computational results

that are generated as a result of the dialogue occurring at the second level of
operation. The visualization update level (Level 1) moderates the update rate of
animated visualizations and secures the successful perceptual processing of the
animations in the visualization. Smooth-in-the-eye animations are achieved by
updating the visualizations at 10 Hz [25] or higher frame rates. Animations are
either used to give immediate responses to user inputs, or they are constructed as
a result of the keyframed brushing sequences. Animations aid the interpretation
of the changes in the computational results in response to use inputs. We make
enhancements to the animated views to support the analysis of changes even
further. The details of these enhancements are in Paper D.
An example of how the three levels of operation optimizes an analytical process

can be seen in Figure 3.16. Here, the analytical task involves the application of
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principal component analysis (PCA) to different subsets of the dimensions and
observe whether there are interesting structures. The conventional process starts
with an input from the user that selects a subset of the dimensions through
an histogram depicting the set of dimensions (Figure 3.16-left). The computer
responds to this user input by computing the PCA results and displaying them
in a scatterplot. However, exactly at this point, there is an issue with the timing
of the computations – the response time for the computer is undetermined, could
be a millisecond or hours depending on the size of the data. This issue can
easily break the communication between the human and the computer. On the
other side, in the analytical process optimized by our three levels of operation,
the computer responds to the user input in exactly one second by providing an
as-good-as-possible result. The user uninterruptedly continues to observe other
subsets until an interesting structure that needs further attention is spotted.
With this optimized process, all the operations are performed with temporal
characteristics that are in line with the communicative capabilities of the user.
Such processes result in human computer dialogues that are not broken and likely
to yield to more successful results.





Chapter 4

Demonstration cases

This section demonstrates the utilization of the methods introduced in the
previous sections. During the research related to this thesis, we evaluated

our methods on several different high-dimensional and temporal datasets. We
have seen that our contributions enable analysts to perform tasks such as finding
relevant parts of the data in very high-dimensional spaces, discovering hidden
relations and special features when there is heterogeniety within the dimensions,
and quickly evaluating results of several automated tools.

In the course of this thesis, our methods have been challenged by our collabo-
rators working on medical, genetics, and molecular dynamics domain. Our meth-
ods provide them capabilities that were not possible in their previous analysis
pipeline. In the analysis of heterogeneous medical data, being able to investigate
the space of dimensions as a whole made it possible for the domain experts to
be able to make observations that were not feasible with their current methods.
This lead to a very productive hypothesis generation process as described in Pa-
per E and a subset of the resulting hypotheses are discussed in Section 4.1. In
the domain of genetics, and specifically in cancer subtype analysis, our approach
makes it possible to analyze the relations both within the samples and the genes
– insight very challenging to obtain with conventional approaches (Section 4.2).
And in the analysis of clusters in molecular dynamics simulations, our collabo-
rators were limited with simplistic measures to understand the structures in the
data. Our methods provided them new ways to look at their data and opened
up for new opportunities (Section 4.3). In all these cases, we have received very
positive feedback and some of our collaborators expressed interest in making our
methods a part of their daily scientific activity.

The papers in the second part of this thesis provide the details of analysis
examples performed on a large variety of datasets. In the following cases, we
present a selection of these analyses we have carried out and we showcase how
our approaches enhance the analysis process with the integration of interactive
and visual methods.

47
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4.1 Hypothesis generation in heterogeneous medical
data analysis

The analysis here demonstrates how interactive visual analysis methods, in par-
ticular using the dual analysis approach, facilitate the hypothesis generation pro-
cess in the context of heterogeneous medical data. In this use case we analyze the
data related to a longitudinal study of cognitive aging [8, 215]. In the study, all
the participants were firstly subject to a neuropsychological examination, namely
intellectual function (IQ), memory function, and attention/executive function,
and later to multimodal imaging of the brain, i.e., 3D anatomical magnetic res-
onance imaging (MRI), followed by diffusion tensor imaging (DTI) and resting
state functional MRI [89, 214]. One of the expected outcomes of the study is to
understand the relations between image-derived features of the brain and cog-
nitive functions in healthy aging [215]. The resulting dataset from the study
contains information on 82 healthy individuals who took part in the first wave of
the study in 2004/2005. MRI images were segmented into 45 anatomical regions,
where seven features for each region were derived automatically. This process
creates 45× 7 = 315 dimensions per individual and with the neuropsychological
examination, the resulting table has 373 dimensions, i.e., a 82× 373 table.
In this study, we direct the analysis by treating age, sex, and the test scores

as the dependent variables and try to investigate how they relate to the imaging
based variables. As a group of visualization researchers and experts in neuroinfor-
matics and neuropsychology, we perform several sub-analyses on this data where
each of which results in an hypothesis, refer to Paper E for the details related to
all the sub-analyses. Here, we comment on the findings related to the age of the
participants.
In order to carry out this study, we interactively analyze the data through a

combination of scatterplots depicting the items and difference views. And prior
to our analysis we handle the missing values and perform normalization on the
data. For numerical dimensions, we utilize z-standardization and we scaled the
categorical data dimensions to the unit interval. We limit our interest to the
elderly patients and aim to understand the effects of aging on the brain and the
test results. We select the patients over the age of 60 (Fig. 4.1-a) and visualize
how brain volumes and test scores change. We observe no significant difference
in IQ & memory and attentive functions for the elderly patients (Fig. 4.1-b).
However, when we observe the change in brain volumes, we observe that there
is an overall shrinkage in most of the brain segments with age. This is clearly
seen in Fig. 4.1-c, where most of the dimensions have smaller median values
(i.e., to the left of the center line). Although most of the brain regions are
known to shrink with age [200], some regions are reported to enlarge with age.
When the dimensions that have a larger median value due to the selection (i.e.,
enlargement due to aging) are observed, they are found to be the ventricles
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Figure 4.1: Elderly patients (> 60 years old) are selected (a). No significant relation
is observed in the test scores (b). When we focus on the volumes of the segments, we
see most of the regions are shrinking with age, but some, especially the ventricles, are
enlarging (c). Apart from the expected enlargement of the ventricles, the right caudate
is also found to enlarge with age (d).

(not the 4th ventricle) and the CSF space. Since this is a known fact [200], we
focused on the regions that show smaller enlargements and decide to look at the
right caudate more closely. When the right caudate is visualized against age, a
significant correlation is observed (Fig. 4.1-d). This is an unexpected finding that
needs to be investigated further. With these above findings we build the following
hypothesis: There is no significant relation between age and performance in IQ &
memory and attentive & executive functions for individuals undergoing a healthy
aging. Moreover, in contrast to most of the brain regions, there is a significant
enlargement in the right caudate in healthy aging individuals.
We have seen that our explorative approach results in the generation of hy-

potheses quickly. The conventional routine to analyze this dataset is to physically
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limit the analysis to a subset of the dimensions and perform time-consuming, ad-
vanced statistical analysis computations on this subset. Our methods optimize
this process by making the whole data available throughout the analysis and
enabling the analyst to quickly swift through several subsets to generate new
insight.

Representative Factors to Analyze Local Structures
In this use case, we continue to perform an analysis on the cognitive aging study
data that is analyzed in the first use case. This time, however, we demonstrate
how representative factors can be utilized to analyze such a structured data, i.e.,
brain regions vs. statistical features.
We start by investigating the 7 different features associated with the brain

regions and generate 7 projection factors for these 7 sub-groups. We select these
groups through the use of the available meta-data (not shown in the images here).
Each factor here represents 45 dimensions, being the different brain regions, e.g.,
one sub-group contains all the number of voxels columns for the 45 brain regions.
We visualize these factors over a med vs. IQR plot (Figure 4.2-a).
We mark the standard deviation of intensities as interesting, since the underly-

ing dimensions have different correlation relations with the representative factor.
This indicates that this feature is likely to show differences between the brain
regions. In addition, we also consider the range of intensity feature to be impor-
tant since it preserves most of the statistics in the underlying dimensions (this
insight is made primarily by observing the profile plots introduced in Paper B).
We continue by delimiting the feature set for the brain regions to those two

selected features, i.e., we delimit the operations to 45 × 2 dimensions. We first
apply MDS on these using the correlation matrix as the distance values and we
identify a group of dimensions that are highly correlated in the MDS plot (Fig-
ure 4.2-b). We find out that this group is associated with the sub-structures in
the Cerebellum Cortex (CerCtx). We represent all the dimensions related to the
CerCtx via a medoid factor and create a single projection factor for every other
brain region. In Figure 4.2-c, we see the factors over a normality score vs. %out
plot where each factor represents a single brain region. We select the represen-
tatives that show a normal distribution, since normally distributed dimensions
provide a reliable basis to apply PCA on the participants. These regions of in-
terest are right and left lateral ventricle, brain stem, left and right choroid plexus
and right inferior lateral ventricle. In the resulting PCA visualization, we spot a
group of outlier participants which we investigate further to evaluate the validity
of our finding (Figure 4.2-d).
Firstly, we observe that these are mainly the elderly participants. And in

order to investigate deeper, we refer to the internal reports written by our col-
laborators on the progression of the participants over the years. Through these
reports, we observe that one of the nine participants is described as showing an
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older infarct (through MRI scans) and six of the remaining participants (75%)
showed declining cognitive function during the study period. The percentage (of
cognitive function decline) in the other participants is 28%. This shows a clinical
importance of the selected participants. Moreover, this result supports the above
hypothesis that the selected brain regions are related to age-related disorders.
All in all, the above observations clearly suggest that the interactive visual anal-
ysis of the MRI dataset leads to significant and interesting results that are very
unlikely to be achieved using conventional analysis methods.

4.2 Characterizing Cancer subtypes
In this case study, we utilize views constructed using our dual analysis approach
together with StratomeX, a visualization method to represent overlaps of clusters
(similar to the temporal cluster view introduced in Section 3.2). This case study is
related to the cancer subtype analysis based on a variety of biomolecular datasets.
The dataset is produced by “The Cancer Genome Atlas” project and captures
several aspects of gene activity for a large number of participants. This gene
activity is represented in the form of several datasets where one example is the
mRNA data that measures the abundance of mRNAs in the cell. For a detailed
description of the other datasets and details of a further analysis refer to Paper F.
In the analysis of cancer subtypes, analysts are faced with clusterings (stratifi-

cations) of several datasets. Although it is possible to investigate the membership
overlaps with current methods [124], it is not possible to investigate what dis-
tinguishes a subgroup from another. Such an insight is possible by detecting the
distinctive elements for a single group and observing these elements within the
other groups. In order to address this task, we utilize our significant difference
view as “bricks” within StratomeX.
We perform our analysis on the data related to a comprehensive breast invasive

carcinoma (BRCA) dataset collected by the TCGA consortium. We use the
mRNA expression data from over 800 breast cancer patients. In addition to
the raw data, we load a recently published stratification of samples [114] that
will serve as a basis for our analysis. The 4 subtypes that are reported in the
reference study are: Luminal-A, Basal-like, Luminal-B, and HER2-enriched, as
shown in Figure 4.3-a). Note that, in the difference views each point is a gene.
The differences in each brick are computed between the members of the cluster
being represented and the rest of the samples. Notice here that, in order to use
non-overlapping sample sets, we prefer to compare each cluster to the rest of the
data.
The reference study identified a list of genes that are differentially expressed

for the HER2-enriched subtype by using unsupervised clustering (refer to sup-
plementary Table 7 in [114]). We select the 7 most significantly under-expressed
genes and 10 most significantly over-expressed genes as marked in Figure 4.3-a.
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a) b)

Figure 4.3: Using embedded difference plots to find descriptive genes. (a) Descriptive
genes are marked for the HER2-enriched subtype. A comparison to the reference study
shows the relevance of the marked genes (b) Under-expressed genes for the Luminal-A
subtype are selected and we observe that they show over-expression for the Basal-like
subtype, i.e., constitute good features to discriminate these two subtypes.

7 out of the 7 under-expressed and 6 out of 10 over-expressed genes are identi-
cal to the ones found in the reference study. This match demonstrates that our
interactive visual analysis approach quickly yields relevant results in determining
descriptive genes.
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We then focus our attention in comparing distinctive genes between the Luminal-
A and the other subtypes. We first select the significantly under-expressed genes
for the Luminal-A subtype in Figure 4.3-b. We observe that the significantly
under-expressed genes for Luminal-A are often over-expressed for the Basal-like
subtype. This leads to the conclusion that these genes are good markers to dis-
tinguish the Luminal-A from the Basal-like subtype.
The capability to interactively select certain genes enables analysts to quickly

get an understanding of the characteristics of a subgroup in relation to the other
groups in the data. This enhancement to the subtype analysis demonstrates
how the characterization of cancer subtypes might be facilitated through inter-
active visual methods. Paper F provides further utilization of our approach in
supporting the characterization of cancer subtypes.

4.3 Analysis of Molecular Dynamics of Mixed Lipid
Bilayers

In this use case, we perform an analysis on the data from molecular modeling
of biological membranes. In a typical analysis, the focus is on the lipids that
form the cell membrane. These lipids can form clusters with other membrane
components which are relevant for signal transduction or cell apoptosis to name
but a few [53]. Molecular dynamics (MD) simulations are often utilized to de-
scribe the atomic structure and dynamic behavior of lipids. After the simulation
is completed, the analysis often starts with the generation of a grouping through
clustering algorithms.
Our collaborators working in the field of biomolecular modeling state that they

faced many limitations in performing an effective analysis on the group behaviors
in previous work [23]. Due to the complexity of analyzing the clusters over time,
they perform the clustering on individual time steps and average the clustering
properties over time. This task is exactly where our temporal clusters analysis
methods are particularly useful. We use our temporal cluster view and temporal
signatures to investigate the set of temporal clusters and to determine “good”
clusters that can provide insight on the structural changes within the lipids over
time.
In this study, we work on a dataset obtained from a MD simulation of a mixed

lipid bilayer [23], constituted of 2 types of lipids over 1640 time steps. We start the
analysis by displaying the clusterings that are obtained by a clustering algorithm.
We assess the cluster quality, firstly, by brushing individual clusters and observ-

ing their silhouette values. And secondly, we assess the coherence of the clusters
via the signature view. Fig. 4.4 displays a set of signatures for the observed
clusters C1−5 defined over sequential time intervals TC1−5 .
We mark two clusters to be interesting to analyze further. The first cluster,
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XXX

X

XX

Figure 4.4: a) Cluster merging-splitting behavior. A cluster is selected with b1 and the
time selection is enlarged by brushes b2 and b3. Merging occurs around the smaller band
in the middle, which gets larger at end of the sequence due to splitting in signature view.
b) Searching for a plausible cluster. Two good signatures are identified (circles). The
dashed circle is discarded due to its structural instability in cluster view (shown with the
selection on the right). The red circled cluster is picked for further analysis. Moreover,
the observed signatures allow to discard clusters (X) according to their structure.

marked with dotted circle can be considered a “good” cluster due to its temporal
signature, i.e., stable and compact structure (mainly red). However, when the
same cluster is observed in the cluster view, we see that there is a lot of branching
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visible for this cluster. This indicates that this is not a stable cluster over time
and we do not pick that for further analysis (Discarded clusters are marked with
an X in the figure). Nevertheless, we found a cluster (marked with a red circle in
Fig. 4.4) that has both a plausible signature and also exhibits a stable structure
in the neighboring clusterings. This cluster is a good candidate to build further
analysis on. In Paper G, we discuss how the analysis is carried out further with
such good clusters. In general, our collaborators find the procedure to be faster,
more powerful and more reliable than traditional approaches which are usually
based on distance criteria applied to each frame of the sequence.



Chapter 5

Conclusions and Future Work

This thesis aims to achieve the tight integration of computational methods
within the interactive and visual analysis of data. We focused on high-

dimensional data analysis and cluster analysis in different stages of the project.
The current analysis pipeline that involves the use of automated methods has
limitations regarding the reliability and interpretability of the results. This issue
is due to several factors, such as the inherent heterogeneity within the dimensions,
the underlying assumptions of computational tools, and the limited capability to
perform local analyses on the data. With this PhD thesis, we managed to address
these challenges and achieve analytical processes that yields results that are more
reliable and easier to understand for the analyst.
During the research period of this thesis, we had the chance to collaborate

with domain experts to work on challenging datasets and tried to solve analytical
problems together. We have seen that our methods have improved their analysis
pipeline. This improvement is mainly to due to awareness that the analysts gain
with the help of our iterative and interactive visual methods. The awareness is
facilitated by being able to understand the characteristics of the data and give
informed decisions within the analysis in response to these investigations. During
our research activities and our exchange with the collaborators, we made several
observations regarding the analysis processes and practices.
• We have seen that our dual analysis approach enabled analysts, for the first
time, to easily handle datasets with very high number of dimensions. Treat-
ing the dimensions as first-order analysis elements broadens the scope of
the analysis to the space of dimensions. Our approach makes it possible to
utilize most of the interactive visual analysis methodologies, e.g., linking &
brushing and focus + context visualization, on the space of the dimensions.
This new capability opens up for new possibilities that are not essentially
limited with the number of the dimensions. Previous approaches, on the
other hand, had to bring the size of the data to a manageable level by either
sub-setting or by specialized methods such as dimension reduction – often
resulting in significant information loss.

• We observed that the space of dimensions is highly heterogeneous. We
have seen that this heterogeneity is due to several factors such as the inter-
relations within the data dimensions, the problematic nature of the data,
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and various characteristics specific to the procedures that generate the data
itself. Although we have seen such heterogeneity in almost all of the data-
sets we have analyzed, methods employed by the analysts often neglect
these properties and treat all the dimensions equally. With our methods,
we detect, analyze, and utilize these heterogeneous properties within the
dimensions. As demonstrated by the several use cases and by the feedback
from the domain experts, our contributions to the analysis process improve
the productivity of the analyses significantly.

• One of the analysis strategies we developed in this thesis involved the treat-
ment of local structures within the analysis. In a typical analysis session,
analysts would discard most of the underlying structures and do not per-
form any local operations on the data. We observed that considering local
structures through our methods improved the interpretability of analyses
considerably. One example of this was our study carried out together with
neuropsychology and biomedicine experts (refer to Section 4.1 in Chap-
ter 4). In this study, we made use of the inherent structure of the data
by performing local operations on each of the brain segments. We have
seen that such a structured approach to data analysis enabled the domain
experts to easily make understandable local observations, which they can
later on merge to build a big picture of the data.

• We have seen that considering the characteristics of the dimensions in dif-
ferent stages of the data analysis guides the user in giving the appropriate
decisions when applying automated methods on the data. For instance,
during the pre-processing of the data, the right normalization method can
be chosen based on a visual investigation of the dimensions. Similarly, the
careful inspection of the characteristics of the dimensions enables the ana-
lyst to check for the different assumptions regarding the data, e.g., visually
evaluating for normality before a dimension reduction is applied.

• In our methods, we have made it possible to access the whole raw data and
the analysis results at all times during the analysis. Being able to access the
whole data domain enables the analyst to switch the focus of the analysis
from one subset to the other. This enhancement to the analysis practice
has been regarded to be important by our collaboration partners since it
enables them to quickly shift the focus of the analysis in a single analysis
session. This also saves them from performing tedious steps to subset the
data prior to the analysis and in addition enables them to compare different
results in a common framework.

• In the more conventional practice, the analyst starts with one or more
hypotheses in mind that are built based on his/her prior knowledge on
the field. It continues with the usually time-consuming steps to evaluate
these ideas one-by-one. In our approach, we suggest that an analyst quickly
evaluates several ideas through the visual analysis cycle and only spends
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additional effort on those ideas that look promising in the first place. This
new approach amounts to a more efficient mechanism than spending a very
long time on each and every single idea.
Along this line, being able to quickly prototype ideas is one of the main
strengths of our interactive visual methods. The analysts can easily con-
firm existing knowledge, build new insight, and evaluate different ideas to
generate new hypotheses. This explorative stage should ideally be followed
by referring to more robust and advanced automated mechanisms to con-
firm the validity of these hypotheses.

• We have seen that it is highly important to communicate the certainty
of the findings. The analyst should be given indications of whether the
finding is reliable or needs further refinement. One way to achieve this
is to employ quality measures and evaluation methods that have proven
to be useful in other domains related to data analysis, i.e., statistics, data
mining. One example in this thesis is the use of silhouette values (Chapter 3,
Section 3.2) to evaluate the quality of cluster memberships. Moreover, we
incorporated hypothesis testing results to communicate the significance of
differences in our difference view (Chapter 3, Section 3.1). Both of these
additions provide immediate visual feedback and improves the rate that the
explorative process converges to useful insight.

• One feature that we consider very important within this thesis is to be
able to use and compare the results of different algorithms or several runs
of a single algorithm. This is a very powerful mechanism to overcome the
limitations and parameter dependence of automated methods. Moreover,
incorporating several methods and measures makes the whole analysis more
resistant to problems in the computations. In this thesis, for instance,
we have demonstrated the importance of such a capability while applying
clustering on molecular dynamics simulations (Chapter 4, Section 4.2).

• We observed that moderating the interaction pace of visual analytics appli-
cations is very critical to maintain a healthy dialogue between the human
and the computer. Most of the visual analytics applications do not fully ad-
dress the different human factors. However, as the complexity and the size
of datasets gets more challenging, it is becoming more and more important
to consider different aspects of the human user in data analysis.

Future work
The lessons learned listed above and our exchanges with analysts motivates us to
carry this research even further. Below we discuss a number of possible directions
to extend this work.
One aspect that needs to be investigated further in the integration of interactive
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and automated methods is the issue of usability. Our solutions require significant
literacy in statistics and skills in using different computational methods. Our col-
laborators mentioned that these requirements can lead to a demanding learning
curve. We consider this to be very important in order to increase the impact of
visual analytics applications. Along this line, we plan to incorporate mechanisms
to improve the interpretability and usability of our methods. Possible meth-
ods could be to employ smart labeling and annotation, creating templates that
analysts can follow for easier progress, and computationally guided interaction
mechanisms where automated methods are integrated seamlessly.
Moreover, practical methods to evaluate the insight gained through integrated

and interactive systems needs to be developed. Such mechanisms could be utilized
to validate our improvements to the analysis process based on the human-time
constants. Moreover, such methods will improve how we design the interaction
and the visualizations within the analytical processes. This motivation is also
underlined by North [139] where he emphasizes the importance of devising direct
methods to evaluate visualizations.
Another topic that needs further attention is to address the uncertainty within

the analysis process. We plan to implement mechanisms that communicate the
reliability of the observations made through interactive visualizations, e.g., what
happens to my observation if I move my selection slightly along the x-axis? If
such questions are addressed, interactive and visual methods could easily place
themselves in the everyday routine of analysts that require precise results.
As more technical improvements of our work, we plan to extend the dual anal-

ysis framework to operate on several datasets simultaneously. Currently the dual
analysis approach operates over the dimensions of a single data table, however
in many fields an analysis of several datasets is becoming highly needed. We
consider that there is great potential in extending our approach to a third space
in addition to the items and the dimensions space – the dataset space. We briefly
investigated how such an improvement is possible by integrating our methods
within the multi-dataset analysis framework Caleydo (Chapter 3, Section 3.2).
However, the current functionality is limited in terms of the analysis of inter-
dataset relations and there is the need to formally define the operations in this
third level.
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Paper A

Brushing Dimensions – A Dual Visual
Analysis Model for High-dimensional Data

Cagatay Turkay1, Peter Filzmoser2, and Helwig Hauser1

1Department of Informatics, University of Bergen, Norway
2Department of Statistics and Probability Theory, Vienna University of Technol-
ogy, Austria

Abstract

In many application fields, data analysts have to deal with datasets
that contain many expressions per item. The effective analysis of

such multivariate datasets is dependent on the user’s ability to un-
derstand both the intrinsic dimensionality of the dataset as well as
the distribution of the dependent values with respect to the dimen-
sions. In this paper, we propose a visualization model that enables the
joint interactive visual analysis of multivariate datasets with respect
to their dimensions as well as with respect to the actual data values.
We describe a dual setting of visualization and interaction in items
space and in dimensions space. The visualization of items is linked
to the visualization of dimensions with brushing and focus+context
visualization. With this approach, the user is able to jointly study
the structure of the dimensions space as well as the distribution of
data items with respect to the dimensions. Even though the proposed
visualization model is general, we demonstrate its application in the
context of a DNA microarray data analysis.

This article was published in IEEE Trans. Visualization and Computer Graphics,
17(12):2591–2599, 2011.
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1 Introduction
The rapid development of increasingly powerful computers and the improving
methods for data acquisition lead steadily to more challenging datasets with re-
spect to their analysis. On the one side, the large number of items in datasets is
challenging. On the other side, the increased complexity of datasets, in particular
in terms of larger numbers of expressions (dimensions) per item, is posing highly
interesting questions. Both challenges have been addressed for many years in
statistics research, data mining, machine learning, and visualization. With re-
spect to related visualization research, and in particular with respect to recent
activities in visual analytics, a somehow skewed picture appears. There is am-
ple work on items-based visualization approaches, where the data items in a
dataset are represented either explicitly or implicitly in the visualization. On the
contrary, there is much less work, which addresses the dimensions as first-order
objects of the visualization. Understanding a dataset’s dimensions, however, such
as its intrinsic dimensionality, for example, is often also important for an effec-
tive analysis of the data. Accordingly, we see a pressing need to also support
this task (understanding the dimensions of a dataset) with means of interactive
visual analysis.
In the context of this paper, dimensions are considered as a mixture of de-

pendent and independent variables. An example would be a cars dataset about a
number of cars (as the items), each of which being associated with several values,
such as gas mileage, price, engine size, i.e., the dimensions in this data. Ana-
lysts often use multivariate statistical analysis (MVA) techniques, for example,
principal component analysis (PCA), linear discriminant analysis (LDA), cluster-
ing, etc., to understand the underlying relations between the dimensions and the
data items [100]. However, as the dimension count gets larger, and noisy values
in dimensions (e.g., outliers) influence the represented information, the output of
these methods becomes harder to interpret and occasionally less reliable [2].
Also it is often so that high-dimensional datasets come with a number of dimen-

sions which are more important in order to explain the underlying phenomena
than others. Datasets are also often populated with dimensions which are derived
from each other or which carry no additional information about the phenomenon
being explored (but are included for other reasons, e.g., their own absolute scale).
If we refer to the cars dataset again, examples of derived dimensions could be
the price of the same car in different currencies. Analysts are often, for example,
interested in discovering the intrinsic dimensionality of the data which corre-
sponds to the minimum number of dimensions which can explain the relations in
the data [105]. Accordingly, multivariate statistical analysis is often preceded by
a dimension reduction phase where the main goal is to create a lower dimensional
space [100] that still contains the essential information from the original dataset.
One of the most popular methods for dimension reduction is principal component
analysis (PCA). PCA can be used to create a lower-dimensional representation of
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the data that still captures most of the variance in the data. However, the result-
ing dimensions are usually difficult to interpret. In this respect, there are studies
in statistics research to improve the interpretability of the results by filtering the
dimensions prior to PCA [54]. These studies try to create sparse representations
of principal components by identifying and leaving out “redundant” dimensions
that do not contribute to the overall variance of the dataset [54].
Another important consideration in most of the MVA methods is their as-

sumptions on the underlying data distributions. Popular MVA methods such as
PCA or regression analysis, for instance, assume that the data are normally dis-
tributed with respect to their dimensions. However, many of the high-dimensional
datasets in practice fail to fulfill this assumption, for instance, due to outliers.
Handling of outliers and observing the descriptive statistics of dimensions to as-
sess their normality is crucial when considering the reliability of MVA results.
This aspect of MVA is, therefore, subject to many studies under the name of
“robustness” in statistics. Such studies try to improve the resistance of analysis
methods to outliers and try to make them less dependent on the distribution of
dimensions [58].
There are several application fields where the relations between the items are

at least as important as the relation between the dimensions, such as DNA mi-
croarray data analysis [47]. In such areas, methods that operate on items and
dimensions at the same time are of great potential interest. Most of the existing
MVA methods, however, operate either on items or on the dimensions and the
joint interpretation of these separate results is not always straight forward. Ac-
cordingly, there is a need for methods that enable the joint analysis of items and
dimensions in such datasets, also by considering the effects of dimensionality and
variable distributions.
Interactive visual analysis has been used extensively to visualize high-dimensional

data and MVA results [65]. The common approach in the visual analysis of high-
dimensional data is to visualize the items as opposed to different dimensions in
linked views and to support the discovery of relations between expressions by
means of interaction. This approach also provides an aid to derive hypotheses on
the intrinsic dimensionality of the data. Unless supported by MVA tools, how-
ever, interactive methods alone fail to provide a comprehensive insight on the
data, especially as the dimension count gets larger and as the relations between
the dimensions become more complex. A more “fruitful” analysis requires the
integration of computational tools in the visual analysis cycle as suggested, for
example, by Keim et al. [112]. Moreover, an interactive visual analysis solution
should also enable the exploration of the dimensionality of the data by considering
the “redundancy” and “robustness” constraints throughout the analysis.
In this paper, we now present a visual analysis model where the analysis of

items and dimensions is carried out in two linked spaces, namely items space
and dimensions space. We utilize the current knowledge about the interactive
visual analysis of data items to also enable the interactive visual analysis of data
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dimensions. In our model, we suggest a setting of linked views, where the analyst
interacts with the items in items space, e.g., by brushing items, and with the
dimensions in dimensions space, f.i., by brushing dimensions. Firstly, our model
aims to provide more insight with respect to the intrinsic dimensionality of the
dataset based on interactions in both spaces. By selecting useful combinations of
dimensions and leaving out redundant ones, the analyst can improve the MVA
results according to prior knowledge and interpretation. Secondly, by interacting
with the data items, the analyst has the opportunity to relate data subsets to
MVA results. With such interactions, the analyst can modify the distribution of
items, e.g., by removing outliers, and observe the change with respect to MVA
results.
In the following, we first exemplify our approach in the context of an illus-

trative example (after having discussed related work), before we then present
a model for a dual visual analysis of high-dimensional data. We describe how
the data analysis is performed through transformations and how brushing and
focus+context visualization is integrated in the model. Specifically, the contri-
bution of this paper are:
• a novel method for the joint and linked analysis of items and dimensions of
high-dimensional data,

• a formal model which describes the transformations, brushing operations, and
focus+context visualizations in the dual analysis framework, and

• a set of procedures and guidelines to preform such a dual visual analysis of
high-dimensional data.

2 Related Work
Interactive visual methods have been used extensively in the analysis of high-
dimensional data. An overview of related studies is available in surveys by Wong
and Bergeron [211] and by Fuchs and Hauser [65]. Coordinated multiple views
have proven to provide insight into high-dimensional datasets by means of linking
and brushing in views which display different aspects of the same data [173].
Examples of such approaches are realized in the XmdvTool [202], Polaris [178],
and in ComVis [131]. Many efforts have been made to explore multivariate data
with visualization. Jänicke et al. [94] propose the brushing of multivariate data
after a projection to an attribute space which can be visualized in a 2D view.
In cross-filtered views [203], Weaver enables the exploration of relations between
dimensions by cross-filtering data values from different views.
In order to cope with the complexities as induced by a higher number of dimen-

sions, dimension reduction methods have been integrated into the visual analysis
pipeline. In VHDR [213], Yang et al. group dimensions in a hierarchy and cre-
ate lower-dimensional spaces using representative dimensions. Their method also
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provides opportunities to manually reduce dimensions. Jeong et al. [96] provide
a set of interaction mechanisms that operate on PCA results. With modifications
of the parameters of PCA, it is possible to observe changes in the PCA results.
Visual analysis methods have been used jointly with a number of computa-

tional methods. Fuchs et al. [66] integrated machine learning with interactive
visual analysis to support hypothesis generation. In MDSteer [210], Williams
and Munzner present a steerable multidimensional scaling computation where it
is possible to steer the analysis to the areas which are interesting for the user.
A number of different statistical tools have been integrated into visualiza-

tion systems. Guo et al. [76] enable the interactive exploration of multivariate
model parameters. They visualize the model space together with the data to
reveal the trends in the data. Gosink et al. [70] use a query-driven visualization
with a statistics-based framework. They utilize query distributions to estimate
trends and features. Correa et al. [36] consider the uncertainties that arise while
transforming the data. These uncertainties are integrated in the visualization to
support the interpretation of statistical analysis results.
There are a number of studies where the joint analysis of data items and dimen-

sions have been investigated. In the Rank-by-Feature framework [168], Seo and
Shneiderman rank the relations between dimensions according to user-defined
statistical features. The authors present how a joint analysis framework is use-
ful to steer certain statistical processes. However, their approach is limited to
computations on the whole dataset. In our model, we enable the interactive
exploration and comparison of statistical features under different subset selec-
tions. Moreover, we treat dimensions as any other data item and present them
with visual entities in the proposed dimensions space. The successful utiliza-
tion of joint analysis of two different spaces in the context of parameter space
navigation is presented by Berger et al. [17]. In another study, Andrienko et
al. [9] describes how a dual analysis scheme is utilized in spatio-temporal data-
sets. Their approach involves the dual analysis of spatio-temporal datasets over
spatial distributions and temporal variations. Unlike our model, their approach
is specific to spatio-temporal datasets. In our model, we utilize a similar dual
analysis idea for the general case of high-dimensional datasets.
Another important related work is the Value and Relation (VaR) display by

Yang et al. [212]. In this work, the authors represent the dimensions with glyphs,
which are projected to a 2D layout using multi-dimensional scaling. In this work,
the actual data items are only represented through glyphs and the interactive
analysis of items together with dimensions is not possible.
Another important study in relation to our model is by Kehrer et al. [106],

where the authors compute statistical moments from the data and plot data
aggregates as opposed to these moments. In their work, a set of scatterplots
and transformations between them are defined. Their framework provides mech-
anisms to explore trends and outliers in aggregated datasets. This framework
displays the benefits of using statistics in the visual analysis of data aggregates
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Figure 1: An illustrative example for a joint visual analysis of items and dimensions of
the “Boston Housing Prices” dataset. Three scatterplots are set up first: a) S1: house
prices (MV) vs. crime rate (CR), b) S2: the first two principal components (PC1 vs.
PC2), c) S3: mean (µ) vs. standard deviation (σ) values for all the dimensions of the
data. d) The main trend in the data is selected in S1. e) µ and σ values are re-computed
for the selected items and changes are visualized in S3. f) Dimensions that deviate less
are selected for a re-computation of the PCA. g) PCA results (before and after) are
visualized in a F+C style.

together with data items. In our work, we define a more general model which
operates on high-dimensional data using statistical analysis methods together
with statistics computations. With our model, we extend the current approach
to the visual analysis of high-dimensional data with the idea of a joint and linked
analysis of data items and dimensions.
Throughout this paper, we utilize a number of multivariate statistical analysis

methods such as principal component analysis (PCA) and linear discriminant
analysis (LDA). PCA is a popular, unsupervised dimension reduction method
that is widely used in multivariate statistical analysis [100]. The goal of PCA is
to create a lower-dimensional projection of an originally high-dimensional dataset
while preserving as much of the variance in the data as possible. PCA creates
an orthogonal coordinate system where the axes are called principal components
(PC). These PCs are all linear combinations of the original dimensions where the
weights are referred to as the loadings. LDA is a supervised dimension reduction
method that finds a linear combination of the original dimensions by considering
class labels [100]. LDA attempts to maximize the class discrimination while
reducing the dimensionality of the data. LDA is used as a classifier or as a
dimension reduction method. One important point is that both methods assume
the data to be normally distributed.
In addition to PCA and LDA, we also make use of certain descriptive statis-

tics, namely the mean (µ), the standard deviation (σ), the skewness (skew), the
kurtosis (kurt) and interquartile-range (IQR). µ can be estimated by the average
of the values in the data, σ is the standard measure of variability, skew indicates
if a distribution is centered, or not, while kurt indicates the peakedness of a
distribution and IQR is a robust statistics that also describes the variance of a
distribution.
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3 An Illustrative Dual Analysis Example
Before we present our more formal model further below, we first describe an
illustrative example where a visual analysis of data items is carried out together
with a visual analysis of the dimensions. Our aim here is not to already provide
a comprehensive guide, but to informally demonstrate the basics of our dual
analysis model.
As also generally in this paper, we assume that our datasets come in a tabular

form with n items (rows) xj ∈ Ω (set of items), each of which with values in m
dimensions (columns) dk ∈ ∆ (set of dimensions). In the following, we denote
the kth value of the jth item as xj,k. For this first illustration, we study the well-
known ‘Boston Neighborhood Housing Prices’ dataset [80]. This dataset contains
information gathered by the U.S Census Service to understand the relation be-
tween housing prices and other factors in the area of Boston, Massachusetts. It
consists of 506 samples xj and 14 dimensions dk (i.e., |Ω| = 506, |∆| = 14). Some
of the dimensions that we refer to later are: ‘median value of owner-occupied
homes’ (MV),‘crime rate by town’ (CR), ‘proportion of houses built before 1940’
(AG) and ‘proportion of lower status of the population’ (LS).
In our analysis, we utilize PCA to understand the intrinsic dimensionality of

this dataset. To reduce the effects of outliers on PCA, we analyze the data
to determine outlier-free dimensions. We compare PCA results based on all
dimensions and those computed for only selected dimensions, in order to achieve
a better interpretation of the analysis results.
To enable the comparability of dimensions, the analysis starts with a normal-

ization of the dimensions. To normalize the dimensions, we apply linear scaling
to the unit interval in this case. We then estimate the mean (µ) and standard
deviation (σ) of all the columns (dimensions), in order to get a first impression
of the included data distributions. We apply PCA to all the dimensions and
project the data onto the first two principal components (PC1, PC2). We con-
tinue with the visualization of the items in a scatterplot S1 (Figure 1-a) with
axes CR and MV and another scatterplot S2 (Figure 1-b) with axes PC1 and
PC2. Additionally, we plot the µ and σ values of all dimensions in a scatterplot
S3 (Figure 1-c).
We then start the interactive analysis by brushing (selecting) a subset of items

in S1. This brush leaves out the larger values of MV and CR and selects the items
which (roughly) amount to the main trend in the data (Figure 1-d). As a next
step, the µ and σ values are estimated (automatically) for the selected items and
sent to S3. As a result, S3 gets updated to show the dimensions’ statistics with
respect to both the items selection as well as with respect to all of the items (Fig-
ure 1-e). The µ and σ values corresponding to the selected subset are highlighted
(with orange color), while the original µ and σ values (corresponding to the entire
dataset) are presented as reference (in gray). The two points in the scatterplot
which correspond to the same dimension (entire dataset vs. selected subset) are
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connected with a tapered line to ease their identification. In Figure 1-e, we see
that while the values for some of the dimensions changed prominently, some of
them are not much affected by the selection. A simple first interpretation of the
resulting visualization is that the dimensions that did not deviate so much due
to the selection, possibly can be considered to be less sensitive to non-standard
values of MV and CR. We then select the most “stable” dimensions in S3 and
PCA is applied automatically using only the dimensions selected in Figure 1-f.
We then project all the items to the newly computed principal components and
send the resulting values to S2. Through a focus+context visualization of the
two different projections of the items in S2, we can clearly see that the pro-
jection results changed dramatically (Figure 1-g). An interesting split into two
groups with respect to the new PC1, for example, can be observed. In such an
explorative setting, the analysis may not always converge to the mathematically
best-possible result. However, through the selection of suitable statistics and the
use of interactive brushing, the analysis leads to both additional insight on the
data and results that are easier to interpret. Guidelines for a robust analysis
process are provided in Section 6.
The above presented short illustration brings up new opportunities for the

analysis of high-dimensional data. Such a dual visual analysis of both items
and dimensions leads to a novel perspective on looking at high-dimensional data.
In the following section, we formalize this dual analysis idea in the form of a
model by defining the underlying linking&brushing and focus+context (F+C)
visualization mechanisms.

4 The Dual Analysis Model

Analysts are often faced with high-dimensional data which comes in a tabular
form where items are rows and dimensions are columns. In conventional visual
analysis approaches that involve multiple coordinated views, items are visualized
using visualizations like scatterplots, histograms or parallel coordinates. In such
visualizations, the items are plotted in the views as opposed to the dimensions
of the data. The visual analysis of data items is often carried out using link-
ing&brushing and focus+context visualization. Our dual visual analysis concept
builds upon these conventional practices and proposes the visual analysis of data
in two linked spaces, namely in items space I, and in dimensions space D. With
items space we refer to a visualization domain where each visual entity in a visu-
alization corresponds to a data item. In the dimensions space, however, each
visual entity represents a dimension of the data. To illustrate, if we visualize
the housing data in both of the spaces, using scatterplots, a point in items space
corresponds to a single house, whereas in the dimensions space, a single point
represents a dimension, crime rate by town, for instance. By separating the
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Figure 2: The dual analysis model sketched. Visual analysis is performed over two
spaces, items space and dimensions space. Visual entities correspond to items in items
space and dimensions in dimensions space. Analysis advances iteratively by selecting
items and dimensions. The interactions enable the joint and linked exploration of
dimension statistics and multivariate analysis (MVA) results.

visual analysis space into two, we provide opportunities for the joint and parallel
analysis of items and dimensions.
A conceptual sketch of our model is depicted in Figure 2. Here, items space

includes the visualizations of MVA results (such as a projection on principal
components). The analyst iteratively performs item and dimension selections in
order to observe the changes in dimension statistics as well as MVA results. The
duality in the model is achieved by linking the visualizations in the two spaces. In
order to fully accomplish this link, we formulate brushing and focus+context visu-
alization mechanisms, as well as transformations which are needed to establish
the relation between the two spaces.

4.1 Data Transformations
The iterative analysis of items and dimensions is at the core of our model. During
a typical iteration, the focus of the analysis moves from one space to the other. In
order to achieve the transitions between items and dimensions space, our model
requires a set of data transformations.
From dimensions space D to items space I: The basis for the first type
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of transformations relates to the MVA methods that operate on the dimensions
∆. Such methods are here denoted by f . We generalize transformations f to
operations that create l new data dimensions when applied. In the illustrative ex-
ample in Section 3, PCA is an example of such an f transformation. Throughout
the iterative analysis loop, the ith transformation of data through f is defined as:
T iD(f) : ∆′ f→ ∆i where ∆i = {dc+1, ..., dc+l} with any da being a full new column
da = {x1,a, ..., xn,a}T and c =

∑i−1
t=0 |∆t|. Note that, in these transformations,

all the items are projected onto the new dimensions and ∆′ ⊆ ∆ represents a
selection of dimensions of the data before the transformation. At a certain point
in the iterative loop, where the analyst have made y of these transformations,
the final set of dimensions is denoted as ∆+ = {∆0, ...,∆y} with ∆0 = ∆, i.e.,
the original data dimensions.
Although we exemplify PCA as one f method, it can also be any other MVA

tool which creates a mapping of the original dimensions. It is possible to consider
methods like multidimensional scaling (MDS) and factor analysis (which are other
dimension reduction techniques), clustering (which maps the data items to class
labels), and LDA (which maps the data items to known classes) [100].
As an initial transformation, which usually precedes the statistical analysis

as well as the visualization, we normalize the dataset so that values in all the
dimensions are quantitative and comparable. Normalization also ensures that
all of our dimensions are suitable for visualization in a scatterplot, histogram,
etc. Moreover, it is an essential step for most of the MVA processes [147]. This
normalization step is denoted with T 1

D(N) where N is a normalization method,
such as linear normalization to the unit interval or z-standardization [147]. The
results of T 1

D(N) is denoted with ∆1 where
∣∣∆1

∣∣ = |∆|.
From I to D: We use transformations s to iterate from items space to dimen-

sions space. Examples of s can be descriptive statistics or an aggregation of data
items. Here, we mainly consider statistics as s. If we consider σ as s, the result of
the transformation are the σ values for each and every dimension in the data. In
the rth iteration of the analysis the transformation which computes g new values
per dimension using s is defined as: T rI (s) : Ω′ s→ Ωr where Ωr = {xe+1, ..., xe+g}
with any xa being a full new row xa = {xa,1, ..., xa,m} and e =

∑r−1
t=0 |Ωt|. Here,

Ω′ ⊆ Ω represents a selection of items. In the course of the analysis, the analyst
can make z of these transformations where she produces the final set of computed
values Ω+ = {Ω0, ...,Ωz}. To generalize, regarding the set of possible s functions
or statistics, it is possible to consider descriptive statistics such as mean, vari-
ance, skewness, kurtosis and more elaborate values like statistical test results or
robust estimates.
The selection of dimensions ∆′ and items Ω′ is formulated through a degree-

of-interest (doi) mechanism. Similar to fuzzy set definitions, we define ∆′ =
(∆, doi∆) and Ω′ = (Ω, doiΩ) where doi∆ and doiΩ are mappings to define se-
lection degrees. In the case of binary selections, where an item is either selected
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Figure 3: Items space views both visualize normalized dimensions, e.g., CR or MV in
housing data, and derived dimensions, e.g., PCA results PC1 or PC2. Dimensions
space views visualize dimensions as opposed to statistics, such as µ or σ. Here, the
initial setup is done by computing PCs (1), µ and σ (2). Brushes from items space
(3) triggers F+C visualizations in dimensions space by going through transformations
(4). Similarly, brushes from dimensions space (5) updates the MVA result visualization
through transformations (6). This interactive loop continues iteratively by modifying
the selections on both sides.

or not, selections are defined as doiΩ : Ω → {0, 1}. In the case of continuous
doi values, where items are selected to a certain degree, selections are defined
as doiΩ : Ω → [0, 1]. Such a continuous selection mechanism can be achieved
through smooth brushes [43]. The addition of smooth brushes brings the possi-
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bility of weighing the dimensions prior to a dimension reduction operation, for
instance.

4.2 Brushing & Focus+Context Visualization
The conventional visualization of high-dimensional data in items space is achieved
by plotting the items with respect to the original dimensions and the derived
dimensions, i.e., ∆+. The visualizations in dimensions space, however, visualize
dimensions ∆ as opposed to the statistics computed by TI(s)r operations, i.e.,
Ω+. We denote the views in items space with VI and views in dimensions space
with VD. It is worthwhile to mention that the columns of our dataset are treated
as rows in dimensions space. Accordingly, our approach can also be thought of
as transposing the dataset and performing the visual analysis using a different
perspective in dimensions space. In the illustrative example in Section 3, S1 and
S2 are examples of VI and S3 is an example of VD.
We follow the conventional linking&brushing mechanism between the views

that are in the same space; i.e., when certain items in a VI are brushed, the
same items are highlighted in other VIs using a focus+context visualization and
the same mechanism works also for VDs. In order to define the links between
views from different spaces, we extend this mechanism by handling the brushes
through the f and s transformations. The transitions between the two spaces
and illustrations for the associated F+C visualizations scheme are illustrated in
Figure 3.
A brush in VI is defined as BI : Ω → Ω′ where Ω′ ⊆ Ω. In order to transfer

BI to dimensions space, brushed items Ω′ are transformed by TI(s)r using the
current s. The resulting values Ω+ update visualizations in dimensions space.
An example of such a brushing operation can be seen in Figure 1-d,e. Here, σ
and µ values (i.e., s transformations) are re-computed for the selected items in
S1 and the computations update S3.
A brush in VD is defined as BD : ∆ → ∆′ with ∆′ ⊆ ∆. BD is transferred

to items space by going through the transformation TD(f)i. And, the resulting
∆′ update VIs accordingly. An example for this type of operation can be seen
in Figure 1-f,g. Here, the dimensions are selected in S3 and the selection of
dimensions is an input to the PCA operation.
In a typical F+C visualization, the common interpretation of focus are the

selected items and the context is the rest. In our model, we slightly extend this
definition of F+C visualization. Focus and context are two different visualizations
of the same items, that are computed using different subsets of the dataset. The
results of the last transformation (f or s) is set as the focus and those of the
preceding one as the context. Notice that each point in a scatterplot is drawn
twice, once with the old and once with the new value. Here, we follow a simple
strategy to show the results. If the point count is large, we plot focus and
context in different colors (Figure 4-a). If the point count is small, we additionally
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Figure 4: Focus+context visualizations in scatterplots of two different PCA results (a)
and of two sets of statistics σ, µ (b). The recomputed values are in focus after the
selection, and the values from before the selection are provided as context. Depending
on the point count, two different styles are employed (with and without lines).

connect the related points with a tapered line (Figure 4-b). Although this simple
solution is adequate for illustrative purposes in this paper, one should think
of more intelligent ways to achieve comparative visualizations, e.g., difference
views [120].
One important point to mention, also, is that, in the F+C visualizations of the

first type of views, the focus is computed as a “lazy evaluation”, i.e., the focus
of a view, is linked to a brush and it is computed automatically as the brush
moves. This approach is necessary for the sake of interactivity in the model.
Additionally, the context of the views can be updated at any point throughout
the analysis. With such an extension, it is possible to compare the statistics and
analysis results of any different item-dimension subsets.

4.3 Extensions to the Model
It is possible to extend the proposed dual analysis method to also incorporate
different visualization techniques, e.g., parallel coordinates plots (PCP). While
lines in a PCP represent data items in items space, they represent dimensions
in dimensions space. Accordingly, axes of a PCP in items space are the original
dimensions of the dataset and they correspond to different Ω+ in dimensions
space. An example of these dual PCPs can be seen in Figure 5. In order to
visualize the deviations and employ our dual focus+context approach in a PCP,
comparative visualization methods, like Temporal Parallel Coordinates [97] can
be utilized. Another possible extension is to employ glyphs as the visual entities
in dimensions space [212]. One can think of glyphs where each visual channel
represent different Ω+ values.
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(a) (b)

Figure 5: The proposed dual analysis extended to parallel coordinates plots (PCP).
a) PCP from items space visualizing items over the first three principal components.
b) PCP from dimensions space visualizing σ, kurt, skew and IQR values for the
dimensions.

In its current state, the model is designed for datasets that come in a 2D tab-
ular form. However, it is possible to extend the model to 3D data tables, e.g., to
datasets where the third dimension is time. In the dual analysis of such datasets,
visualizations in items space are conventional visualizations of temporal data,
i.e., each data item is represented by a curve over time in a function plot. In
dimensions space, however, each curve represents a dimension over time. We
perform s transformations on each temporal dimension and visualize the results
in a function plot in dimensions space. In Figure 6, this mechanism is illustrated.
Here, we visualize measurements from a weather station in Bergen, Norway. The
dataset contains daily measurements, such as temperature, pressure, precipita-
tion, for all the years between 2000 and 2010. In Figure 6-a, each curve represents
the temperature values for one year. On the other side, in dimensions space, we
compute σ values for each dimension over time. And the result is a curve for
each dimension plotted against σ values as seen in Figure 6-b.

5 Prototype Implementation of the Model
We implemented our model in an interactive visual analysis environment where
we enable linking&brushing and focus+context visualizations of data in scat-
terplots and other views. We implemented two types of scatterplots, with two
types of F+C visualization, as already discussed above. Our aim with the pro-
totype implementation is to showcase the utilization of the system using simple
visualization solutions.
Our implementation utilizes composite brushing, as proposed by Allen and
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Ward [130], as the underlying brushing mechanism. In this mechanism, each
brush is combined with existing brushes by a Boolean operator op with op ∈
{∪,∩,¬}, where ∪ represents the union, ∩ represents the intersection and ¬
represents the not operator. To ensure an easier utilization of different types of
views, the visualization space is physically divided into two, one to show items
space and the other one for dimensions space. Additionally, to include a wider
range of MVA tools into the system, we integrate the R statistical computation
package into our system [184].

6 Dual Analysis Procedures
The dual analysis process provides a number of opportunities in the visual anal-
ysis of high-dimensional data. Here, we provide a guide for selecting and using
the transformations and visualizations in the proposed dual setting.

6.1 Selecting Transformations
Depending on the type and the goal of the analysis, the analyst determines the
multivariate statistical analysis tools and statistics to utilize. The selected tools
and statistics then correspond to the transformations in our model. In Table 1
we provide a non-exhaustive list of common MVA tools f and statistics s that
are suitable for the dual analysis scheme. Note that the dual analysis model is
not specific to any of these methods.
One important type of f transformations are unsupervised dimension reduction

methods such as PCA and MDS. The reliability of the results of such methods

(a) (b)

Temporal Data Item

Temp

Time Time

s

Temporal Data Dimension

Figure 6: A dual analysis of temporal data. a) An items space visualization of daily
average-temperature values from a weather station in Bergen, Norway. b) A dimensions
space visualization where each curve corresponds to a dimension. The values are σ
values that are computed for each time-step.
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Table 1: Possible multivariate statistical tools (f transformations) and corresponding
statistics s for the dual analysis setting

Analysis f s

Dimension reduc-
tion (unsupervised)

PCA, MDS loadings, mean, variance,
median, skewness, kurtosis,
IQR

Dimension reduc-
tion (supervised)

LDA, SVM variance, information theory

Finding groups in
data

Clustering mean, variance, median,
IQR

depend on the normality and “outlier-freeness” of the data columns. Additionally,
to improve the interpretability of the results, redundant dimensions should be
discarded. Principle component loadings, σ and the interquartile range (IQR)
can be used to assess the dimensions’ redundancy while µ, σ, skewness and
kurtosis can be used to evaluate normality and the existence of outliers. Similar
s transformations are preferred for clustering, where the quality of the results is
affected by a high number of dimensions as well as outliers in the data.
In supervised dimension reduction methods like LDA and Support Vector Ma-

chines (SVM), the normality of the data is not required. However, the selection
of dimensions is crucial with respect to the quality of the results, also. In order
to determine important dimensions, σ, IQR or information theoretic measures
can be utilized [77].
In all of these methods, filtering dimensions prior to the analysis both improves

the quality and interpretability of the results. Therefore, dimensions need to be
evaluated in terms of their variance (saliency) and/or entropy [77]. Dimensions
that are poor in information content, i.e., with a low variance, low entropy,
near-zero loadings in PCs, can be marked as “redundant” and left out from the
analysis.

6.2 The Analysis Process
In the following, we provide a task-based guideline to carry out an analysis in
the proposed dual framework:

• To understand the relations between dimensions: A subset of items are selected
first. As a result, the changes in s values in dimensions space reveal the corre-
lation between dimensions with respect to the selections. Larger deviations in
s values indicate a higher correlation.

• To explore the dimensions that determine the main trend or the outliers in
the data: Items that correspond to the main trend or outliers are selected in
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a lower-dimensional projection of the data. Deviations in dimensions space
reveal such dimensions.

• To leave out/select dimensions: Dimensions are evaluated in terms of the infor-
mation they contain through the use of certain s such as σ, principal component
loadings and entropy.

We follow these guidelines and go through the steps of a detailed analysis process
that is similar to the one we presented earlier in Section 3.
In this analysis, we aim to explore the relation between dimensions and find

lower-dimensional representations of the data to derive new hypotheses. Hence,
we set PCA to be our main f and σ, µ, skew, and, kurt to be s transformations.
The analysis starts with the normalization step (T 1

D), where the data is scaled,
for example, to the unit interval and followed by the computation of σ, µ, kurt
and skew values for all the dimensions using all the items. Additionally, we
perform PCA on the data using all the dimensions.
In the next part of the analysis, we try to understand the relations between

dimensions. The changes in basic descriptive statistics (such as µ and σ) due
to brushes in items space are easy to interpret and provide information on the
correlations between dimensions. Therefore in this step, we choose µ and σ as the
visualization axes in dimensions space. We visualize the items in a scatterplot
with axes CR vs. AG (V 0

I ) and dimensions in a scatterplot of µ vs. σ (V 0
D).

We select the areas with old houses in V 0
I in Figure 7-a. In dimensions space (in

V 0
D), we observe how σ and µ values deviate after the brushing operation. Here,

we see that σ values for LS dropped significantly, this is due to the fact that
the selection of high AG values is sampling the lower population (LS) dimension
unevenly. We interpret this observation as follows:
High values of AG are related to very low values of LS, while low AG values

lead to a much broader range of values for LS. In other words, only a very
low proportion of the lower status of the population is living in areas with old
houses. When focusing on areas with a lower proportion of old houses, there is
no limitation with respect to the proportion of the lower status population. This
“change point” in the relation between AG and LS was thus discovered by the big
deviation of µ and σ when using all or just the selected data. On the contrary,
we see that there is almost no change in the µ and σ values on the dimension
MV, indicating about the same behavior of the selected and the original data
points.
In order to verify these impressions, we visualize the AG dimension as opposed

to both LS and MV (V 1
I , V 2

I ). We see in V 2
I in figure 7-a that in areas with old

houses, the proportion of lower society is also very low. In V 1
I , we see that MV

values vary over a wide range of values for the selected houses (i.e., in areas with
older houses). Therefore, it is not possible to talk about a correlation between
MV and AG.
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The second phase of the analysis involves the elimination of outliers to refine
the PCA results. To determine outliers, we use the PCA results (which are
already biased by the outliers) that are obtained earlier (V 3

I ). V 4
I in Figure 7-b

shows how PCA results change after removing the outliers with the brush in V 3
I .

The updated PCA results now display two groups of items, however there is still
substantial variation in the groups.
Additionally, the effects of outlier removal are observed through the changes

in dimensions space. In Figure 7-b (2), we observe that µ vs. σ values for the
Tax-rate (TAX) dimension changed significantly. We mark the TAX dimension
as the source of these outliers and remove this dimension (with a ¬ brush which
is not shown in the image) from the analysis before we move on to the next
step. As an intermediate operation, we set the current PCA results (obtained by
removing the outliers) as the context of our new visualization (V 4

I ).
We would now like to evaluate the dimensions’ normality to decide whether to

include them in the analysis. Therefore, we continue the analysis in dimensions
space. Since kurt and skew values are indicators of normality, i.e., both the
skewness and kurtosis for normal distribution are 0, we select dimensions through
the kurt vs. skew plot (V 1

D). We select dimensions (marked with 3 in the figure)
which are more likely to follow a normal distribution by selecting dimensions
with values around 0. The updated PCA plot displays two well-separated groups
that have less variance throughout the group.
We perform a final brush in V 4

I to understand which of the dimensions are
more distinctive for these groups (Figure 7-b, 4). We select the larger group
on the left and observe the changes in µ vs. σ values. Here, we discover four
dimensions: “nitric oxides concentration”, “number of rooms”, “pupil-teacher
ratio”, “proportion of black by town” to be the distinctive dimensions. These
dimensions can now be used for further analysis, e.g., in clustering the houses.
The proposed dual analysis method continues iteratively with interactions be-

tween the two spaces. Since the analyst gets an immediate feedback of the in-
teractions, item and dimension selections are refined iteratively until the analyst
is satisfied with the results. Note that, the above analysis presents the interpre-
tations of a set of specific statistics and statistical tools. The interpretations of
the views and interactions needs to be formulated on the nature of the problem
and statistics used.

7 Use Case: Molecular Classification using DNA
Microarrays

DNA microarrays and high-density oligonucleotide chips are important moni-
toring technologies used in cancer research [47]. This monitoring is applied to
different tissue samples which are known to be taken from a specific type of tu-
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mor. The resulting dataset then contains the expression levels of thousands of
genes for these different samples. In molecular level cancer research, these data-
sets are analyzed to distinguish between cancer classes or even to discover new
types of cancers. Two of the main goals in this research which involves statistical
approaches are: classifying the samples into classes of tumors and identifying
important genes which plays a role in this classification [47]. The statistical anal-
ysis of such data has always been a challenge as the dataset contains a very large
number of genes (dimensions) compared to the number of tissue samples (items).
As the analysts are interested in identifying both the groups of genes and the
groups of samples, in the analysis of microarray data, one has to analyze both
the original and the transposed version of the dataset.
In this use-case, we work on a gene expression dataset provided by Golub et

al. [69]. Here, the samples are known to come from two types of acute leukemia,
namely acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML).
The dataset consists of 7129 genes taken from 38 different tissue samples where
27 are known to be ALL and the rest AML. We treat the dataset in the form
that, genes are items (Ω) and samples are dimensions (∆) as it is the standard
way in statistical analysis of microarray data [59].
The task in this use-case is to find a good classifier that distinguish the tissue

samples into ALL and AML types. In order perform the classification, we use
LDA as an integrated MVA tool. Our aim is to select a number of genes that
are more important in the classification of the tissues and thus, improve the
performance of the classifier. Without any modification, i.e., using all the samples
and all the genes, LDA is able to classify 29 of the 38 samples correctly.
In DNA microarray data analysis, outlier genes are of more importance in the

classification of the tissues [59]. Therefore, we focus the analysis on selecting the
genes. We, firstly, plot the genes in a scatterplot using PCA and secondly, select
outlier genes from the plot to perform the classification with the selected genes.
We utilize our model to achieve more reliable PCA results, thus improving the
classification performance.
We observe the genes in a visualization of PC1 vs. PC2 in items space. With

such a visualization, we aim to separate the more “important” genes and filter
out the less interesting ones (Figure 8-a). We visualize the tissues in dimensions
space and update PCA results by selecting the tissues (dimensions in this case).
To visualize the tissues, we utilize the loadings ll of the PCs as our s function.
The loadings are the weights of each single tissue (dimension) in the resulting
PCs and they indicate how much a tissue contributes to the principal component.
In Figure 8-b, tissues are plotted against ll values (for PC1 and PC2). Here, the
ones with higher loadings (in absolute values) are more important variables and
the ones with close-to-zero loadings are considered as redundant. We leave out
redundant samples (Figure 8-c) and visualize the updated PCA results (Figure 8-
d). Here, we see that, we get a smaller number of outlier genes. We select the
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outlier genes and apply LDA using only these genes. We observe that with this
setting, LDA is able classify 30 samples correctly.
We continue the analysis by visualizing the tissues in a interquartile-range

(IQR) vs. σ scatterplot. Both σ and IQR are measures of variability, however
σ is easily affected by outliers. As a result, if there is a large deviation between
IQR and σ values of a dimension, this dimension is likely to contain outliers. In
Figure 8-e, we remove such dimensions and re-compute PCA with the selected
dimensions. As a result, we observe that we get a more reliable PCA result
(Figure 8-f). By selecting the outliers, we observe that LDA classified 34 samples
correctly. Additionally, we select a group of outlier genes (Figure 8-g) to explore
how the tissues relate to this selected group. In Figure 8-h, we see that while the
µ and σ values for most of the tissues change in a similar manner, one tissue is
clearly an outlier.
In this use-case, we demonstrate how our model brings new possibilities to the

analysis of DNA microarrays. Additionally, we demonstrate how a statistical tool
LDA, is used as a validation step. At each iteration, LDA results provides an
immediate feedback if the current selection improved the results or not.

8 Conclusion
In this paper, we introduce a visual analysis model that enables the dual analysis
of items and dimensions of high-dimensional data. The iterative and joint analysis
of the data is performed over two linked spaces: items space and dimensions
space. The analysis iterates through the interaction with the items in items
space and with the dimensions in dimensions space. In our model, dimensions
are the basic visual entities of the visual analysis in dimensions space. Such an
approach enables us to extend the knowledge in the interactive visual analysis of
data items to the visual analysis of dimensions. To the best of our knowledge, our
model is one of the first IVA approaches, where the dimensions are interactively
and iteratively analyzed as first-order visual entities together with the actual
data items.
We present a formal definition of our model by defining: i) the data transfor-

mations that are used to iterate from one space to the other; ii) brushing and
F+C visualization to achieve the linking of views. We define how MVA tools and
statistics are tightly integrated into the dual analysis concept. Additionally, we
present a set of possible analysis procedures that involve the joint interaction of
items and dimensions. Finally, we evaluate the model in the context of a DNA
microarray data analysis, where the analysis of data items and dimensions is
equally important.
MVA tools provide elaborate mechanisms to explore high-dimensional data.

They are used for several purposes such as explaining the relations between di-
mensions, classifying items into groups or predicting the classes of items. One
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of the problems with these methods is that, they treat all the dimensions of the
data equally and consider them in the computations even though they may not
be relevant. In certain cases, the relevance of the dimensions can be computa-
tionally determined, e.g., by looking at the correlation between dimensions. In
some other cases, however, the relevance of a dimension can only be determined
by the analyst’s preferences or prior knowledge about the data. Moreover, the
effects of data item distributions need careful attention while dealing with MVA
tools. Such considerations are only possible with the careful inspection of data
subsets by an expert. With the presented model, we exploit the tight integration
of MVA tools in the visual analysis process and enable the user to reflect her
preferences to the analysis. Here, the analyst is given the possibility to steer the
MVA tool by means of interactivity and as a result, both the outcome of visual
analysis and the performance of MVA methods are improved.
In this paper, we do not focus on specific MVA tools or specific statistics.

Therefore, we picked some of the well-known tools and statistics such as PCA,
LDA, µ, σ, skew, kurt, and IQR. The concept of dual analysis can have utiliza-
tions with different MVA tools. We plan to work on visualizations and advanced
interaction mechanisms that are more specific to certain MVA tools. We will fur-
ther investigate the utilization of our model in the context of other application
domains where the dual analysis concept could prove to be helpful.
As a future work, we will extend our model to include statistics that consider

pairs of dimensions, e.g., correlation, regression. Additionally, as another exten-
sion, we plan to include visualizations that can provide a formal validation for
the interactions, e.g., projection precision [165].
We think that the presented model brings up new opportunities in the analysis

of high-dimensional data. By looking at the data from two different perspectives
with the help of MVA tools, it is possible to build elaborate and specialized visual
analysis frameworks.
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Abstract

Datasets with a large number of dimensions per data item (hun-
dreds or more) are challenging both for computational and visual

analysis. Moreover, these dimensions have different characteristics
and relations that result in sub-groups and/or hierarchies over the
set of dimensions. Such structures lead to heterogeneity within the
dimensions. Although the consideration of these structures is cru-
cial for the analysis, most of the available analysis methods discard
the heterogeneous relations among the dimensions. In this paper, we
introduce the construction and utilization of representative factors
for the interactive visual analysis of structures in high-dimensional
datasets. First, we present a selection of methods to investigate the
sub-groups in the dimension set and associate representative factors
with those groups of dimensions. Second, we introduce how these fac-
tors are included in the interactive visual analysis cycle together with
the original dimensions. We then provide the steps of an analytical
procedure that iteratively analyzes the datasets through the use of
representative factors. We discuss how our methods improve the re-
liability and interpretability of the analysis process by enabling more
informed selections of computational tools. Finally, we demonstrate
our techniques on the analysis of brain imaging study results that are
performed over a large group of subjects.

This article was published in IEEE Trans. Vis. and Comp. Grap., 18(12):2621–2630, 2012.
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1 Introduction
High-dimensional datasets are becoming increasingly common in many appli-
cation fields. Spectral imaging studies in biology and astronomy, omics data
analysis in bioinformatics, or cohort studies of large groups of patients are some
examples where analysts have to deal with datasets with a large number of di-
mensions. It is not even uncommon that such datasets have more dimensions
than data items, which generally makes the application of standard methods
from statistics substantially difficult (i.e., the “p >> n problem”). Most of the
available analysis approaches are tailored for multidimensional datasets that con-
sist of multiple, but not really a large number of dimensions and they easily fail
to provide reliable and interpretable results when the dimension count is in the
thousands or even hundreds [2].
In addition to the challenge that is posed by a truly large number of dimen-

sions, it is often the case that dimensions have properties and relations that
lead to structures between the dimensions. These structures make the space of
dimensions heterogeneous and can have different causes. Dimensions can have
difficult-to-relate scales of measure, such as categorical, discrete and continuous.
Some can be replicates of other dimensions or encode exactly the same informa-
tion acquired using a different method. There can be explicit relations in-between
the dimensions that are known a priori by the expert. Some of these relations
are likely to be represented as meta-data already. Very importantly also, there
are usually inherent structures between the dimensions that could be discovered
with the help of computational and visual analysis, e.g., correlation relations or
common distributions types. Standard methods from data mining or statistics do
not consider any known heterogeneity within the space of dimensions – while this
might be appropriate for certain cases, where the data dimensions actually are
homogeneous, it is obvious that not considering an actually present heterogeneity
must lead to analysis results of limited quality.
A natural approach to understanding high-dimensional datasets is to use mul-

tivariate statistical analysis methods. These tools provide the analyst with the
most essential measures that help with the extraction of information from such
datasets. However, a major challenge with these tools is that their results are
likely to become inefficient and unreliable when the dimension count gets sub-
stantially large [162]. Take, for instance, principal component analysis (PCA),
i.e., a method that is a widely used for dimension reduction [100]. If we apply
PCA to a dataset with, for example, 300 dimensions, understanding the resulting
principal components is a big challenge, even for the most experienced analysts.
Exactly at this point, the exploitation of any known structure between the

dimensions can help the analyst to make a more reliable and interpretable anal-
ysis. With an interactive visual exploration and analysis of these structures, the
analyst can make informed selections of subgroups of dimensions. These groups
provide sub-domains where the computational analysis can be done locally. The
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outcomes of such local analyses can then be merged and provide a better overall
understanding of the high-dimensional dataset. Such an approach is very much
in line with the goal of visual analytics [111], where the analyst makes decisions
with the support of interactive visual analysis methods.
In this paper, we present an approach that enables a structure-aware analysis

of high-dimensional datasets. We introduce the interactive visual identification of
representative factors as a method to consider these structures for the interactive
visual analysis of high-dimensional datasets. Our method is based on generat-
ing a manageable number of representative factors, or just factors, where each
represents a sub-group of dimensions. These factors are then analyzed itera-
tively and together with the original dimensions. At each iteration, factors are
refined or generated to provide a better representation of the relations between
the dimensions.
To establish a solid basis for our method, we borrow ideas from factor analysis

in statistics and feature selection in machine learning. Factor analysis aims at
determining factors, representing groups of dimensions that are highly interre-
lated (correlated) [78]. These factors are assumed to be high-level structures of
dimensions, which are not directly measurable. Similar to our motivation of an
analysis of the structures in the dimensions space, factor analysis also assumes
that there are inherent relations between the dimensions. However, factor anal-
ysis operates solely on the correlation relation between the dimensions and does
not allow the analyst to incorporate a priori information on the structures. More-
over, similar to the other multivariate analysis tools, the resulting factors become
harder to interpret as the variable count gets large [78]. A second inspiration for
our approach are the feature subset selection techniques, where variables (dimen-
sions) are ordered and grouped according to their relevance and usefulness to the
analysis [77]. Similarly, we interactively explore the set of dimensions to extract
sub-groups that are relevant for the generation of factors in our method.
In order to visually analyze dimensions through the generation of factors, we

make use of visualizations where the dimensions are the main visual entities. We
analyze the generated factors together with the original dimensions and make
them a seamless part of the analysis. Due to the iterative nature of our analysis
pipeline, a number of factors can be generated and refined as results of individual
iterations. We present techniques to compare and evaluate these factors in the
course of the analysis. Our factor generation mechanism can be both considered
as a method to represent the aggregated information from groups of dimensions
and a method to apply computational analysis more locally, i.e., to groups of
dimensions. Altogether, we present the following contributions in this paper:

• Methods to create representative factors for different types of dimension
groups

• A visual analysis methodology that jointly considers the representative fac-
tors and the original dimensions
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• Methods to assess and compare factors

2 Related Work
In many recent papers, it has been reported repeatedly that the integration of
computational tools with interactive visual analysis techniques is of key impor-
tance in extracting information from the nowadays highly challenging datasets.
In that respect, Keim [111] describes the details of a visual analysis process,
where the data, the visualization, hypotheses, and interactive methods are inte-
grated to extract relevant information. Perer and Shneiderman [144] also discuss
the importance of combining computational analysis methods, such as statistics,
with visualization to improve exploratory data analysis.
There are interesting examples of works where such an integration has been

done. In MDSteer [210], an embedding is guided with user interaction leading to
an adapted multidimensional scaling of multivariate datasets. A two-dimensional
projection method, called the attribute cloud, is employed in the interactive ex-
ploration of multivariate datasets by Jänicke et al. [94]. Endert et al. [51] in-
troduce observation level interactions to assist computational analysis tools to
deliver more reliable results. Johansson and Johansson [99] enable the user to in-
teractively reduce the dimensionality of a dataset with the help of quality metrics.
In these works, interactive methods are usually used to refine certain parameters
for the use of computational tools. Our method, differently, enables the integra-
tion of the computational tools by interactively determining local domains where
these tools are then applied on. Fuchs et al. [66] integrate methods from machine
learning with interactive visual analysis to assist the user in knowledge discov-
ery. Oeltze et al. [141] demonstrate how statistical methods, such as correlation
analysis and principal component analysis, are used interactively to assist the
derivation of new features in the analysis of multivariate data. With our work,
we contribute to this part of the literature by having the computational tools as
inherent parts and integrating their results seamlessly to the interactive visual
analysis cycle. Moreover, we bring together the local structures and the related
analysis results to construct a complete image of the relations in high-dimensional
datasets.
Multi-dimensional datasets, where the dimension count is a few to several

dozens approximately, have been studied widely in the visual analysis litera-
ture. Frameworks with multiple coordinated views, such as XmdvTool [202] or
Polaris [178], are used quite commonly by now in visual multivariate analysis.
Weaver [203] presents a method to explore multidimensional datasets, where the
analysis is carried out by cross-filtering data from different views. Surveys by
Wong and Bergeron [211] and more recently Fuchs and Hauser [65] provide an
overview of multivariate analysis methods in visualization. Compared to all these
important related works there are however only few studies published where really
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high-dimensional data are analyzed. One example is the VAR display by Yang et
al. [212], where the dimensions are represented by glyphs on a 2D projection of
the dimensions. In order to lay out these glyphs in the visualization, multidimen-
sional scaling is used based on the distances between the dimensions. Fernstad
et al. [57] demonstrate their quality metric based reduction in the analysis of
high-dimensional datasets involving microbial populations.
Our now proposed method is realized through a visualization approach, where

dimensions are the main visual entities and the analysis is carried out together
with the data items as recently presented by Turkay et al. [189]. In this (dual
analysis) approach, dimensions are analyzed along with the data items in two
dedicated linked spaces. This concept enables us to include the representative
factors, that we identify, tightly into the analysis. There are few other works
where similar dual analysis methods already proved to be useful, such as in
parameter space exploration [17], temporal data analysis [9], and multi-run sim-
ulation data analysis [109]. Kehrer et al. [106] integrate statistical moments and
aggregates to interactively analyze collections of multivariate datasets. Wilkinson
et al. introduced graph-theoretic scagnostics [208] to characterize the pairwise
relations on multidimensional datasets. In a later work [209], the same authors
used these features to analyze the relations between the dimensions. Similar to
our work where we analyze the feature space describing dimensions, Wilkinson et
al. perform the analysis on the feature space that describes the pairwise relations.
The structure of high-dimensional datasets and the relations between the di-

mensions have been investigated in a few studies, also. Seo and Shneiderman
devise a selection of statistics to explore the relations between the dimensions
in their Rank-by-Feature framework [168]. They rank 1D or 2D visualizations
according to statistical features to discover relations in the data. However, in
their method the main focus is on the data items, not so much the dimensions.
One very relevant related work for us is the visual hierarchical dimension re-
duction method by Yang et al. [213]. They analyze the relations between the
dimensions to create a hierarchy that they later use to create lower-dimensional
spaces. In our method, we build upon this idea of constructing representative
dimensions. However, their method mainly involved an automatic derivation of
the dimension hierarchy and the representative dimensions were used as the new
visualization domain. In our approach, we treat the representative factors as ob-
jects of a dedicated analysis by embedding them into the visualization together
with the original dimensions. Moreover, we provide different methods to gener-
ate, compare and evaluate the representative factors. In a similar work, Huang
et al. [90] utilized the derived dimensions together with the original dimensions.
The authors used several dimension reduction methods to derive new dimensions
and observed how these dimensions correlate with certain characteristics of the
original dimensions. In an interesting paper from the analytical chemistry field
by Ivosev et al. [93], the authors present the idea to group variables according
to their inter-correlations and utilize them in dimension reduction and visualiza-
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tion. Although their method is applied only to principal component analysis, it
clearly demonstrates that grouping of variables indeed improves the analysis of
high-dimensional datasets.
Our work now contributes to the literature with a structure-aware interactive

visual analysis scheme for high-dimensional datasets. Moreover, we demonstrate
that the visually-guided use of computational analysis tools can provide more
reliable and interpretable results.

3 Representative Factors
With our method, we explore and consider the structures in the dimensions space
during the high-dimensional data analysis. In order to achieve a structure-aware
analysis of the data, we represent the underlying structures with representative
factors, or factors, for short. We then analyze and evaluate these factors together
with the original data to achieve a more informed use of the computational anal-
ysis tools.
A conceptual illustration of our approach is presented in Figure 1. Here, we

start by computing statistics s1 and s2, e.g., mean and standard deviation, for
each of the dimensions in the dataset. We analyze the dimensions by visualizing
them in a s1 vs. s2 scatterplot, where each visual entity (i.e., point) is a dimension
(1). We notice some structure (a cluster in the lower right), which we then
represent with a factor (2). With the help of a computational method, e.g., PCA,
we generate the representative factor for the selected group of dimensions and
replace these dimensions with the generated factor (3). We continue the analysis
by exploring the relations between the factor and the represented dimensions,
as well as the other dimensions (4). The analysis continues iteratively with the
generation of new factors and/or the refinement of the existing ones.
Our method operates (in addition to the original dataset) on a data table

dedicated specifically to the dimensions. We construct this dimensions-related
data table by combining a set of derived statistics with available meta-data on
the dimensions. In order to achieve this, we assign a feature vector to each
dimension, where each value is a computed statistic/property or some meta-data
about this dimension. If we consider the original dataset to consist of n items
(rows) and p dimensions (columns), the derived data table has a size of p×k, i.e.,
each dimension has k values associated to it. The set of dimensions is denoted
as D and the new dimensions properties table as S.
Through a visual analysis of S, we determine structures within the dimensions

that then result in a number of sub-groups. We represent these sub-groups of
dimensions with representative factors and assign feature vectors to these factors
by computing certain features, e.g., statistics. Since factors share the same fea-
tures as the original dimensions, this enables the inclusion of the factors into the
visual analysis process. Moreover, these factors are also used to visually represent
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Figure 1: An illustration of our representative factor generation method. Two statistics
s1 and s2 are computed for all the dimensions and dimensions are plotted against these
two values (1). This view reveals a group that shares similar values of s1 and s2 (2)
and this group is selected to be represented by a factor. We generate a representative
factor for this group and compute the s1 and s2 values for the factor (3). We observe
the relation of the factor to the represented dimensions and the other dimensions (4).
The analysis continues iteratively to refine and compare other structures in the data.

the associated sub-group of dimensions. Factors serve both as data aggregation
and as a method to apply computational tools locally and represent their results
in a common frame together with the original dimensions.

As an illustrative example, we analyze an electrocardiography (ECG) dataset
from the UCI machine learning repository [12] in the following sections. The
dataset contains records for 452 participants, some of whom are healthy and
others with different types of cardiac arrhythmia. There are 16 known types of
arrhythmia and a cardiologist has indicated the type of arrhythmia for all the
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records in the dataset. This dataset is analyzed to determine the features that
are helpful in discriminating patients with different arrhythmia types.
The raw ECG measurements are acquired through 12 different channels, and

for each single channel 22 different features (a mixture of numerical and nomi-
nal attributes) are calculated (leading to 12 × 22 = 264 values per individual).
Already this description reveals an important inherent structure within all di-
mensions, i.e., that they form kind of a 2D array of dimensions (channels vs.
features). In addition to the above ECG measurements, 11 additional ECG-
based features are derived and 4 participant specific pieces of information are
included. The result is a 452× 279 table (n = 452 and p = 279).

3.1 Computational and Statistical Toolbox
In order to generate and integrate representative factors into the visual analy-
sis process, we need methods to visually determine the factors and to analyze
them together with the other dimensions in D. The dual analysis framework as
presented by Turkay et al. [189] provides us with the necessary basis to visually
analyze the dimensions together with the data items. We make use of visual-
izations, where the dimensions are the main visual entities, as well as (more
traditional) visualizations of the data items. In order to make the distinction
easier, the visualizations with a blue background are visualizations of data items
and those with a yellow background are visualizations of the dimensions. For the
construction of the factors, we determine a selection of computational tools and
statistics that can help us to analyze the structure of the dimensions space.
As one building block, we use a selection of statistics to populate several

columns of the S table. In order to summarize the distributions of the dimen-
sions, we estimate several basic descriptive statistics. For each dimension d, we
estimate the mean (µ), standard deviation (σ), skewness (skew) as a measure of
symmetry, kurtosis (kurt) to represent peakedness, and the quartiles (Q1−4) that
divide the ordered values into four equally sized buckets. We also include the ro-
bust estimates of the center and the spread of the data, namely the median (med)
and the inter-quartile range (IQR). Additionally, we compute the count of unique
values (uniq) and the percentage of univariate outliers (%out) in a dimension.
uniq values are usually higher for continuous dimensions and lower for categorical
dimensions. We use a method based on robust statistics [106] to determine %out
values. In order to investigate if the dimensions follow a normal distribution,
we also apply the Shapiro-Wilk normality test [158] to the dimensions and store
the resulting p-values (pV alshp) in S. Higher pV alshp indicate a better fit to a
normal distribution. In the context of this paper, we limit our interest to the
normal distribution due to its outstanding importance in statistics [100].
One common measure to study the relation between dimensions is the correla-

tion between them. We compute the Pearson correlation between the dimensions
to determine how the values of one dimension relate to the values of another di-
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mension. Correlation values are in the range [-1, +1] where -1 indicates a perfect
negative and +1 a perfect positive correlation.
Additionally, we use multidimensional scaling (MDS) to help us to investigate

the structure of the dimensions space. MDS is a method that projects high-
dimensional data items usually to a 2D space by preserving the distances between
them as good as possible. Here, we use MDS directly on the dimensions, similar
to the VAR display by Yang et al. [212]. We use the correlations between the
dimensions to compute a distance matrix, where this distance information is used
as an input to MDS. As a result, MDS places the highly inter-correlated groups
close to each other. All these computational analysis tools are available through
the integration of the statistical computation package R [184]. This mechanism
enables us to easily include a variety of tools in the analysis.

3.2 Factor Construction
Constructing factors that are useful for the analysis is crucial for our method.
Since factors are representatives for sub-groups of dimensions, they are con-
structed to preserve different characteristics of the underlying dimensions. The
machine learning and data mining literature provides us with valuable methods
and concepts under the title of feature (generally called an attribute in data min-
ing) selection and extraction [77]. Feature extraction methods usually map the
data to a lower dimensional space. On the other hand, feature subset selection
methods try to find dimensions that are more relevant and useful by evaluating
them with respect to certain measures [20].
Here, we introduce three different methods to construct representative factors

using a combination of feature extraction and selection techniques. Each factor
construction method is a mapping from a subset of dimensions D′ to a represen-
tative factor DR. The mapping can be denoted as f : D′ → DR, where D′ ∈ 2D.
The t dimensions that are represented by DR are denoted as dR0 , . . . , dRt . Each
factor creation is followed by a step where we compute a number of statistics for
DR and add these values to the S table. In other words, we extend the D table
with a DR column and the S table with a row associated with DR. Notice that
each DR column consists of n values similar to the other columns of the D table.

Projection Factors

The first type of representative factor is the projection factors. Such factors are
generated using the output of projection-based dimension reduction methods that
represent high-dimensional spaces with lower dimensional projections. Projection
factors are preferred when we want the resulting factor(s) to represent most of the
variance of the underlying dimensions [100]. In order to determine structures that
are suitable to be represented via this type of factors, we analyze the correlation
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Figure 2: Groups of dimensions that are suitable to be represented by different types
of factors. a) MDS is applied to the dimensions using the correlation information. A
highly inter-correlated group is selected to be represented by a projection factor. b)
A group of dimensions that are likely to come from a normal distribution (skew and
kurt ∼ 0) is to be represented by a distribution model factor. c) Meta-data is utilized
to select a group of dimensions (same channel, different features) that then can be
represented by a medoid factor.

relations between the dimensions. Subsets of dimensions that are highly inter-
correlated are good candidates to be represented by a projection factor.
In the context of this paper, we use principal component analysis as the un-

derlying reduction method. However, depending on the nature of the data and
the analysis, different reduction methods [100] could be employed here, too.
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During each projection-factor generation we create two factors, being the first
two principal components here. We choose to include two components in order
to be able to visualize also the data items in a scatterplot when needed. For
D′, where the variance structure cannot be well captured by two components,
we suggest two options. The first option is to apply PCA to several subsets
of D′ and create factors for each of these subsets. These subsets can be de-
termined by observing the inter-correlations between the dimensions in D′ and
separating the sub-groups with stronger inter-correlations. The second option is
to use more components (factors) than two where a more accurate number can
be determined by certain methods suggested in the literature, such as observing
a scree-plot [100]. In our analysis, we prefer the first method instead of creating
a larger number of factors per D′, since it creates easier to interpret factors.
In order to determine sub-groups of dimensions that are suitable to be repre-

sented with projection factors, we can make use of MDS. If we apply MDS on
the dimensions using the correlation matrix as the distance function and visual-
ize the results, the clusters in such a view corresponds to highly inter-correlated
sub-groups, i.e., suitable for a projection factor. In Figure 2-a, we see such
a sub-group of dimensions (consisting of 10 dimensions) that is suitable to be
represented with a projection factor. We then apply PCA to these 10 selected
dimensions and store the first two principal components as the representative
factors for these 10 dimensions.
Projection factors are the most suitable factors when the goal of the analysis is

dimension reduction. Since different dimension reduction methods have different
assumptions regarding the underlying data, evaluating these assumptions leads
to more reliable results. In that respect, dimensions can be analyzed in terms
of their descriptive statistics, normality test scores and uniq values to determine
their suitability.

Distribution Model Factors

The second type of representative factor is the distribution model factors. These
factors represent the underlying dimensions with a known distribution where the
distribution parameters are derived from the underlying dimensions. Distribution
model factors are suitable to represent groups of dimensions that share similar
underlying distributions. In the context of this paper, we limit our investigation
of the underlying distributions to the normal distribution. If a group of dimen-
sions are known to come from a normal distribution, these dimensions can be
represented by a normal distribution where the modeled distribution parame-
ters are derived from the group. The representative normal distribution can be
written as:

N (
t−1∑
i=0

medi
t

,

t−1∑
i=0

IQRi

t
)
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Here, medi is the median and IQRi is the inter-quartile range of the dimension
di where d0, . . . , di ∈ D′ . We prefer the robust estimates of the center and
the spread of the distributions to make our distribution generation step more
resistant to outliers. As a final step, we draw n values from N to generate the
representative factor DR. Notice that, here, the N distribution is one dimen-
sional, thus we create a single factor for the underlying t dimensions. In other
words, DR is a new artificial dimension, where the data items are known to come
from the modeled distribution N .
In Figure 2-b, we visualize the dimensions by a skew vs. kurt scatterplot.

Normal distributions tend to have skew and kurt values very close to 0. This
view enables us to select a group that is likely to follow a normal distribution,
and thus, suitable to be represented via a distribution model factor.
Distribution model factors are suitable for distribution fitting tasks. To extend

the applicability of this type of factors, different types of known distributions
could be considered as well, such as Student’s t-distribution or the chi-square
distribution. Depending on the distribution type to be tested, dimensions can
be visualized either over descriptive statistics or fitness scores to known distribu-
tions.

Medoid Factors

The third type of representative factor is the medoid factors, that are generated
by selecting one of the members of D′ as the representative of D′. Such factors
are preferred when the dimensions in D′ are known to share similar contextual
properties or some of the dimensions could be filtered as redundant. The user
may prefer to select one of the dimensions and discard the rest due to redundancy.
Meta-data on the dimensions provide a good basis to determine and select the
suitable dimensions to be represented by medoid factors.
In order to automatically determine one of the dimensions as the represen-

tative, we employ an idea from partitioning around medoids (PAM) clustering
algorithm [103]. In this algorithm, cluster centers are selected as the most central
element of the cluster. Similarly, to find the most central element, we choose the
dimension d ∈ D′ that has the minimum total distance to the other dimensions,
computed as:

arg min
d

(
t−1∑
j=0

dist(d, dj)), d 6= dj , (d, dj ∈ D′)

where dist is chosen as the Euclidean distance and t is the total number of
dimensions in D′. This dimension d is then selected as the representative. In
Figure 2-c, we make use of the meta-data information to determine a group that
is suitable to be represented via a medoid factor. Here, we plot the channel
codes and the feature codes on a scatterplot. The first five features associated
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Figure 3: Integrating factors in the visual analysis. a) The normalized dimensions of
the ECG data are visualized in a med vs. IQR scatterplot. b) Each channel in ECG is
represented by a factor. The coloring is done based on the aggregated correlation. c)
The factor for channel DI is expanded (DDI

R ) and visually connected to the dimensions
it represents (dR). The coloring is done on the mutual correlations betweenDDI

R and dR.
d) The relation betweenDDI

R and dR are different for skew and kurt values. e) Two color
maps are used to map correlation information, the first is used to color representative
factors using the aggregated correlation and the second for the represented dimensions.
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Figure 4: Representative factors can be brushed together with the original dimensions.
When a factor is selected, all the dimensions that are represented by the factor are
highlighted in the other views. And similarly, when one of the represented dimensions
is selected in another view, the associated factor is highlighted. Here, 9 raw dimensions
and 2 factors (each representing 6 dimensions) are brushed. A total of 9 + 2 × 6 = 21
dimensions are highlighted in the other views.

with a channel are known to be associated with the width of sub-structures in
the channel, thus they can be represented by a medoid factor.

3.3 Integrating Factors in the Visual Analysis
In order to include the factors into the dimensions visualizations, we compute all
the statistics that we already computed for the original dimensions also for the
representative factors. We add these values on DR as a row to the table S. This
enables us to plot the factors together with the original dimensions.
Figure 3-a shows the dimensions in a plot of med vs. IQR. We then select all

the continuous dimensions that are related to the first channel DI and apply a
local PCA to the selected dimensions. We leave out the categorical data dimen-
sions since they are not suitable to be included in PCA calculations. We perform
the same operation also for the other 11 channels. This leaves us with a total
of 12 representatives, each of which represents 16 dimensions. We compute the
med and IQR values also for the DRs and replace the original dimensions with
their representatives in Figure 3-b. The representatives are colored in shades of
green to distinguish them from the original data dimensions. Here, we see the re-
lation between different channels through the distribution of the factors over the
med vs. IQR plot. In order to see how a single factor relates to the represented
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Figure 5: Two profile plots for two different representative factors (visible in the med
vs. IQR plot) are visualized. Each bin in the profile plots is associated with the listed
statistics. The profile plot for the first factor shows that most of the features of the
represented dimensions are preserved. However, the second profile indicates that the
factor fails to represent the features.

dimensions over the med and IQR values, the factor is expanded and connected
with lines to the represented dimensions (Figure 3-c). The relations between the
factor and the represented dimensions are also observed on a skew vs. kurt view
(Figure 3-d).

Brushing representative factors: Representative factors require a different
way of handling in the linking and brushing mechanism. When the user selects
a representative factor DR in a view, all the dimensions dRi that are represented
by DR in the other views are highlighted. Similarly, when the user selects one
of the dRi dimensions, the related DR is highlighted in the other views. Figure 4
illustrates how the selections of factors are linked to the other views. Here, for
each factor selected in themed vs. IQR view, 6 associated dimensions are selected
in the second skew vs. kurt view. Therefore there are 21 selected dimensions in
total in the right view. This mechanism enables us to interact with information
at both the original dimension level and the aggregated level.
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3.4 Evaluation of the representatives
The evaluation and a more quantitative comparison of the factors is an essen-
tial part of a representative factor based analysis pipeline as presented here.
We provide two different mechanisms to evaluate the factors using quantitative
measures.
The first method is related to the correlation based coloring of the factors

and the represented dimensions. As an inherent part of the factor generation,
we compute the Pearson correlation between DR and the dimensions that it
represents dRi . The result is a set of t values corrR, where each value is in the
range [-1, +1] as described already. We color-code these pieces of correlation
information in the views using two different color maps (Figure 3-e). Firstly, we
represent the aggregated correlation values as shades of green. For each DR, we
find the average of the absolute values of corrR. More saturated green represent
higher levels of correlation (either positive or negative) and paler green represent
lower levels. Secondly, we encode the individual values of corrR when a factor is
expanded. Each represented dimension dRi is colored according to the correlation
with DR. Here, we use a second color map where negative correlations are
depicted with blue and positive correlation with red.
The second mechanism to evaluate the factors is called profile plots. When the

set of statistics associated with dimensions is considered, factors do not represent
all the properties equally. If we consider again how the same factor relates to the
represented dimensions over med and IQR in Figure 3-c and skew vs. kurt, in
Figure 3-d, we see different levels of similarity between DR and the represented
dimensions. Since these relations for all the statistics, i.e., columns of S, are
different, we build profile plots to visually represent this difference information.
In order to find the similarity between DR and dii with respect to the statistic s,
we compute the following value:

sims = 1−
1
t

∑t−1
i=0 |s(DR)− s(dRi )|

max(s(dRi ))−min(s(dRi ))

The sim values are in the range [0, 1] where higher values indicate that the
representative has similar s values as the represented dimensions. We present
the sims values for all the different statistics in a histogram-like view called
profile plots as seen in Figure 5-right. Here, each bin of the plot corresponds to
a different s (as listed in the figure) and the sims value determines the height of
the bin. Additionally, we color-code the average of sims values as the background
to the profile plots, with the color map (marked 1) in Figure 3. In Figure 5, we
see two examples of factors where the profile plot for the first factor preserves
most of the features of the underlying dimensions. However, the second profile
plot shows that the factor has different values for most of the features of the
underlying dimensions.
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Figure 6: a) Different normalization methods could be suitable for different types of
dimensions. We use unit scaling for group 1, z-standardization for group 2 and robust
standardization for group 3. b) Three different normalizations are applied on the same
group of dimensions and three sets of factors (using PCA) are generated accordingly
for the same group. The differences between the results show that transformations can
affect the outcomes of computational tools.

4 Analytical Process
The structure-aware analysis of the dimensions space through the use of these
factors involves a number of steps. In the following, we go through the steps and
exemplify them in the analysis of the ECG data. Still, these steps are general
enough to provide a guideline for the analysis of heterogeneous high-dimensional
data using the representative factors.

Step 1: Handling missing data – Missing data are often marked prior to the
analysis and available as meta-data. It is important to handle missing data prop-
erly and there are several methods suggested in the corresponding literature [78].
We employ a simple approach here and replace the missing values with the mean
value of continuous dimensions prior to the normalization step. Similarly, in the
case of categorical data, we replace the missing values with the mode of the di-
mension, i.e., the most frequent value in the dimension. Moreover, we store the
number of missing values per each dimension in S for further reference.

Step 2: Informed normalization – Normalization is an essential step in
data analysis to make the dimensions comparable and suitable for computa-
tional analysis. Different data scales require different types of normalization
(e.g., for categorical variables scaling to the unit interval can be suitable, but not
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z-standardization) and different analysis tools require different normalizations,
e.g., z-standardization is preferred prior to PCA. We enable three different nor-
malization options, namely, scaling to the unit interval [0,1], z-standardization,
and, robust z-standardization. In the robust version, we use med as the robust
estimate of the distribution’s center and IQR for its spread. In order to de-
termine which normalization is suitable for the dimensions, we compute certain
statistics, namely uniq, pV alshp and %out, prior to normalization. We visual-
ize uniq vs. %out (Figure 6-a) to determine the groups of dimensions that are
suitable for different types of normalizations. Dimensions with low uniq values
(marked with 1 in figure) are usually categorical and scaling to the unit interval
is suitable. Dimensions with higher uniq values (marked 2) are more suitable for
z-standardization. And, for those dimensions that contain larger percentage of
one dimensional outliers (marked 3), a robust normalization is preferable. We
normalize the same sub-group of dimensions using all the three methods and
apply PCA separately on the three differently normalized groups. Figure 6-b
shows the first two principal components factors. We observe that non-robust
and robust normalizations resulted in similar outputs, however the unit scaling
resulted in PCs that carry lower variance.

Step 3: Factor generation – In this step, we analyze the structures in the
dimensions space firstly through the help of meta-data information. We choose
to represent each channel only by the first principal component. Each channel in
the ECG data has 22 dimensions associated, however, we select a sub-group of
these features (the continuous features (dimensions) that have larger uniq values)
and then construct projection factors for each channel. The resulting groups are
now displayed on a uniq vs. %out plot (Figure 7).

Step 4: Evaluating and refining factors iteratively – In figure 7-1 we
notice that the factor that is representing the V 2 channel (denoted as DV 2

R ), has
a higher percentage of 1D outliers. This is interpreted as a sign of an irregular
distribution of items in this factor and we decide to analyze this factor further.
First, we have a look at the items in a scatterplot of the first two components
of DV 2

R and we clearly see that there are two separate groups (figure 7-2). How-
ever, when we expand the selected factor to see its relation with the underlying
dimensions, we observe that there are dimensions that the factor has strong cor-
relations (D′1) and some other that have weak correlations (D′2). We decide to
refine this factor further by creating two smaller groups D′1 and D′2 and visualize
the new factors in the same view (Figure 7-3). When we observe the items in
visualizations of the first two components of the new factors (Figure 7-4,5), we
see that the grouping is solely due the dimensions in D′1. The dimensions in D′2
carry no significant information.
In order to the analyze the separated group of patients in Figure 7-5, we observe
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the arrhythmia class label column in a histogram. We find out that the selected
group accounts for almost all the patients with coronary artery disease (Figure 7-
6). This shows that these three dimensions associated with the V 2 channel are
distinctive features for coronary artery disease.
Here, we present a step-by-step iterative analysis where at each iteration we

refine the factors and dig deeper into the data. The above example demonstrates
how the representative factors enables a more controlled use of computational
tools and a better understanding of the relations in-between the dimensions.

5 Use Case: Analysis of Healthy Brain Aging Study
Data

In this use case we analyze the data related to a longitudinal study of cognitive
aging [8, 215]. The participants in the study were healthy individuals, recruited
through advertisements in local newspapers. Individuals with known neurological
diseases were excluded before the study. All participants took part in a neuropsy-
chological examination and a multimodal imaging procedure, with about 7 years
between the first and third wave of the study. One purpose of the study was to
investigate the association between specific, image-derived features and cognitive
functions in healthy aging [215]. In the study, 3D anatomical magnetic resonance
imaging (MRI) of the brain has been complemented with diffusion tensor imag-
ing (DTI) and resting state functional MRI [89, 214]. Here we are interested in
the analysis of the anatomical MRI recordings. These recordings are segmented
automatically [62], and statistical measures, such as surface area, thickness and
volume (among several others) are computed for each of the segmented cortical
and subcortical brain regions. The neuropsychological examination covered tests
of motor function, attention/executive function, visual cognition, memory- and
verbal function. The participants’ results on these tests are evaluated by a group
of neuropsychologists.
The dataset covers 83 healthy individuals with the measurements from the

first wave of the study in 2005. For each subject, a T1-weighted image was
segmented into 45 anatomical regions, and 7 different measures were extracted
for each region. For a complete list of brain regions, refer to the work by Fischl
et al. [60]. These computations are done automatically using the software called
Freesurfer [62]. The 7 features associated with each brain region are number of
voxels, volume and mean, standard deviation, minimum, maximum and range of
the intensity values in the region. This information on the brain regions and the
features is represented in the meta-data file, which is then used in the analysis.
The above operation creates 45 × 7 = 315 dimensions per subject. In addition,
details about each individual, such as age and gender, and the results of the
neuropsychological examination are added to this dataset. With this addition,
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Figure 8: Missing values are handled automatically in our system, and the effects of
this transformation is observed here. Normality test scores before and after the trans-
formation are to the left. For a large number of dimensions, the normality test scores
improved. On the right, the dimension Cerebellum Cortex middle Posterior is inspected
before and after missing values are replaced.

the resulting dataset has 357 dimensions. In other words, the resulting table’s
size is 83 × 357 – a great challenge for visual as well as computational analysis.
Such a high dimensionality usually requires analysts to delimit the analysis to
a selected subset of segments, based on an a priori specified hypothesis. Our
aim here is to discover different subsets of individuals and brain regions that are
relevant for building new hypotheses.
We start our analysis with the missing value handling and the normalization

step. Missing values in the dataset are identified with different strings in differ-
ent columns of our dataset. And these identifiers (specific for each dimension)
are recorded in the meta-data file. We replace the missing values with the mean
(or mode) of each column. In Figure 8, we see the normality test values before
and after the replacement. It is seen that some of the dimensions (marked with
the big rectangle) have a large number of missing values which affect their fit-
ness to normality. One example is the selected CC-middle posterior dimension
(histograms in Figure 8), which shows a skewed histogram first (the binning of
the histogram is distorted by missing values), and then, nicely fits to a normal
distribution after the replacement. We continue with the normalization where
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we prefer different normalizations for different types. Here, dimensions related
to participant specific information and the memory test are scaled to the unit
interval and the rest of the dimensions are z-standardized.
After these initial steps, we start by investigating the 7 different features as-

sociated with the brain regions and generate 7 projection factors for these 7
sub-groups. We select these groups through the use of the available meta-data
(not shown in the images here). Each factor here represents 45 dimensions, being
the different brain regions, e.g., one sub-group contains all the number of voxels
columns for the 45 brain regions. We visualize these factors over a med vs. IQR
plot (Figure 9-a) and bring up a matrix of profile plots, Figure 9-b, for these fac-
tors. The first observation we make through the profile plots is that the number
of voxels (marked 1) and volume (2) features carry identical information. We
decide that one of these features needs to be left out. In this specific example it
is, of course, clear that number of voxels is equal to the volume. However, such
relations may not be always easily derived from the names of the features and
require visual feedback to be discovered. Moreover, the profile plot reveals that
the range of intensity feature (7) preserves most of the statistics in the underlying
dimensions. We also mark the standard deviation of intensities as interesting,
since the underlying dimensions have different correlation relations with the rep-
resentative factor. This indicates that this feature is likely to show differences
between the brain regions.
We continue by delimiting the feature set for the brain regions to those two

selected features. This means that we delimit the operations to 45×2 dimensions
and apply MDS on these 90 dimensions using the correlation matrix as the dis-
tance values. We identify a group of dimensions that are highly correlated in the
MDS plot (Figure 9-c). We find out that this group is associated with the sub-
structures in the Cerebellum Cortex (CerCtx) and CerCtx is represented with 5
sub-regions in the dataset. We decide to represent all the dimensions related to
the CerCtx via a medoid factor.
As the next step, we create factors to represent each brain-region (not CerCtx,

since it is already represented by a medoid factor). We compute a PCA locally for
each brain region and create representative factors. In Figure 9-d, we see the fac-
tors (using only the first component) over a normality score vs. %out plot. Here,
each factor represents a single brain region. We select the brain regions, where
the representative shows a normal distribution. Such a normally distributed sub-
set provides a reliable basis to apply methods such as PCA on the participants.
From this analysis, the regions of interest are right and left lateral ventricle, brain
stem, left and right choroid plexus and right inferior lateral ventricle. Using only
the selected regions, we apply PCA on the subjects (Figure 9-e). We select a
group of outlier participants and visualize them on a scatterplot of birth year vs.
gender. We observe that this group is mainly composed of older participants.
This observation leads to the hypothesis that the selected brain structures are
affected by aging.
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Here, we comment on the findings related to the the selected brain regions.
Right and left lateral ventricle are part of the ventricular system that are filled
with cerebrospinal fluid (CSF). These regions are interesting and expected find-
ings, and they are known to increase with age (since the brain tissue parenchyma
shrinks and the intracranial volume remains constant). Brain stem image in-
formation might not be so reliable in the periphery of the core magnetic field
homogeneity of the scanner, thus needs to be left out from the hypothesis. Left
and right choroid plexus are small protuberations in the ventricles’ walls/roof
that produces CSF. It is unexpected for these structures to influence interesting
age-related associations. However, this is an unexpected and important finding
that our analysis can provide and can be subject to further investigation.
In order to validate the significance of our findings, we focused on the nine

participants that we selected in Figure 9-e. As mentioned above, we analyzed
the data from 2005, i.e., when all the participants are known to be healthy. Since
the data is from a longitudinal study, there are internal reports on how the cog-
nitive function of the participants evolved over time in the next waves of the
study. Through these reports, we observe that one of the nine participants is de-
scribed as showing an older infarct (through MRI scans) and six of the remaining
participants (75%) showed declining cognitive function during the study period.
The percentage (of cognitive function decline) in the other participants is 28%.
This shows a clinical importance of the selected participants. Moreover, this re-
sult supports the above hypothesis that the selected brain regions are related to
age-related disorders. All in all, the above observations clearly suggest that the
interactive visual analysis of the MRI dataset leads to significant and interesting
results that are very unlikely to be achieved using conventional analysis methods.
Above, we have presented only a subset of the analytical studies that we per-

formed on this dataset. The overall analysis benefits highly from the comparison
and the evaluation of the computational analysis results that are performed lo-
cally. We demonstrate that our methods are helpful in exploring new relations
that provide a basis for building new hypotheses.

6 Discussions
To adopt our approach, the experts need to have a deep understanding of the
statistics and computational tools that are employed in the analysis. This makes
the learning curve of our system steeper than classical visual analysis systems.
However, we observed that our tool could easily be integrated into the working
pipeline of neuroinformaticians and neuropsychologists. These experts who an-
alyze such complex datasets normally make use of computational analysis tools
such as Matlab or R [184] and have an overall understanding of computational
analysis. And compared to these systems, our solution is much more intuitive
thanks to the support from interactive visual methods in the use of computational
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tools. We even state that such a tool can easily serve as an educative tool to train
scientists in multivariate computational analysis. However, clear instructions and
a video demonstration of an analysis of a simple dataset is regarded as highly
important. One suggestion to improve the usability of the system is to further
exploit the integration of R and develop a modular system that is accessible also
for the domain experts. In order to get a clearer image of the requirements, a
formal user study is needed. Such a study could lead to simplifications in the
analysis process. To make the high-level operations more accessible and trace-
able, we need to devise special methods where the outcomes of the iterative steps
are visually abstracted through a work-flow like interface. Such abstractions can
also play a role in the presentation of the results and improve the usability of our
system.
Different visualization methods such as parallel coordinate plots could also

be incorporated to visualize the factors together with the original dimensions.
One possible method to achieve this is to use hierarchical parallel coordinates,
suggested by Fua et al. [64]. At several stages in our analysis, we are building new
factors using a subset of factors, which implies that we are creating a hierarchy
of factors. In our present realization, we only visualize the relations between
the factors and the raw dimensions. Augmenting the visualization with such a
hierarchy can likely lead to additional insight. Hierarchical difference scatterplots,
as introduced by Piringer et al. [145], is a powerful technique to visualize such
hierarchies.
Apart from the present case of healthy aging, the applicability of our tool could

also be explored in the broader context of open access brain mapping databases
such as BrainMap [119] and NeuroSynth [138]. These databases provide imaging
data and meta-data from several thousand published articles available for meta-
analyses and data mining, and thus are suitable for visual and explorative analysis
methods.

7 Conclusion
With our method, we present how the structures in high-dimensional datasets can
be incorporated into the visual analysis process. We introduce representative fac-
tors as a method to apply computational tools locally and as an aggregated rep-
resentation for sub-groups of dimensions. A combination of the already available
information and the derived features on the dimensions are utilized to discover
the structures in the dimensions space. We suggest three different approaches
to generate representatives for groups with different characteristics. These fac-
tors are then compared and evaluated through different interactive visual repre-
sentations. We mainly use dimension reduction methods locally to extract the
information from the sub-structures. Our goal is not to solely assist dimension
reduction but rather to enable an informed use of dimension reduction methods
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at different levels to achieve a better understanding of the data. In both of the
analysis examples, we observe that the results of the analysis become much more
interpretable and useful when the analysis is carried iteratively on local domains
and the insights are joined at each iteration.
The usual work flow when dealing with such complex datasets is to delimit

the analysis based on known hypotheses and try to confirm or reject these using
computational and visual analysis. With the advent of data generation and acqui-
sition technologies, new types of highly complex datasets are produced. However,
when these datasets are considered, little is known a priori, thus data driven, ex-
plorative methods are becoming more important. Our interactive visual analysis
scheme proved to be helpful to explore new relations between the dimensions
that can provide a basis for the generation of new hypotheses.
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Abstract

In many application fields, datasets with a large number of dimen-
sions per data item, such as hundreds or more, are posing special

challenges for analysts. Very few visual analysis methods can handle
such high numbers of dimensions effectively. Moreover, the dimen-
sions usually have diverse characteristics due to the distribution of
the values they contain. As a result of their characteristics, dimen-
sions tend to form groups and hierarchies based on their similarities,
or some are outliers due to special properties. In this paper, we in-
vestigate the relations within the dimensions with a special focus on
those which stand out and thus can likely be considered as outlying
dimensions. We determine the factors that lead to the outlyingness of
dimensions and suggest a selection of relevant statistics to investigate
these factors. We then devise interactive visual analysis methods
to enhance the inspection of outlier dimensions. This new notion
of outlier dimensions together with the interactive methods lead to
statistics-assisted, interactive, visual, and, in particular, outlier-aware
analysis strategies. We demonstrate the applicability of our approach
to different types of datasets, especially in the context of a study of
healthy brain aging, performed over a large group of participants.
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1 Introduction

High dimensional datasets with very large dimension counts, such as hundreds or
thousands, pose special challenges for analysts. Very few visualization methods
exist, for example, to properly encode the much lower-dimensional information in
such data. Thus, analysts often refer to computational analysis tools to achieve a
better understanding. However, these methods also often fail to provide reliable
insight into such datasets. Consider, for instance, clustering a 500-dimensional
dataset (a 2D data table with 500 columns) using the popular K-means algo-
rithm [181]. It is not straightforward at all to correctly interpret the resulting
clusters when the computations are done on a 500-dimensional space, neither is
it possible to judge the reliability of the clusters when the distances between the
items are computed by a 500-dimensional distance metric [118]. This issue with
distance measures is known as the “curse of dimensionality” that states the fact
that distances between items lose their meaning in high dimensional spaces [45].
Similar problems arise with most of the common computational tools. Hence,
using these tools “securely” on such datasets calls for methods where the ana-
lyst has a better understanding of the set of dimensions and steers the analysis
accordingly.
One of the key observations that we have made regarding the set of dimensions

is that this set is usually heterogeneous. A single large subgroup or several
smaller subgroups of these dimensions may contain related data and thus be
highly correlated with each other. Also, there may be dimensions that have
“special” characteristics that are not shared with the others. When analyzing
high dimensional datasets, understanding the related groups of dimensions and
those that stand out from the rest is highly important. In this paper, we focus
on understanding these outlier dimensions. We are motivated by the fact that
outlier dimensions can easily skew and/or dominate the results of computational
analysis tools. An example of this is PCA, where dimensions with very high
variance tend to be highly expressed in the results, suppressing the structures
in dimensions with low variances [30]. As for this example and for others that
involve the use of computational tools, being aware of outlier dimensions could
improve the analyses significantly.
The idea of considering outlier dimensions is intriguing, however analyzing the

outlyingness of dimensions is not straightforward. This is mainly due to the fact
that the current outlier analysis methods operate mostly on data items [88]. To
overcome this, we need methods to characterize dimensions and carry out the
analysis by taking these characteristics into account.
In this paper, we now present a methodology to analyze high dimensional

datasets with a special consideration of outlier dimensions. The contribution of
this paper is an outlier aware analysis process for high dimensional datasets that
answers three fundamental questions:
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• How to define and characterize an outlier dimension?
• How to determine outlier dimensions?
• How to approach outlier dimensions once they are determined?

In order to define outlier dimensions, we suggest a categorization of outlier
dimensions based on the different characteristics they carry. In the light of these
categories, we determine a selection of statistics and features to characterize
the different types of outliers. To investigate the outlyingness of dimensions,
we introduce a number of interactive visual analysis methods, such as z-Score
view and data depth brushing, that incorporate state-of-the-art mechanisms from
statistics and the data mining literature. We then discuss analysis strategies to
handle outlier dimensions. We relate these strategies to the categorization of
outliers and demonstrate their utilization through several analysis examples.
Throughout the paper, we analyze a number of datasets. From Section 3 to
Section 6, we describe the details of our approach along with an analysis of the
US communities and crime data [12]. We then analyze an artificial dataset in
Section 7, the communities and crime dataset again in Section 8, and a cognitive
aging study dataset [215] in Section 9 to demonstrate our methods.

2 Related Work
Multidimensional data analysis has been one of the most important problems in
visualization. Surveys by Wong and Bergeron [211] and by Fuchs and Hauser [65]
provide an overview over the spectrum of available techniques in visualization.
There are a number of visual analysis frameworks that enable the analysis of high-
dimensional data by linking & brushing coordinated multiple views. Examples of
such frameworks are the XmdvTool [202] or Polaris [178], now Tableau [180]. An
elaborate mechanism for multivariate data analysis is proposed by Weaver [203].
In his work, he presents a methodology to explore the cross-filtering of data that
are visualized in different types of views.
Statistical analysis methods are increasingly often integrated into the visual

analysis process to help the analysts cope with the high number of dimensions.
Jänicke et al. [94] present a method where two-dimensional projections of mul-
tivariate datasets, called attribute clouds, are the main medium for exploration.
Williams and Munzner [210] present how computational power is guided via
user-interaction in the multidimensional scaling of a multivariate dataset. A
statistics-based framework that utilizes a query-driven analysis pipeline is pre-
sented by Gosink et al. [70] to explore how combinations of variables behave
under different queries. In a recent work [51], Endert et al. propose observation
level interactions to steer statistical analysis tools. Johansson and Johansson [99]
propose the interactive dimension reduction through quality metrics. They also
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extended this method with measures specific to microbial populations in a later
work [57].
The structure of high-dimensional datasets and the relations between the di-

mensions have been investigated in a number of studies. Seo and Shneiderman
devise a selection of statistics to explore the relations between the dimensions
in their Rank-by-Feature framework [168]. They rank 1D or 2D visualizations
according to statistical features to discover relations in the data. However, in
their method, the main focus are the data items rather than the dimensions. In
VHDR [213], Yang et al. analyze the relations between the dimensions to cre-
ate a hierarchy which they later use to create lower dimensional spaces. In their
approach, they study the relations between the dimensions only in terms of a sim-
ilarity measure. In the Value and Relation (VaR) display by Yang et al. [212], the
authors represent the dimensions with glyphs projected into a 2D visualization.
However, in terms of investigating the relations between the dimensions, their
method is limited to displaying the correlation relations between the dimensions.
In order to apply our methods jointly on data items and the dimensions, we

base our work on the dual analysis framework proposed by Turkay et al. [189]
which we also discuss later in the paper in more detail. Such a joint analysis is
also utilized in other problem domains, such as parameter space navigation [17],
temporal data [9] and multi-run simulation data analysis [109].
Although outliers are frequently studied in data mining and statistics [88],

they have not been the focus of many studies in visual analysis. One of the
most prominent works concerning the treatment of outliers is by Novotný and
Hauser [140] where they distinguish trends and outliers in their parallel coor-
dinate plot. They represent the trends in the data as context and handle the
outliers separately in the visualization. This work clearly shows that outliers
need a special treatment in visual analysis. Another important study on outlier
analysis is by Kehrer et al. [106], where the authors put a special emphasis on
outlying observations by exploring the datasets through the use of robust statis-
tics. In a recent study, Kandogan [101] discusses how trends and outliers can
be detected via the Just-in-Time analytics. In all of these studies, however, the
focus of the methods is on observations rather than on the dimensions. In our
paper, we extend the literature by the visual analysis of outlier dimensions and
present their utilization in the analysis of high-dimensional data.

3 Outlier Dimensions

In order to analyze the outlyingness of dimensions, we investigate the different
properties of dimensions in comparison to set of dimensions in the data. The
dimensions that are “special” and stand out with respect to certain features can
be regarded as outlier dimensions. We construct a concrete definition of outlier
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dimensions by presenting a categorization of outlier dimensions with respect to
different characteristics they carry.
The investigation of the characteristics of dimensions is based on the construc-

tion of a statistics space using a set of carefully selected statistics. In other words,
for each dimension we derive a feature vector, whose values are either selected
statistics or derived information computed using the original data. If we assume
that our dataset is a two-dimensional table with n items (rows) and p dimensions
(columns), we derive a p × k table S by assigning k values to each dimension.
Once we construct the statistics table S, we analyze this table together with the
data items using the dual analysis framework [189].
However, prior to building this derived table S, we need to determine the

proper set of statistics. Therefore, we start by introducing the different perspec-
tives that could lead to an outlier dimension. After we determine the different
characteristics of outlier dimensions, we populate S with appropriate statistics
that enable us to observe the dimensions in these perspectives.
In order to illustrate our methods in the following sections, we analyze a high-

dimensional dataset as an example, obtained from the UCI machine learning
data repository, which represents the socio-economic values and crime statistics
for the communities in the US in the year 1990 [12]. The dataset consists of
142 dimensions (variables) and 2215 items, where each item corresponds to a
community in the US. 18 of the dimensions contain the crime statistics, such as
the number of murders or robberies, and, they are considered as the dependent
variables, i.e., variables to be predicted. The other 124 variables contain the
socio-economic statistics and can be grouped in five semantic groups, namely,
demographic, income, accommodation, family life, and, security force. The main
goal of the analysis of this data is to understand the relations between socio-
economic indicators and crime statistics.

3.1 Types of Outlier Dimensions
Here we present three categories of outlier dimensions based on the sources of
outlyingness. In addition, we give examples for each category through the use of
appropriate statistics. The categorization provides a guideline on how to choose
proper statistics and tools that will enable the analysis of outlier dimensions.
Characteristic outliers – The first perspective in the evaluation of the outly-
ingness of dimensions is to consider their characteristic properties. With char-
acteristic properties, we refer to the inherent properties of dimensions such as
the type of data values (numeric, textual, etc.), the number of missing data val-
ues, or, the percentage of 1-dimensional outliers. If we consider a 22-dimensional
dataset where 20 of the dimensions have continuous data values (e.g., floating
point numbers) and two of them have categorical data, the latter ones can be
considered as characteristic outliers.
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Figure 1: Three types of outlier dimensions: a) Characteristic outliers b) Distribution
based outliers c) Structural outliers. For each category, examples of dimensions which
can and cannot be considered outliers are marked with corresponding histograms. For
the marked dimensions in the scatterplots, an histogram is shown with the same label.
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In Figure 1-a, examples of characteristic outliers are determined through a
scatterplot of the number of unique values in each dimension (uniq) and the
percentage of univariate outliers (%out) (refer to Section 3.2 for details on uniq
and %out). Histogram A (for the dimension marked A in the scatterplot) shows
the frequency of the values of the percentage of people living in urbanized areas.
The reason that this dimension has a high %out value (i.e., contains many items
classified as 1-dimensional outliers) is the bi-modal shape of the distribution.
And this bi-modality is due to the fact that all the people live either in urbanized
areas or all in the countryside in many communities. Whereas Histogram B shows
that the dimension median number of bedrooms has a limited value range and
has a different characteristic, i.e., being categorical, compared to the rest of the
dimensions. The percentage of population that is 12-29 in age dimension cannot
be considered as a characteristic outlier and the distribution of its values is shown
in Histogram C.
Distribution based outliers – The second type of outliers is related to the
distribution of the items in a dimension. This type encompasses the dimensions
that have distinct distributions compared to the rest of the dataset. For example,
if most of the dimensions in one dataset are normally distributed and there is a
couple of dimensions that are uniformly distributed, these dimensions could be
considered as distribution based outliers.
To exemplify distribution based outliers, we make use of the median (med), the

inter-quartile range (IQR), a robust version of skewness (skewoct) and kurtosis
(kurtoct) (details in Section 3.2) in Figure 1-b. Here, one dimension that clearly
stands out is the percentage of people living in urbanized areas (Histogram D)
and this is due to its bimodal distribution as discussed in the previous outlier
type. This dimension could thus be considered both as a characteristic and as
a distribution based outlier. The number of homeless people counted in the
streets dimension (E) is affected by 1-dimensional outlier items (most strong
being NYC) which make the distribution stand out in terms of its skewness and
kurtosis. In contrast to these two dimensions, Histogram F depicts the values
of the dimension, percentage of people employed in management or professional
occupations, which has a more expected distribution.
Structural outliers – In high-dimensional datasets, it is often the case that
dimensions have various forms of correlation with each other. If a single dimen-
sion, or, a group of dimensions that are very strongly correlated, with very little
correlation to the rest of the data, then this dimension or these dimensions can
be marked as of type structural outliers.
In order to exemplify such outliers here, we make use of the pairwise corre-

lation values between the dimensions and compute statistics, prsign vs. prmax,
to indicate how much a dimension is correlated with the others (details in Sec-
tion 3.2). Moreover, we also use the pairwise correlation matrix as a distance
matrix for a multidimensional scaling (MDS) operation. In Figure 1-c, we iden-
tify a dimension with very low values that indicates very low correlations with the
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Table 1: Types of outlier dimensions with statistics/methods used to determine the
different types

Type Statistics/Methods to
determine

Characteristic
outliers uniq, %out

Distribution
based
outliers

µ, σ, skew, kurt, med, MAD,
IQR, skewoct, kurtoct,

skewMAD, kurtMAD, normshp,
dip

Structural
outliers

prmax, prmin, prsign, spmax,
spmin, spsign, MDS, Clustering

rest of the data (Histogram G). This indicates that this dimension, percentage of
people who speak only English, has a distinctive distribution. Similarly, using a
2-dimensional MDS projection of the dimensions, we figure out two groups that
are correlated with each other but not so much with the rest (marked with cir-
cles, I&J). Histograms I and J reveal that one of the groups consist of dimensions
with positive skewness while the other with negative skewness. Additionally, the
dimension per capita income for native Americans has very low correlation with
the rest of the data, possibly due to the 1-dimensional outlier items it contains
(Histogram H).

3.2 Constructing the Statistics Table
The above classification of outlier dimensions provides a guideline on what type
of statistics are needed to investigate the outlyingness of dimensions. Here, we
list a number of measures (statistics/derived) that are useful for the analysis. We
characterize the measures according to the type of information they provide and
organize them in four categories. Table 1 lists the outlier types together with
measures that determine the three types.
One important point to mention is that we also consider the robust versions of

statistics. The field of robust statistics aims at statistical estimates and methods
that are more resistant to outliers [59]. In the categories below, we accordingly
include also the robust versions of statistics.
Category 1 - Characteristics of dimensions – In order to distinguish be-
tween different scales of measures, i.e., whether dimensions are categorical or
continuous, we count the number of unique values in each dimension (uniq).
For categorical dimensions, the uniq value tends to be low and for continuous
dimensions uniq is often close to the number of rows n. We also compute the
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percentage of univariate outliers in each dimension, denoted by %out. This value
represents how “contaminated” a single dimension is. We use a median/MAD
based method [106] to determine the percentage of outlier items in each of the
dimensions. In this method, for a single dimension, each data item is assigned
a robust z-score [106] and those that fall outside the [2,−2] interval are marked
as potential outliers. Afterwards we count the number of potential outlier items
in each dimension and set the %out value accordingly. Moreover, the associ-
ated meta-data on dimensions, when available, could also be used to characterize
the dimensions. The measures in this category help the analyst to determine
characteristic outliers.
Category 2 - Summary of the distributions – Descriptive statistics are
used frequently in data analysis to summarize much of the information in the
data [100]. The basic descriptive statistics that we consider are: mean (µ) that
is estimated by the average value, standard deviation (σ) that is a measure of
dispersion, skewness (skew) that is a measure of a-symmetry, kurtosis (kurt) that
is a measure of peakedness and the quartiles that divide the ordered distribution
into four equal groups. As a better estimate of the “central value” than the
average value for approximating µ, we include the median (med) and for a robust
estimate of the standard deviation, we consider the inter-quartile range (IQR)
and the median absolute deviation (MAD) [91]. For robust versions of skewness
and kurtosis, we include octile-based (skewoct, kurtoct) and median/MAD-based
(skewMAD, kurtMAD) estimates [59]. For a more detailed description of these
measures we refer to the paper by Kehrer et al. [106]. All of these measures carry
important information on the shape of the distribution of items in each of the
dimensions and they provide an intuitive basis to determine distribution based
outlier dimensions.
Category 3 - Type of the underlying model – Most of the statistical anal-
ysis tools assume that the modeling distribution of a dataset is normal [58]. We
include the p-value of the Shapiro-Wilk normality test [158] and denote it by
normshp. The higher p-values indicate a better fit to the normal distribution.
These values gives us the chance to compare the dimensions in terms of their
underlying distribution model. We prefer normality test scores due to the fact
that most of the multivariate analysis tools assume that the data is normally
distributed. Therefore, it is important to assess the normality of dimensions.
However, the list of tests can be extended with respect to other types of dis-
tributions. In addition, we test the distribution of dimensions for uni-modality
using a method called dip test [82]. This test results in a high p-value when the
distribution is uni-modal and lower values otherwise, we denote this by dip. All
the statistics in this category help the analyst to detect distribution based outlier
dimensions.
Category 4 - Uniqueness of dimensions – Correlations between the di-
mensions are important in understanding the relations between the dimensions.
To represent the correlation relation between the dimensions, we first calculate
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Pearson correlation coefficients [33] between all pairs of dimensions, denoted by
pr(di, dj) where 1 ≤ i, j ≤ p and i 6= j. For each dimension di, we then find
the maximum correlation and the minimum correlation values to all the other di-
mensions, represented by prmax and prmin. Moreover, for each di, we count the
number of dimensions that are correlated with di above a certain threshold. This
threshold can either be set by the user or computed automatically depending on
the distribution of the correlations. In our analysis, we set this threshold to 0.6
and check this against the absolute values of the correlations. We denote this
value as significant correlation count prsign. Additionally, we perform all these
computations using Spearman’s rank correlation coefficient, which is a robust
measure and also considers non-linear relationships between the dimensions [33].
These values, then, are denoted by spmax, spmin and spsign. All the values in
this category enable us to determine the dimensions which are unique or share
common structures with the others, i.e., structural outliers.

4 State of the art methods to determine outlier
dimensions

In order to enrich the outlier-aware analysis, we incorporate three different meth-
ods to facilitate the determination of outliers. These methods are based on the
utilization of different outlyingness measures (for data items) from statistics.
Since we focus on dimensions in this paper, we use these measures to evaluate
the outlyingness of dimensions. All these measures are computed using the S
table which has k values (i.e., statistics) for each of the p dimensions. Depending
on how many of the k statistics are considered, we resort to different methods
for the evaluation of outlyingness.

4.1 z-Score view
Dimensions can be outlying with respect to a single statistic, e.g., if the σ values
of all the dimensions are considered, dimensions with exceptional σ values are
considered outliers with respect to σ. In order to determine the outlyingness of
a dimension di with respect to a single statistic s, we compute the z-scores using
the robust median/MAD method as

zsi =
dsi −med(ds1, · · · , dsp)
MAD(ds1, · · · , dsp)

where i = 1, . . . , p and s = 1, . . . , k. Moreover, dsi denotes the values of the
statistics s for dimension i. Also note that med is the median and MAD is
the median absolute deviation (introduced in 3.2) of the s values of all the di-
mensions. Similar to the literature where z-scores are used to mark certain data
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Figure 2: Our z-score view to visualize the z-scores for the dimensions over: med, IQR,
skew, and, %out. Here, each line is a dimension and the dashed lines indicate the
[−2, 2] interval to ease the selection of potential outlier dimensions. The accompanying
scatterplot shows the selected dimensions that are possible outliers w.r.t. med (marked
1) and skew (2).

items as potential outliers [150], dimensions with z-scores lying outside the [−2, 2]
range can be treated as potential outliers. We compute the z-scores for all the
dimensions for all the k statistics and visualize these values through an extended
parallel coordinate plot called the z-score view. In this view, shown in Figure 2,
each axis corresponds to the z-score values that are computed for 4 different
statistics, med, IQR, skew, and, %out. Note that here, each line corresponds to
a dimension. We enhance the view with two dashed lines that pass through -2
and 2. This means that the dimensions that are above or below these lines are
candidates for being an outlier for a particular statistic. In the figure, a group of
possible outliers w.r.t. med (marked 1) and skew (2) are selected. The scatter-
plot reveals that the selected dimensions indeed have med and skew values that
are much higher compared to the most of the dimensions.

4.2 2-Dimensional data depth
When we observe the outlyingness of dimensions with respect to two statistics,
we usually visualize the dimensions on a scatterplot as opposed to these statistics.
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High Depth Point Low Depth Point

Figure 3: Illustration of the L1 depth computations. The unit vectors between a di-
mension di (i.e., a point on the scatterplot) and all the other dimensions are found.
The average of these vectors are used to compute data depth (see Eq. 1). Central data
points have higher D values (left) and points on the edges of the distribution have lower
D values (right).

In order to support the identification of outlier dimensions through scatterplots,
we enhance them with data depth calculations. In the outlier analysis of data
items, data depth is one of the widely used methods [88]. Depth of a data item
represents how central it is with respect to the distribution of the other items.
In the literature, there are a number of suggested methods to compute the depth
of data items and in this paper we employ the L1 depth [199] to compute the
depth of dimensions. The L1 depth for a dimension di with respect to statistics
s1 and s2 is computed with:

Di = 1−

∥∥∥∥∥∥1
p

p∑
j=1

eij

∥∥∥∥∥∥ (1)

where ‖.‖ is the Euclidean norm and eij is the unit vector between di and dj
with respect to their s1 and s2 values , computed as eij = (di − dj)/ ‖di − dj‖.
The D value is close to 1 if the dimension lies at the center of the plot and close
to 0 if it is on the edge. Figure 3 illustrates how the above formula distinguishes
between points that are central and that are lying on the edges of the distribution
of points on the scatterplot.
Whenever we bring up a scatterplot of dimensions with depth enhancement,

we compute the depth values for all the dimensions. We then map the color of the
points on the scatterplot to the associated data depth values. On Figure 4, the
depth values for the dimensions are utilized to color the points in the scatterplot.
The possible outlier dimensions have saturated green colors (e.g., point marked
1) and more central dimensions have less saturated colors. Notice that the depth
computations are also linked to the selection mechanism (Figure 4-b). In this
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Figure 4: a) The dimensions are colored according to their depth values. The “deeper”,
i.e., central, points have a whitish color and the points on the outskirts (marked 1),
i.e., possible outliers, have a saturated green color. b) Depth calculations are also done
locally within the selection. c) Depth based brushes snap to different depth levels called
depth contours to aid the selection of different structures in the data.

setting, the depth computations are done locally, i.e., limited to the selected
points. This enables the user to assess the depth of the dimensions in local
structures such as clusters.
Depth based brushing – In statistical analysis literature, depth values are
usually used to categorize data points into layers called depth contours [160].
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The inner contours consist of central points with high depth values and the points
that lie in the outer contours are candidates for being outliers. Since selecting
the outlier dimensions is highly critical in our analysis, we enhance the selection
mechanism in scatterplots with depth-based brushes. These brushes enable us
to easily (de)select points which are in the center or at the outskirts of the
distribution of points. In order to achieve this, the user interactively determines
a depth contour level l and the points with Di < l are selected. For convenience,
we limited the number of levels to 10, i.e., intervals of 0.1 over the D values. In
Figure 4-c, the depth contour brush leaves out the most central data points (the
inner four levels, i.e., l = 0.4) and easily selects the dimensions with more special
dip and %out values.
Although these types of depth contour selections could be done as a combina-

tion of smaller brushes, it is challenging to select these structures with conven-
tional rectangular brushes. This is mainly due to the fact that depth values tend
to create elliptical contours. More importantly, the suggested advanced brush
automatically snaps to the depth contours and thus has a contextual mapping.
Such a mechanism is much more meaningful and robust in selecting interesting
structures compared to conventional brushes.

4.3 Mahalanobis distance
Mahalanobis distance computation (or scores) is one of the common multivariate
outlier analysis method [88] for multi-dimensional datasets. The Mahalanobis
distance is a multivariate distance measure, that gives the distance of a data
sample to the center of a distribution by taking the covariance structure into
account. In order to determine potential outliers with respect to 3 or more
statistics at once, we refer to the Mahalanobis scores. Similar to the previous
methods, the Mahalanobis distances for dimensions are computed using the de-
rived statistics table S. Mahalanobis distance for dimension di is then computed
by, MDi =

√
(di − µS)TC−1

S (di − µS), 1 ≤ i ≤ p where µS is the k-dimensional
mean vector and CS is a k× k covariance matrix of the data table S (recall that
we have k columns in S). These scores are then visualized and dimensions with
exceptional values could be marked as outliers. And here, values larger than the
0.975 quantile of a chi-square distribution with k degrees of freedom could be
considered as exceptional [88].

5 Interactive Visual Analysis Framework
The analysis of high dimensional datasets is performed through a coordinated
multiple view setup that incorporates a linking & brushing mechanism with com-
posite brushes, i.e., a combination of selections through Boolean operators. Ad-
ditionally, we integrate multivariate analysis tools such as principal component
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analysis (PCA), multidimensional scaling (MDS), and, clustering in our analysis.
We are able to apply these operations both on dimensions and data items. While
we apply them on dimensions, we use either the transpose of the actual data (af-
ter normalization) or the statistics table S. And additionally, for MDS applied
on dimensions, we use the pairwise correlations as an input distance matrix. In
the resulting projection of the dimensions (assuming a 2D projection), the highly
correlated dimensions are placed closed to each other.
One important point to mention is that all the computational tools operate on

the current selections of items/dimensions, e.g., PCA is computed on only the
selected subset of dimensions. In order to provide a wide selection of statistics
and computational tools, we use R - the statistical computing project [184] as an
integrated module.

5.1 Dual Analysis Model

In our system, we use the dual analysis model proposed by Turkay et al. [189] to
perform the joint analysis of the items and the dimensions. In this model, the
analysis is carried out in two linked visualization spaces, items space and dimen-
sions space. In Figure 5-a we see the distribution of communities according to the
median income and the percentage of large households variables. In the second
scatterplot (Figure 5-b) each dimension is plotted against the the mean (µ) and
standard deviation (σ) values that are estimated for all the normalized columns.
A subset of the communities with lower incomes and larger households is selected
(Figure 5-c). µ and σ values are re-estimated for all the dimensions using only
the selected items. In dimensions space, the view (Figure 5-d) now displays the
difference between the two estimated statistics for each dimension, i.e., computed
using all and only the selected items. The visualization now displays the changes
in the values. In such views, the dimensions that change the most (outliers in
the context of this view) could be considered to show a strong relation to the
selection of items. For instance, the percentage of the population with Hispanic
heritage dimension (marked in Figure 5-d) shows a positive correlation with lower
income and larger families. For the details of this view that shows the differences
in statistics, please refer to the paper by Turkay et al. [192].
Preparing the analysis setup – Prior to starting the analysis, there are a
number of steps that is taken. In addition to the loading of the data, we also
load meta-data on the dimensions that also contains information on how missing
values are encoded in the data. After the data loading, the initial step is the
normalization of the data items in order to make them comparable. We follow
the “Informed Normalization” steps discussed in our earlier work [191]. In this
normalization scheme, depending on the analysis and the type of the dimension,
one can prefer methods like scaling to unit interval or z-standardization. We then
continue with the population of the statistics table S using the already mentioned
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Figure 5: a) Scatterplot of data items with median income vs. percentage of large house-
holds values (blue background). b) A scatterplot where each point is a dimension with
the estimated µ and σ values (yellow background). c) Communities with lower income
and large households are selected. d) µ and σ values are re-estimated using the selected
items. The change between the two values (after/before selection) are shown. The
marked dimension has both higher µ and σ values for the selected subset.

statistics in Section 3.2 and investigate the outlyingness of the dimensions using
the methods discussed in Section 4.

6 Outlier-aware analysis strategies
For a successful consideration of outlier dimensions in the course of high-dimensional
data analysis, analysts need a number of strategies to handle the outlier dimen-
sions. When we refer to high-dimensional data analysis, we refer to analysis
routines that involves the integrated use of computational analysis tools, such as
clustering or dimension reduction methods. Currently, there is only a literature
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on treating item-based outliers and two main strategies are suggested: removing
the outliers or employing robust statistics to accommodate the outliers in the
analysis [88]. In order to utilize outliers within the set of dimensions, however,
we need a different set of strategies due to the characteristics that outlier di-
mensions carry as introduced in Section 3.1. We discuss 4 different strategies in
relation to the categories of outlier dimensions.
S1: Leave out – This strategy simply suggests to leave out an outlier dimension
from the analysis. This option is preferred in cases where it is known that the
outlier dimension can cause the results of a computational tool to be less reliable,
such as in the case of PCA or clustering. This strategy can be the main approach
when dealing with characteristic outliers. As described earlier, this type of out-
liers either have distinct data types or contain many missing points/1D outliers
which leads to unstable results when used with computational tools.
S2: Transform – This strategy involves the transformation of data items in
a dimension when the outlyingness of a dimension is known to be caused by
a problem in the data values, such as missing values or measurement errors.
When such problems exist in the data, they usually cause dimensions to be
either characteristic and distribution-based outliers. In this cases, we refer to
the literature on “curing” item-based outliers [149]. Possible approaches include
replacing missing data [163], transforming data items via methods such as log or
inverse transformations [149], and fitting data distributions [149].
S3: Treat separately – In most of the cases, dimensions are considered outliers
not due to problems in the data but due to their distinctive characteristics. In
such cases it makes sense to handle the outlier dimensions separately and analyze
them closely to understand the nature of their outlyingness. One can refer to
conventional visual analysis methods and use histograms, scatter plots, or depth
plots of the data items as introduced in Section 4.2. This strategy can be taken
when distribution-based or structural outliers are determined in the analysis.
S4: Treat hierarchically – This analysis strategy involves the analysis of sub-
structures and is related to the handling of structural outliers. Since structural
outliers amount to highly-correlated sub-domains in the set of dimensions, they
provide additional insight when handled separately. Such groups of dimensions
can be used to create sub-domains where computational tools are applied locally,

Outlier Type Strategy
Characteristic outliers S1, S2
Distribution based

outliers S2, S3, S4

Structural outliers S3, S4

Table 2: Strategies based on the type of the outlier dimension
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e.g., applying PCA locally to find representative dimensions [191]. The analysis
then continues by combining and comparing these local analysis results.
In the following analysis cases, we use a combination of these four strategies.

We mark the strategy taken with the strategy name to make it easier to refer to
the above strategies.

7 Analysis of a contaminated dataset

We demonstrate how the analysis strategies are utilized in an analysis of syn-
thetic dataset with 37 dimensions and 4049 data items (n × p = 4049 × 37).
We created this dataset by compiling together several modeled data dimensions
that have different characteristics. We started with 2 dimensions which together
encode 8 clusters. We extended this dataset by sampling 4049 data items from
well-known distributions. We added the following 35 dimensions: 15 normally
distributed, 10 log-normally distributed (5 left-skewed, 5 right-skewed), 5 cate-
gorical, and, 5 normally distributed with missing values. The initial clustering
could be considered as the “hidden”, relevant information and we demonstrate
how this information could be extracted through our approach.
When we apply PCA using all the 37 dimensions in the data, we observe, in

Figure 6-a, that the initial clustering information (denoted with the colors here)
is not visible. Instead, there are two strong clusters, possibly due to one of the
categorical dimensions. We start the investigation of the dimensions by checking
for characteristic outliers through a uniq vs. %out plot. The five categorical
dimensions stands out (marked 1) and we leave out these characteristics outliers
from the PCA calculations (Strategy S1). We continue by analyzing the sub-
groups in the dimensions. In the skewoct vs. kurtoct plot, we detect three groups
of dimensions with similar characteristics. A group of dimensions with high
kurtosis but no skewness (marked 2, dimensions with missing values), another
one with high skewness but no kurtosis (marked 3, the log-normal distributions),
and, the last group showing no skewness or kurtosis (marked 4, the normally
distributed dimensions). When we apply PCA on these groups locally, we observe
that in two of these subgroups (3,4) there are apparent structures (Strategy S4).
We observe the dimensions in these two subgroups separately over a dip vs. IQR
plot. The statistics reveal one dimension per each group with a low dip value
and a high variance, which indicates the existence of modalities, i.e., suitable to
use in clustering. A final application of PCA shows that these two dimensions
are indeed the two artificial dimensions that contain the clustering information
(Strategy S3). The above example demonstrates how outlier dimensions could
easily distort computational results and how a careful consideration of these
outlier dimensions with our methods leads to a reliable analysis.
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8 Use Case: Analysis of US Communities and Crime
Data

In the analysis of the “communities and crime” data (introduced in Section 3),
the goal is to find the relations between crime statistics and the socio-economic
information. With the help of meta-data on the dimensions, we interactively
select the independent dimensions and start the analysis by applying PCA to
these dimensions. The resulting first 2 principal components (PCs) in Figure 7-a
reveal two distinct groups. A visual inspection (not shown in the image) shows
that there is no relation between the resulting principal components (PC) and
the crime statistics. We select one of the groups and observe the changes in med
and IQR values in a linked view (Figure 7-b). A number of dimensions, with
higher med values for the selection, stand out to be the cause of the clustering.
The histogram for one of these dimensions, the percent of polices on patrol, is
inspected, we observe that the distribution has a bi-modal distribution with a
gap between the values. When we refer to the actual data, we find out that
this is due to missing values. Before we proceed with the analysis, we replace
the missing values (Strategy S3) with the median of each dimension [163]. In
addition, a number of these dimensions are left out, due to the high number of
missing values, i.e., 85% of all items (Strategy S1). The effect of missing value
replacement can be observed on the new PCA results (Figure 7-d). The updated
results show that the initial grouping is only due to special artifacts in the data.
We then focus our attention to the sub-group of dimensions related to crime

statistics (18 dependent variables). An MDS of these results indicates structural
outlier dimensions which are highly correlated (marked in Figure 7-e). Upon
inspection we see that this group consist of dimensions which contain the absolute
values of different crime types, whereas the rest of the dependent dimensions
contain percentage values. We leave out the marked dimensions in Figure 7-e
due to the high in-between correlation in order to achieve easier to interpret PCA
results (Strategy S1). An alternative method at this point is to represent this
group with a representative factor [191] and continue the analysis in a hierarchical
way (Strategy S4). However, since the two groups carry similar information
(absolute vs. percentage), we decide to leave this group out. We continue to
compute PCA using the percentage based crime related dimensions to summarize
the information in these variables (Figure 7-f). Using depth brushing on the
projected items, we select the items with higher crime rates in Figure 7-f to
investigate the relation between high crime rate and the independent variables.
The med vs. IQR view (Figure 7-g) shows a number of dimensions that have
lower or higher values in med (indicates negative or positive correlation). We
found out that the percentage of people under poverty level is positively and the
percentage of the population that is Caucasian is negatively correlated with crime
levels (in this dataset). There are also dimensions related to the family structure,
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such as two parent families with kids, that show weaker negative relation to crime
levels. This finding can be interpreted as an indication of the relation between
the neighborhood and crime, i.e., less crime in places where families are more
common.
In addition, one of these dimensions, percentage of population living in urban

areas, shows a big drop in the variance of the values (lower IQR). When we
observe this dimension closely, we find out that the higher crime rates occur in
communities that are 100% urban or 100% rural (Strategy S3).
The above analysis shows that a careful consideration of outlier dimensions

leads to the controlled use of computational tools. Which in turn, results in
findings that could otherwise be hidden by features in the data that do not carry
relevant information.

9 Use Case: Analysis of Cognitive Aging Data
Cognitive studies investigate the role that specific neural substrates have in cogni-
tive functions, as well as the impact of healthy aging, dementia or other patholo-
gies on human cognition [127].
In this use case, we work on a multi-modal dataset related to a longitudinal

study of cognitive aging. The study involves healthy participants who underwent
a neuropsychological examination (tests on IQ, memory, attentive and executive
function) and were subjected to imaging of their brain with different modali-
ties, namely, 3D anatomical magnetic resonance imaging (MRI), diffusion tensor
imaging (DTI) and functional MR (fMRI). Here, we focus on the analysis of
anatomical MRI images and try to investigate the relations between image de-
rived measures and cognitive abilities [215].
In order to carry out the analysis, a set of structural statistical measures for

brain regions are extracted automatically using a software called Freesurfer [62].
With each segment in the cortical and subcortical brain regions, a number of
measures, such as surface area, thickness or volume, are associated. These pro-
cesses create a very high dimensional dataset (hundreds of dimensions). This
high-dimensionality of the resulting dataset poses a big challenge for the in-
volved scientists. They usually have to delimit the analysis to a selected subset
of segments based on an a priori hypothesis. However, when the analysis has
more of an explorative nature, they need methods to understand the relations
between the dimensions and discover different subsets to investigate further. In
that sense, our method is beneficial to the researchers in discovering artifacts,
groups and important features in this high-dimensional healthy brain aging study
dataset.
The dataset involves 83 healthy individuals recruited through advertisements

in local newspapers, as part of a larger study on cognitive aging [215]. For each
subject, a T1-weighted image was segmented into 49 anatomical regions, and 7
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different measures were extracted for each region, automatically. This creates
49 × 7 = 343 dimensions per patient. In addition, details about each patient,
such as age or gender, and the results of a memory test is added to this dataset.
With this addition, the resulting dataset has 385 dimensions, i.e., the resulting
table’s size is 83× 385.
We start the analysis by looking at the correlation structure between the di-

mensions. We bring up a view of spsign vs. uniq (Figure 8-a). The first group
of dimensions that pops out in the visualization are those which have a very low
number of unique values and a very high correlation count (circle-1 in Figure 8-a).
We observe these dimensions further by looking at their shape characteristics via
a skew vs. kurt plot (Figure 8-b) and see that they have abnormal values in this
view as well (Strategy S4, S3). We see that these dimensions are related to a
specific segment in the brain, white matter hypo-intensities of the left and right
brain lobes. We then turn to the actual data items (the patients), and we observe
that these dimensions are full of missing values for almost all the patients. This
is very likely due to an artifact in the computation of these features, therefore
the researchers need to double-check the related computations. In the current
analysis we discard these dimensions since most of the values in these dimensions
are missing (Strategy S1).
We continue the analysis by observing a group of dimensions which have sim-

ilar unique value counts and high numbers of significant correlations (circle-2 in
Figure 8-a). We find out that the selected dimensions all relate to the Cerebellum
Cortex segment. We investigate this sub-group of dimensions further by observ-
ing them as according to σ and its robust counterpart MAD (Figure 8-c). For
some of the selected dimensions, there is a difference between the robust and non-
robust estimates of the variance. This indicates that these dimensions are likely
to be contain abnormal measurements and this requires further investigation.
We continue by applying PCA on the dimensions by only using the dimensions
marked with a circle in (Figure 8-c). The results of the PCA now reveals some
interesting patterns in Figure 8-d. The data items marked 1 (multiple items
mapping to the same point) are again due to missing values in the computations.
However, data items (i.e., patients) that are marked with 2 and 3 have abnormal
statistics about their cerebellum cortex which makes them interesting subjects
for a deeper analysis.
We elaborate our analysis by using the z-Score view to visualize the z-scores for

IQR, skew, kurt, dip, and %out (Figure 8-e). Here, we first delimit our interest
to the dimensions related to the volume of the brain segments (by selecting
meta-data on dimensions through a histogram not shown in the image) and
the selections on z-Score view (circled) reveals three dimensions: left inferior
lateral ventricle, 5th ventricle and non white matter hypointensities. In order
to see the distribution of items in relation to these segments, we apply PCA
on these 3 segments (Figure 8-f) and the rest of the segments (only using those
related to volume) (Figure 8-g). We see that while the first projection contains
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outlier items, the second has a more regular distribution. We select the 7 outlier
items (participants marked with a circle in Figure 8-f) in the first projection.
After an inspection of the neuropsychological test scores, we see that 6 of these
participants performed very good at IQ tests but performed poorly in coding test
that is an indication of memory function. This result can be interpreted as an
indication of the relation between the 3 selected brain regions and performance
of the participants in IQ and memory function tests (Figure 8-h).
Even though we cannot present all the analytic procedures which we exe-

cuted on this highly interesting dataset, we still understood very quickly that
our methods were helpful in discovering groups in dimensions that are relevant
for an analysis w.r.t. their different characteristics. And we see that when we uti-
lize these discovered structures, we are able to single out data items with special
properties.

10 Discussions
Finding the dimensions (variables) that carry distinctive or redundant informa-
tion is an important research in fields such as machine learning and data mining
and usually referred to as feature selection [77]. In these methods, the selec-
tion of features is done algorithmically based on specific measures. For instance,
there are variable ranking criteria, such as correlation, predictive power, or, in-
formation theoretic, on which the feature selector is constructed upon. All these
different perspectives on the variables (dimensions) could easily be incorporated
in our framework to describe the dimensions. Our methods enables the inter-
active and visual inspection of these different perspectives and lead to a more
diverse analysis of the dimensions.
There is an extensive collection of outlier analysis methods in statistics and

data mining. The most common approaches can be categorized as: statistical
tests, data depth based, deviation-based and density-based approaches [88]. How-
ever, these methods focus only on the observations, therefore our new analysis
perspective on the dimensions broadens the focus of current analysis literature.
Although the selected statistics in the presented method already provide a quite

general framework for a wide range of analysis tasks, this selection is by far not
exhaustive. Depending on the nature of the analysis, the statistics space (S) can
be populated with alternative features. Especially when dealing with domain-
specific problems, one can include specific measures in S to aid the analysis.
The notion of outlier dimensions is slightly different than the common inter-

pretation of item based outliers. In the context of outlier analysis of items, apart
from a few special cases such as intrusion detection, outliers are usually treated as
artifacts and left out of the data. However within the set of dimensions, outliers
usually play an important role and we consider these dimensions by introducing
analysis strategies other than just discarding the outlier.
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11 Conclusion
In this paper, we present the concept of outlier dimensions and demonstrate
the role of these dimensions in high-dimensional data analysis. With an outlier
dimension, we refer to a dimension that stands out with respect to certain statis-
tics and/or derived features. To the best of our knowledge, our method is the
first method that enables an outlier analysis of dimensions as first-order analysis
objects.
We discuss a number of perspectives to evaluate the outlyingness of dimen-

sions and present a classification. We categorize the outlier dimensions in three
categories, namely characteristic, distribution based and structural outliers. This
categorization motivates the selection of different statistics and measures to use
in our analysis. We use these to construct a derived data table for the analysis of
the dimensions. Different statistics/features provide different insight on the di-
mensions. Moreover, we bring state-of-the-art measures and methods from outlier
analysis of items in statistics into the analysis of dimensions. We introduce novel
interactive visualizations to incorporate these measures into the analysis, such
as the z-score and the data depth views. We then present a number of analysis
strategies based on the different categories of outliers. These strategies serve as
a guidance for analysts in handling outlier dimensions. All these building blocks
enable the outlier-aware analysis of high dimensional data. Through a number
of use cases, we showcase how these analysis are applied to high dimensional
datasets.
The outlier analysis of the dimensions is an attempt to understand the struc-

tures within the set of dimensions. With the datasets getting larger in terms
of variables and modalities, methods that help the analysts gain an understand-
ing of the different aspects of these dimensions is becoming more important. In
this respect, interactive methods, such as the one presented here, opens up new
possibilities to make analysis routines that are more structured and reliable.
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Abstract

In their seminal work [25], Card et al. identified three human time
constants and they discussed how the response times of information

visualization should relate to them. These constants have great im-
portance in that they represent the temporal human-computer inter-
action characteristics (at three different time scales) such that an
optimal communication between the human and the computer can
be achieved. In this paper, we show how interactive visualization
processes can be realized in visual analytics such that they adhere
to these human time constants. We define in particular how to meet
these constraints when integrating computational tools in visual anal-
ysis that usually do not guarantee a real-time response. We describe
how online machine learning algorithms enable the design of systems
that are respectful to the perceptual characteristics of their users.
This new way of modeling visual analysis processes is inline with a
paradigm shift: instead of forcing the user to adjust to the tempo-
ral and cognitive capabilities of visual analysis solutions, we should
orient the technical solutions at the communication characteristics of
the users. We reason and demonstrate that such a process design can
contribute to optimizing the efficiency and effectivity of interactive
visual data analysis.

This article is in submission to: Computers and Graphics, 2013.
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1 Introduction
The seminal work by Card et al. [25] investigates different aspects of human ca-
pabilities in our communication with the outer world, be it another human or a
computer. In their paper, they describe the human computer interaction process
as a dialogue between the user and the computer. Based on their investigation of
psychology literature, they present three human time constants that characterize
the temporal characteristics of our related human capabilities. These constants
are reported to be highly important to achieve an optimal communication be-
tween the user and the computer. The first constant relates to the perceptual
processing level at which humans are able to perceive changes in consecutive im-
ages as visually continuous animation. To achieve a visually smooth animation,
the images need to be updated at least 10 times per second. The second constant
addresses the immediate response level at which the parts in a communication
are exchanging, forming a dialogue. The communication is interrupted if there is
no response from the other party within about 1 second. The third time constant
is the unit task constant which determines the limits for an elementary task to be
completed during such a dialogue. This constant is reported to be more flexible
and defined in an interval between 10 to 30 seconds.
Visual analytics (VA) is, in particular, an interactive and iterative dialogue

between the human and the computer [84]. The interactive analysis process is a
sequence of actions by the user and responses by the computer. The successful
outcome of this process depends on the interpretation of these responses by the
user. As such, it is of vital importance to think of visual analytics as a dialogue
and to properly address the perceptual and cognitive capabilities of humans in
this dialogue in the light of the already mentioned three time constants. By doing
so, visual analysis sessions can be designed to be cognitively uninterrupted, which,
in turn, can lead to optimized processes.
As a result of recent research activities, powerful processes in visual analysis in-

Level 1:

Level 2:

Level 3: Analytical Unit Task
H C H C C H........

........

Figure 1: The unit task level is determined by an analytical task that answers a par-
ticular question about the data. The second level represents the dialogue between the
human and the computer and moderates the response times of the computer. Responses
can be given through an animation controlled by the visualization update level (running
at 10 Hz or faster). (H: Human, C: Computer)
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volve the tight integration of computational tools and interactive methods [112].
The careful design of the temporal characteristics of this integration is of great
importance for optimizing the targeted analytical processes. However, the tem-
poral aspects of such integrations have not been investigated in many studies.
With this paper, we aim to fill this gap by describing a new approach to de-
signing the temporal aspects of visual analytics processes in order to meet the
three human time constants as described by Card et al. [25]. We describe three
levels of operation for analytical processes, in particular for those that involve
the integration of computational tools and interactive methods. An illustration
of how these levels operate can be seen in Figure 1. Here, the third level manages
the time involved in completing an analytical task, e.g., observing the relations
between several variables in a dataset. The second level moderates the human-
computer dialogue. It ensures that the dialogue occurs at a temporal pace where
the human can give immediate responses, i.e., occurring within the limits of the
second human time constant. The first level is responsible to make sure that the
updates in the visualizations happen at a rate that is perceptually suitable for
the human.
In essence, our solution moderates the temporal aspects of the interactive visual

steering of computational analysis tools. Instead of forcing the user to wait for
an interactive computation to finish, our methodology aims to present a best
possible result within an acceptable time frame. And depending on the inter-
pretation of these first approximate results, the user might either wait for more
accurate results to compute or continue to explore the data by updating his/her
interactive inputs. This approach is inline with the suggestion by Card et al. [25]
that reads “. . .When the cycle time becomes too high, cooperating rendering pro-
cesses reduce the quality of rendering . . . ”. Similarly, Jean-Daniel Fekete, in his
Dagstuhl talk on the integration of computational tools with information visuali-
zation, commented that integrated methods should provide any-time responses,
sometimes also allowing for some sacrifices on quality [56]. To the best of our
knowledge, our work is now one of the first studies to directly address the tem-
poral human comprehension capabilities by introducing immediate responses in
the interactive use of integrated computational analysis tools.
In this paper, we present a methodology on how an interactive visual analysis

system could be designed to conform to the human time constants and how such
a system could be realized with the use of appropriate techniques. We firstly
describe the three levels of operation that constitute the fundamental blocks to
achieve optimized processes. We then introduce a number of novel computational
and interaction techniques to achieve these three levels. We then demonstrate
how these techniques enhance interactive analysis processes. The contributions
of this paper can be listed as:

• The three levels of operation to consider the three human constants in visual
analytics processes



142 2. Related Work

Compute PCA in several seconds

Update selection

Make a selection

Anim
ate in 1 sec.

Compute as-good-as-possible-PCA 
in 1 second

PC
1

PC
2

PC’
1

PC’
2

H C H C H C H CH

Figure 2: An example for optimizing an analytical process against the three human time
constants [25]. In a conventional setup (left), the user first requests a (re-)computation
of PCA results (with a selection of variables), then he/she waits a certain time for the
results. This waiting could potentially interrupt the dialogue between the user and
the computer (let’s check my Inbox in the meantime!). In order to address this, our
suggested optimization (right) computes PCA results as good as possible within 1 sec.
in response to a selection by the user. And whenever new selections are made, the
results are re-computed in no more than 1 sec. and the visualizations animate in 1 sec.
to display the new results. The shown H–C–H–. . . - abstraction indicates the pattern
of interaction (the lengths indicate the time spent).

• The keyframed brushing technique to improve the human-computer dialogue
• The utilization of online algorithms together with a suitable sampling mecha-
nism to moderate the response time of computational tools

• The integrated use of perceptually optimized, animated transitions to commu-
nicate different computational results
After a discussion of related work, we give an example of how an analytical pro-

cess can be optimized in Section 3, we continue with the description of the three
levels of operation and present the keyframed brushing method in Section 5. We
describe how online algorithms and animated transitions can be utilized within
visual analysis applications in Sections 6 and 7. We then present sample analysis
scenarios, evaluate and discuss the quality/limitations of online computations,
and close with discussions on the methods and conclusions.

2 Related Work
The careful consideration of human factors is one of the central aspects of visual
analytics [112]. Green et al. [72] discuss the central role of human computer
interaction and suggest that the interaction has to be designed as a seamless
cycle of give and take. Levels of interaction that are in line with the human time
constants are also discussed in Illuminating the Path [187] by Thomas and Cook.
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They emphasize the role of human time constants when designing interaction
mechanisms for visual analytics. In our methods, we are motivated by the rec-
ommendations in these works in our effort to design optimized interactive visual
analysis processes.

The integration of interactive methods with computational tools is becoming
increasingly common in visual analysis [210, 144, 190]. However, there are not
so many examples of studies on how such an integration should be carried out in
the best possible setting for the user. With this work, we emphasize the temporal
aspects that need to be considered for a successful design of such an integration.

Shneiderman states that interactive mechanisms need to give immediate feed-
back to dynamic queries within certain temporal limitations [173]. High per-
formance techniques, such as predictive caching [27], a multi-threading architec-
ture [146], or GPU-supported methods [55] have shown to improve the scalability
of interactive visual analysis. Rosenbaum and Schumann [156] suggest a general
progressive refinement framework to achieve a scalable system in terms of re-
sponse times, visual clutter, and available resources. The authors also state that
developing specific progressive refinement solutions for visualization systems is
an open question. In a recent work, Ahmed and Weaver [3] discuss the details of
a highly interactive cluster exploration system and one important aspect in their
work is that the authors also display approximate clustering results to main-
tain smoothly running interactivity. In another recent work, Fisher et al. [61]
present a database query system running on incremental samples. Their user
study with analysts reveals that such an incremental approach enables analysts
to give certain decisions early and update/remove their queries without waiting
for the results to complete. This paper supports our motivation to suggest a
methodology that incorporates incremental sampling and online computations.
Our work adds to this part of the literature with the use of online algorithms to
ensure time bounded computations. We make use of a sampling strategy together
with the online computational tools. Although sampling has not been subject
to many studies in visualization yet, it has been proven to be helpful in clutter
reduction [48].

Although the usefulness of animations in visualization has also been disputed
[155], there are several good examples where animations proved to be useful.
Heer and Robertson [87] employ animated transitions between different statistical
graphics. Animated transitions between different projections of high-dimensional
datasets have also been used with success [49, 35, 16, 96]. We contribute to this
part of the literature with a novel mechanism to generate animated transitions
and to perform the animations seamlessly within the human-computer dialogue.



144 3. Example of Optimizing an Analytical Process

3 Example of Optimizing an Analytical Process
Here, we first go through an example of how a typical analytical process can
be optimized against the three human time constants. We first describe the
corresponding analysis problem and discuss how a typical visual analysis envi-
ronment would provide a solution where human time constraints are not met.
We then explain how a solution can be designed which respects the human time
constants. In this example, and for the rest of the paper, we utilize the dual
analysis approach [189] to analyze both the dimensions (visualized over a yellow
background) and the data items (blue background) in parallel.
We analyze a high-dimensional dataset on the socio-economic values and crime

statistics for the communities in the US in the year 1990 [12]. The dataset con-
tains 128 variables, and we group these variables in five semantic categories,
namely, demographic, income, accommodation, family life, and, crime. The ana-
lytical goal in this illustrative example is to observe if there are relations between
the categories, and for the sake of simplicity we limit our interest to income- and
crime-related data. One possible approach to perform this analysis is to sum-
marize each category with a lower-dimensional representation, using a method
such as principal component analysis (PCA) [100], and to compare projections of
these representations. At this stage, we assume that the VA system in use offers
PCA as a built-in computation [189]. Accordingly, the user selects a subset of
the variables and the system computes the principal components for the selected
subset of the data (i.e., using only the selected variables). A scatterplot visualizes
the results using the first two principal components (Figure 2 - left).
In order to carry out this analysis “traditionally”, the following steps could

be followed. The user starts with selecting the subset of variables in the income
category and triggers a PCA computation with this subset. Depending on the
duration of the calculation, the user waits a certain time for the results to be
computed (which could vary between milliseconds and minutes, or even more).
According to Card et al. [25], however, in a dialogue, the user needs to get at
least some feedback in less than one second, otherwise the dialogue (and the
related cognitive process) can get interrupted. As a result, the user would have
to re-orient himself/herself to continue the task, making a second iteration with
a new input to the system, and so on. (Figure 2 - left).
An optimized version of this analysis, that respects the human time constants,

can be carried out as follows. The user starts with selecting the same subset of
variables in the income category by brushing on the histogram. In response, the
system computes the PCA results as good as it can in no more than 1 sec. and
displays the results. Likely, the results are then only approximate. However, if the
user does not spot any interesting structure in this immediate result, he/she does
not need to wait for the precise PCA computations to finish and immediately can
make another interactive selection to update the visualizations. In our example,
the user spots no interesting structure in the PCA results for the income category
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and immediately continues to selecting the crime-related category. Within no
more than one more second, the PCA for this second selection is computed (as
good as possible) and the points in the scatterplot animate to their new location.
This animation is rendered at a minimum rate of 10 Hz where the total animation
takes 1 second (Figure 2 - right). Only in the case that some interesting structure
is observed in one of the categories, the user can then refer to a more precise PCA
computation, that usually takes longer to compute, and then waits for the results,
accordingly. We refer to the accompanying video for an immediate impression of
this example.
Notice that after the optimization of this analysis process, all the operations are

performed with temporal characteristics that are in line with the communicative
capabilities of the user. This ensures that the dialogue between the user and the
system through the session is not broken and we make sure to effectively use the
perceptual and cognitive capabilities of the user in gaining insight.

4 Respecting the Human Time Constants
With the guidance of the human time constants, we aim to improve the dialogue
between the human and the computer during visual analysis sessions. We achieve
this by adjusting the system to operate at three levels (at three time scales of
interaction). These levels correspond to the three human time constants and
thus, are associated with certain temporal limits as shown in Table 1.
In this paper, we limit our discussion to a subset of visual analytics methods,

including i) linking & brushing, ii) the integration of computational tools and
interactive methods, iii) a visual representation of the computational analysis
results. We argue, however, that our model is more general and that also other
processes in visual analytics fit well into it. Briefly, we consider a unit task in
visual analytics as a sequence of actions and reactions where the reactions can be
given by animated visualizations and the three levels of operation moderate how
such a task can be carried out at an optimized fashion by respecting the human
time constants (Figure 1).
Level 3: Unit task completion – This level determines the temporal range in
which an analytical unit task is completed. Such an analytical task is performed
to answer a specific question related to the data. Such a task involves a sequence
of inputs from the user and corresponding responses from the computer. Exam-
ples of such a unit task include: i) changing a selection of items in one view (in
order to explore inter-dimensional relations) and observing how the according
focus+context visualization in a linked view is changing, ii) observing the group-
ing structure of data items when different subsets of the variables are used, for
instance, in clustering. The time constraints for this level of operation are more
flexible according to Card et al. [25] and depend on the analytical unit task. In
order to ease the construction of different patterns of selections, we developed
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an interaction mechanism called keyframed brushing (see Section 5). With this
mechanism, it is possible to frame unit tasks with fixed completion times, i.e., 10
sec., 20 sec., or 30 seconds. Such a unit task is then a sequence of actions and
reactions between the human and the computer as discussed in the following.
Level 2: Human-computer dialogue – This level is mainly responsible to
maintain the dialogue nature of the visual analysis process. It ensures that the
communication between the user and the computer is not interrupted. Specifi-
cally, this level focuses on maintaining a guaranteed response time (1 sec.) when
integrated computational tools are utilized. This mechanism realizes an uninter-
rupted dialogue by making sure that the immediate response capability of the
user is exploited.
Maintaining the 1 sec. response time is not straightforward when the compu-

tations are complex and the data is large. Our solution to approach this problem
is to compromise the quality of the results by computing “only” the best possible
result within the limited time frame. Similarly, in computer graphics, reduc-
ing the quality of the rendering process to maintain an interactive frame rate is
common practice and related methods are usually referred to as progressive re-
finement. [34]. In order to achieve this, we make use of online algorithms together
with a suitable sampling strategy (more in Section 6).
Level 1: Visualization update – Animated transitions have been proven to
be helpful when the motion of the data items are of importance [87] and can help
to avoid change blindness [152]. Therefore, we make use of animated transitions
between the different computational results that are generated as a result of the
dialogue occurring at the second level of operation. The visualization update level
moderates the update rate of animated visualizations and secures the perceptual
processing of the animations in the visualization. In order to create animations
that are smooth in the eye, the lower bound for the update rate should be 10

Level Operation Level
Human
time

constant

Response
time
(sec.)

Level 1 Visualization
update

Perceptual
processing 0.1

Level 2
Human-
computer
dialogue

Immediate
response 1

Level 3 Analytical task
completion Unit task 10 - 30

Table 1: The three levels of operation, the corresponding human time constants [25],
and the associated time limitations
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Hz [25]. According to a study on the effects of update rate on the sense of
presence in virtual environments [13], 15 Hz is an optimum rate for updating
animations. In this work, we include the different update rates as reported in
literature, and animate the visualizations at either 10, 15, or 20 Hz. For a more
detailed discussion on why animated transitions are suggested, see Section 7.1.

5 Keyframed Brushing
The keyframed brushing mechanism is intended to reshape (a certain subset of)
analytical tasks as a dialogue while keeping the user engaged. The user defines
two or more brushes (according to his/her analytical goal), similar to defining key
frames in computer-assisted animation [26]. Using these key brushes, a sequence
of in-between brushes is generated automatically. After the brush sequence is
computed, the system starts traversing through this sequence without the need
for further input by the user. Depending on the user’s preference, the complete
sequence is traversed in 10 sec., 20 sec., or 30 sec., and moving from one brush
to the next takes 1 second. Here, traversing the whole sequence is considered as
a task operating at Level 3 and moving from one brush to the next as operating
at Level 2 as defined above. Keyframed brushing enables the user to focus on
the linked views that display the results of the animation rather than paying
attention to moving the brush in a particular fashion. Refer to Section 8.1 for a
demonstration of cases where keyframed brushing proves to be helpful in cases
that are hard to investigate with manually modified brushes. This mechanism
has a utilization both as an automated linking & brushing operation and as a
method to interact with computational tools.
In order to construct brushing-based animations, we enable the specification

of key brushes through conventional visualizations, such as scatter-plots and his-
tograms. In Figure 3, the interface to define a brush sequence can be seen.
We draw overlays (in pinkish color) to abstract the range of the final brush se-
quence. We suggest four different modes to create brush sequences when the user
is finished with the key brush definition: moving (mmov), extending (mext), no
in-betweening (mdir), and constrained (mcon) (Figure 4). We refer to the key
brushes as B = 〈b1, . . . , bt〉 where b1 is the first and bt is the last brush made by
the user. In the mmov, mext, and mcon modes, the user defines only the start
and the end brush, i.e., t = 2, while in the mdir mode the user defines as many
brushes as he/she wants. In the mmov mode, the user creates a brush sequence
where the brush moves from b1 to b2 through a linear interpolation. In the mext

mode the borders of the brush b1 get extended at each iteration so that the final
brush covers both b1 and b2. In the mdir mode, we create no in-betweens and the
selection moves directly from bi to bi+1 at each iteration, where each iteration
is performed in 1 second. Notice that the total time for such a mdir sequence
depends on the number of brushes made. The fourth mode (mcon) is the con-
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a) b)

Figure 3: Keyframed brushing can be performed in a histogram (a) or in a scatterplot
(b). The user interactively determines the start and end selections (“key brushes”),
which are then accompanied with computed “in-between” brushes.

strained brushing mode, where the path of the brush sequence snaps to a fixed,
predetermined line. We enable three fixed paths to make selections in scatter-
plots, namely, parallel to the x-axis, parallel to the y-axis, and to the diagonal of
the scatterplot. In order to activate this mode, the user presses the shift key on
the keyboard while moving the mouse to make the second brush b2. The path
then automatically snaps to one of the closest fixed paths. For instance consider
Figure 4-d, that displays the % of African Americans vs. median income. When
the user constructs a path parallel to y-axis, the resulting brush sequence pre-
cisely selects higher and higher income levels for a fixed % of African Americans
values. This mode thereby helps the user to move a brush in a precise manner
over paths that carry specific properties and leads to brush sequences that are
less arbitrary as compared to those that are constructed manually.

The total duration (10, 20, or 30 seconds) of the brush sequence (mmov, mext,
and mcon) determines how much the selection changes between two (keyframed)
brushes. For instance, when 30 secs. are used, then the difference in the positions
of two consecutive brushes is low and the overlap of the selections is therefore
higher, leading to a more coherent visualization (and its according transition).
We also provide the flexibility to modify the time that it takes in moving from
one brush to the other, which becomes useful when the speed of the selection is
in focus (see Section 8.1).



Paper D Optimizing Processes in Visual Analytics to Meet the Three Human
Time Constants 149

a) b)

c) d)

m
mov

m
ext

m
dir

m
con

Figure 4: Four modes for keyframed brushing (according to the user interaction as il-
lustrated in Figure 3-b). a) Moving brush mode: the position of the in-between brushes
are linearly interpolated, b) Extending brush mode: the brush extends at every step, c)
No in-betweening: the final sequence consists of only the three brushes, d) Constrained
brushing mode: the path of the selection automatically snaps to one of the fixed lines
(parallel to x-axis, y-axis, or to the diagonal)

6 Online Computations
In order to maintain the temporal limitations set forth by the human time con-
stants, we develop a mechanism where the computational tool guarantees to
respond within a fixed time, i.e., 1 second. To achieve this, we make use of
online algorithms, which are capable of processing the data piece-by-piece se-
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Algorithm 1 Online computation with random sampling
1: procedure ComputeInFixedTime
2: O : Online computation module
3: D : Data, size : n× p
4: Q : Random sampling queue, size : n
5: tlim : human− time constant . Fixed to 1 sec.
6: t0 : currentT ime()
7: timeLeft : tlim
8: while Q.notempty() do . Until all samples are used
9: while timeLeft > 0 do
10: i← Q.pop()
11: x← D[i]
12: O.update(i)
13: timeLeft : tlim − (currentT ime()− t0)
14: end while
15: O.returnResults() . Visualization is updated
16: end while
17: end procedure

quentially [4]. These algorithms do not need the whole data to operate and can
update the results as new data becomes available. In the machine learning liter-
ature, there are online versions of computational tools that are frequently used
in visual analytics, such as principal component analysis [79] and clustering [75].
One common method to use online algorithms is to pass the data items row by
row, so that each update cycle of the algorithm is performed in a limited time [4].
To be able to utilize this incremental computing nature of online algorithms, we
use them in combination with a sampling method.
In this paper, we use this row-by-row computation strategy to achieve guaran-

teed response times. We determine which rows to use by a random sampling of
the data. The main reason to prefer a random sampling method is the positive
effect of randomization on on-line computational methods [4]. Certainly, it is
possible to alternatively also use more sophisticated sampling methods such as
stratified sampling or selective sampling [143]. For a detailed discussion on the
scope and limitations of online algorithms, see Section 9.
In short, our approach makes sure that the employed computational tool re-

sponds in a fixed time by limiting the size of the portion of the data that it
processes. This portion is made as large as possible so that it can be handled
within the given time limitations. The details of this approach are given as Al-
gorithm 1. This approach assures that the computations are finished and the
associated visualization is updated within the temporal limits. However, due to
the fact that the results are computed on a limited sample, the results are usually
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Figure 5: a) An abstract visualization to show clustering results where each cluster is
represented by a circle with a distinct color. The visualization shows a clustering result
with 9 clusters (+1 for the non-clustered items) where the size of the points denote
the number of members of the cluster. b) When a new clustering result is present,
the changes in the clusters of items are represented by animated points between the
clusters. Here, amongst other transitions, some items of cluster-8 (grayish) are joining
cluster-4 (blue)

not as accurate as one would achieve if the whole dataset was used. Therefore
the algorithm continues to run (in a separate background thread) after the first
response is given and consumes more and more of the data every second. This
implies that the results are getting more and more accurate every second as the
user observes the result without being disengaged from the communication. In
the context of this work, we incorporated the online versions of two popular
computational tools, PCA and clustering (a version with similar principles as
the k-means algorithm). In algorithm 1, these tools correspond to the module O.
Incremental PCA – Online PCA algorithms make use of an incremental up-
dating of the singular value decomposition (SVD) of the data matrix [79]. In
this paper, we refer to online PCA and incremental PCA interchangeably. Here,
we use the SVD updating methodology described by Hall et al. [79]. Notice that
the resulting PCs are computed based only on the sampled points, however, the
final projections are applied to the whole dataset. The results are then visualized
through scatterplots where the axes are the first two principal components (see
Figure 2).
Online clustering – Similarly for clustering, we use an online clustering algo-
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rithm, defined by Guedalia et al. [75]. This algorithm takes a k parameter as an
upper bound on the number of clusters. At each iteration it includes the new item
as a new cluster in the data and appropriately merges/splits the new clusters.
Notice that in clustering, at each iteration of Algorithm 1, only a subset of the
items is clustered. Although such an approach does not provide the labeling for
all the items, it provides an overview of the clustering structure, i.e., the number
and relative sizes of clusters. Therefore, we visualize the results of such a cluster-
ing using an abstract visualization, where each cluster is represented by a circle
with a distinct color (taken from ColorBrewer [81]) where the size represents the
number of items it includes (Figure 5-a). This view is also animated and shows
how many items are migrating between different clustering results (Figure 5-b).
Here, we prefer an abstract visualization due to the lack of an inherent spatial
mapping of clusters to 2D.
Both of these methods are used in integration with the conventional linking

& brushing and the keyframed brushing mechanism. We are running separate
computational threads to carry out these two operations. Both of these threads
manage the time limitations as outlined in Algorithm 1. When the results of the
computations are ready, a signal is sent to the visualizations to update the results
in the corresponding visualizations. In Section 9, we evaluate the performance
of online computations in terms of the stability of the results and the amount of
data that could be processed within the time limitations.

7 Animated Transitions
In our approach, we use animated transitions to support the interpretations of
changes while comparing different results of a computational tool. Each com-
putational result can be thought of as a key frame in an animation and the
in-betweened frames are computed by the animation module. Animated transi-
tions are controlled by the first level of operation and are done at 10 Hz or faster.
A single animation sequence takes 1 sec. For the sake of simplicity, we focus in
the following on animations that display PCA results. Assume that we start with
a view V that shows the PCA projection of the data based on all the dimensions
in the US census dataset.
Immediate response animations – Our online computation mechanism im-
mediately responds to user input such as a new selection of a group of dimensions
(similar to Figure 2). The interactive input triggers Algorithm 1 which returns
the first, approximate result within 1 second. If the user spots an interesting
structure in this first result, he/she can wait for the algorithm to compute a
more precise result. And in order to maintain the human-computer dialogue
also in this case, the visualization V is fed with new, more accurate computation
results every second. As a result, the points in V start animating to their new po-
sitions in the newly available PCA projection. However, if there is no apparently
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Figure 6: Two different animation patterns. The first pattern moderates “immediate
response animations”, where every 1 sec. a new computational result is computed and
a new animation sequence is played one after the other (1). In the “keyframed brushing
animations”, each animation sequence is followed by a 1 sec. of a pause to give the
user enough time to familiarize with the computation results (2) – for such animations
looping is possible, as well.

interesting structure in the first results, or at any instance, the user can update
the selection. In this case, the current animation is stopped immediately and
the view animates to the new computation results, instead. The animation ends
when all the items are processed and Algorithm 1 terminates. An illustration of
the pattern of such an animation is shown in Figure 6-1. Instead of alternative
methods such as rotating the axes of the projections [49], we prefer (non)linear in-
terpolations for the animations since the transitions carry an incremental nature
in immediate response animations.
In order to visually encode the accuracy of the computation, we adjust the size

of the points in the scatterplots (Figure 7). The size of the points are inversely
proportional to the proportion of the samples that are already processed. This
means that when a little number of samples are used, the points are larger. This
creates visualizations with more overlapping points, which makes it possible to
see only the overall structures and no details. As the computation becomes more
reliable at each iteration, the points get smaller, enabling more detailed readings
from the visualization as it sharpens. Alternative methods, such as blurring in
the Semantic Depth of Field technique [117], can also be incorporated here to
encode the uncertainty in the results.
Keyframed brushing animations – These animations are triggered when the
user performs a keyframed brush operation. A typical use of this animation
is as follows: firstly, the user makes a keyframed brush sequence that selects
different subsets of dimensions to then observe the differences between the PCA
computations that are done for each of these selections in the sequence. Referring
back to the example in Section 3, a keyframed brush could span each of the 5
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Figure 7: Our interactive PCA computation module responds to any selection by com-
puting a best possible result within the given temporal constraints. If the user spots an
interesting structure, he/she can observe a progressively improving PCA animation as
new results are computed by Algorithm 1. If no interesting structure is observed, the
user can immediately make a new selection and stop the current animation and trigger
a new one. Since there is an interesting structure in the first frame above, we decide
to observe the whole animation as the results become more accurate. Here, the point
sizes are proportional to the uncertainty related to the computations. This mechanism
ensures that the user makes only overall readings when the results are less accurate
and detailed readings (through smaller points) as the quality of the results improve. In
the animation sequence (3 key frames are shown), only three bigger groups are visible
in the beginning. As more and more accurate results arrive, sub-groups in each of the
larger groups can be observed.

category bins in the histogram. As a result of this input, the PCA visualization
would animate within these five projection results, computed on the run by the
online algorithm.

In these animations, the PCA is computed using the first keyframe of the
brush sequence and V is animated accordingly. Then the system waits for one
second to give the user enough time to observe the results. This, in particular,
is the user part of the human-computer dialogue. At the end of this time, the
system starts animating again to the next selection in the sequence until all the
brushes are processed. For this type of animation, we also include a looping
function, so that the changes in the sequence can be observed more than once.
This pattern is illustrated in Figure 6-2. We achieve the looping, pausing, and
rewinding operations by using a fixed sampling array (array Q in Algorithm 1).
For each loop, the results are recomputed instead of being stored to avoid the
memory overhead that it can cause.
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7.1 Why Animated Transitions?

Due to the conflicting reports on the successful utilization of animations [193,
155], we carefully consider our design choice related to the use of animated tran-
sitions. We also make sure that our animated transitions follow the congruence
principle, that requires a natural mapping between the changes in the visualiza-
tion and the information to be conveyed, and the apprehension principle which
requires that the changes and relations depicted in the animations are easily
perceivable and understandable by the user [193].

In our visualization approach, PCA projection results carry spatial character-
istics, i.e., have a meaningful mapping to the x and y coordinates and all the
changes between different projections, which carry valuable information for the
analysis, happen within this spatial mapping. It is reported that in tasks where
the objects’ spatial positions are of importance, the utilization of animations is
suggested [15]. Therefore we reckon that it is suitable to utilize animation for
the visualization of change in such views. In the case of clustering related an-
imations, the focus is on the membership changes and the clusters are mapped
to physical positions in the abstract view. Therefore, the membership changes
also carry spatial properties, e.g., from cluster A (located at x1, y1 in the view)
to cluster B (x2, y2). This makes such changes also suitable to be visualized by
animated transitions. This presence of such meaningful spatial mappings in the
animated views maintains the congruence principle, accordingly. Further, it is
stated that interacting with animated views, for instance via pausing or looping,
is an important extensions to achieve the apprehension principle [193]. In our
system, we enable this functionality such that the user can pause, stop, and loop
animations interactively. Inline with the apprehension principle, one might argue
that animations put additional attentional and memory load to the user. This
may suggest the use of static visualizations such as small multiples, although
there are conflicting reports on their efficiency [155, 73]. In our approach, we
utilized animations as our main medium largely due to the fact that the user
continuously interacts with the views to trigger new computations and generat-
ing new animations. Using a set of small multiples in response to all the selections
done by the user is not space efficient in a multiple view environment. However,
to support the user with this attentional and memory load, and to get together
the best of two worlds, we include a mechanism that enables the user save any
step of the current visualization animation as a separate interactive view that
is then available for an individual analysis. In addition, we made improvements
to the animated transitions to improve the readability of the animations. These
improvements are discussed in detail in the following section.
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7.2 Improving Animated Transitions
In the following, we present selected improvements to animated transitions. The
first improvement is related to maintaining the coherence between two key frames
(two computational results) of an animation. Such an improvement is important
in order to preserve the mental map of the user [11] and similar challenges have
been studied in other domains, such as in graph drawing [63]. In the case of
PCA, the resulting principal components (PCs) are known to have arbitrary
rotations and signs due to the nature of PCA [100, 22] . Due to this fact, we
observed that although the structure of the point distribution does not change,
i.e., item neighborhoods stay the same, the PCs can come out flipped and/or
mirrored. This makes it very hard to follow the animations and creates rotations
that carry no significant meaning. We solve this by checking the correlations
ρ (using Pearson’s correlation measure) of the axes between the first, x1, y1,
and the second PCs x2, y2. If ρ(x2, y1) > ρ(x2, x1), we flip the axes, and if
ρ(x1, x2) < 0 (negatively correlated) we mirror the axis (mirroring check is done
also for y). Refer to the accompanying video on how this affects the results.
Similarly, in the case of cluster computations, the resulting cluster labels are

in principle arbitrary. In order to make coherent transitions between key frames
(two clustering results), we need to find a mapping between two consecutive
labellings. We use a metric called Jaccard coefficient [181], which measures the

PC
2

PC
1

PC
1

PC
2

a) b)

Figure 8: Coloring is used to enhance the perception of change between animation
frames. We use a 2D color map taken from the CIELUV color space using a fixed
lightness value (corners of the 2D map are shown). The points are colored according to
their position at the beginning of the animation sequence (a) and this color stays the
same for the whole animation (b).
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overlap between two sets. For each cluster ci in the current result, we compute
the Jaccard values with all the clusters in the next frame c′. And for each cluster,
we find the corresponding cluster c′j with the highest Jaccard(ci, c′j) and update
the mapping accordingly.
Coloring is used additionally to support the tracking of changes in the an-

imations in scatterplots. We map the color of each point based on their x, y
coordinates in the beginning of an animation sequence (Figure 8-a) and the col-
oring stays constant for all points through the animation. The corners of the 2D
color map and the resulting colors can be seen in Figure 8. The color map is
constructed using an isoluminant slice of the CIELUV color space [207]. With
this coloring mechanism, we enable a mixture of dynamic and static techniques
in the visualization of change.
We also improved the animations by using a non-linear interpolation while

constructing the in-betweens. We create animations that are slow both at the
start and towards the end of the animation (also known as “ease-in and ease-
out”). This update reserves more time for the user to observe the configurations
of the plots at the key frames rather than at the in-betweens. The effect of such
transitions has been also exploited by van Wijk and Nuij [197] and the study by
Dragicevic et al. [46] states that the use of such non-linear methods improve the
efficiency of animations.

8 Sample Analysis Scenarios
The new interaction mechanisms and the animated transitions enable a new set
of analysis routines that lead to optimized analytical processes. Here, we exem-
plify three scenarios where our methods are used to investigate high-dimensional
datasets having typical analytical tasks in mind. For the animations related to
these tasks in this section, we refer to the accompanying video.

8.1 Observe the regression relations
In this example, we analyze the US Census dataset (see Section 3). We try to
understand the relations between several dimensions using a multiple windows
setting (Figure 9). Here, we make use of the speed of keyframed brush animations
to investigate the regression relations and therefore reduce the time it takes to
move from one brush to the next (from 1 to 0.2 second). We first bring up three
linked views (the top three in Figure 9), where the first one shows the % collage
graduates (% coll) vs. income of African Americans and the other two shows
the % of African Americans against two values, % not high school graduates (%
not_HS) and % males that are divorced (% m_Div). We perform a keyframed
brush operation using the constrained mode, that precisely selects increasing %
coll values. Then we observe the animated brushes to loop several times in the
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two linked views. We see that the selection in the left-top view is accelerating
and moving in a higher speed with decreasing % not_HS values. In the top-right
view, on the other hand, the selection moves at a constant and a slower speed
with decreasing % m_Div values. These observations indicate that the relation
between % coll and % not_HS is a negative non-linear (due to the acceleration)
and stronger (due to the speed) regression. However, the relation between % coll
and % m_Div seems to be a linear (constant speed) and a weaker regression.
Refer to the accompanying video for an immediate impression of these temporal
and visual effects.
In order to confirm this finding, we visualize the % not_HS and % m_Div

values against % coll values. We indeed see that the scatterplots (the two below
in Figure 9) confirm our observation. Such an analysis would not be easily
possible by modifying the brushes manually since the attention of the user would
be on manipulating the brush (instead of realizing the change of speeds in the
linked focus+context visualization). One additional benefit of the constrained
brushing mode in this example is that the selection sequence selects increasing
values precisely, leaving the other dimension unchanged.

8.2 Determine dimensions with structure

Here, we analyze a dataset on protein homologies that was made available in the
2004 KDD Contest [1]. The dataset consist of 10498 rows and 77 columns, i.e.,
n × p = 10498 × 77. The analytical unit task here is to investigate the set of
dimensions to determine those with an apparent structure in them and to use
them for further analysis. Here, we make use of PCA calculations on different
subsets of the dimensions and observe the changes to spot interesting structures.
We use a visualization of the dimensions over two statistics, skewness and kurtosis
(Figure 10-left). We observe that most of the dimensions have similar kurtosis
values but varying skewness. To investigate the dimensions over their skewness
values, we build a keyframed animation that starts with dimensions that are
left-skewed animating to those that are right-skewed.
When we observe the resulting animation with the key frames shown in Fig-

ure 10-right, we see that there are structures appearing between frame 7 and 8.
After further inspection through different statistics and the dual analysis frame-
work (introduced in Section 3) [189], we find out that there is a single dimension
that is included as a category field in the data and it causes these structures.
One important observation in this study is that even when the dataset size is

relatively large (close to a million of values), the PCA calculations are done in
the temporal limits and the animations run smoothly.
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1 - %AA vs. %notHS 2 - %AA vs. %m_Div
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Figure 9: Using a constrained keyframed brush animation in a multiple views setting.
A brush sequence is set up to follow increasing % coll values (view-0). When the brush
sequence animation is looped several times, a difference in the speed of the selection
is spotted between the two scatterplots. The selection accelerates at a high speed in
view-1 indicating a non-linear, strong regression. And it moves at a constant, lower
speed in view-2 indicating a linear and weaker regression. This finding is confirmed
through views 3 & 4.
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8.3 Observe structures in the data
In this analysis example, we analyze data from The Cancer Genome Atlas (TCGA)
project [183] related to a study on sub-types of breast cancer [137]. This dataset
contains the gene expression levels of 1500 genes for 529 samples from tumor tis-
sues. The comprehensive study of this dataset reports 4 breast cancer subtypes,
namely, Basal-like, HER2-enriched, Luminal A, and Luminal B [137] and these
labels are provided as meta-data. We load this dataset such that the genes are
the rows and the tissue samples are the columns, i.e., n = 1500, p = 529.
The analysis question here is to find genes that are common or distinctive

within the subtypes. In order to achieve this, we select, one by one, the four
subtypes (i.e., 4 groups of the dimensions of our 2D table). In response to each
of these selections, PCA is applied automatically. We observe the animated
transitions between these four projections and check for structures within these
transitions.
Figure 11 displays the PCA computation results (four key frames) for these

four groups. When the transitions between the first three projections are ob-
served, a group of 82 genes is found to be moving together and stable within
the projections (marked with a black ellipse). This implies that this group of
genes have similar expression patterns for all the three subtypes that are Basal-
like, HER2-enriched, and Luminal A. Although this group of genes have little
discriminative information, it amounts to the common characteristics that are
shared within the subtypes.
To confirm this hypothesis, we refer to the gene expression values for these

82 genes. Similarly to doing multiple two- sample t-tests for these groups, we
compare the center and the spread of the expression values for the 82 genes over
these three groups. We have seen that there are in fact no significant differences
in the expression levels of these genes within these three groups. This deeper
statistical analysis supports our hypothesis on this group of genes. Now, if the
analyst needs to run further classification algorithms on the tissue samples, this
group of genes can safely be left out from the computations to achieve more
precise classifications.
In addition to the above result, we observe that another group of genes (red-

dashed ellipse in Figure 11) is positioned close to the first gene group in the
projection for the second subtype HER2-enriched. However, the animated tran-
sitions reveal that this structure is only visible for the HER2-enriched subtype
and not shared with the other subtypes (observing how this second group be-
haves is unfortunately not possible to show in static images). Similarly when the
transitions for Luminal A (marked 4) subtype is viewed, it is seen that none of
these structures are preserved.
In this analysis, we have seen that the animated transitions help the observer to

determine structures that are preserved (or not) within the computation results.
Our online computation scheme quickly leads to a hypothesis on structures within
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the genes, which is then confirmed through more precise but time-consuming
computations. This demonstrates a typical optimized analysis pipeline, where
the capabilities of the human is used optimally to detect structures which then
provide the basis to refer to advanced computations.

9 Evaluation of Online Computations
Here we evaluate the quality of the results that are produced by the incremental
PCA module and observe how quickly the computations converge to stable results
in comparison to an offline algorithm. Our evaluation strategy is the following.
We first compute PCA using a conventional offline approach and project the data
items to the first two principal components and denote this as ρ. Secondly, we
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Figure 11: The analysis of data from the TCGA project on breast cancer subtypes [137].
Animated transitions (only the keyframes are shown here) reveal a subgroup of genes
that are stable and similarly expressed within three subtypes of cancer (black circle).
A group (red dashed circle) is found to be only formed in Type-2.
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compute incremental PCA results in 10 iterations by growing the sampling size
by 10% at each step. At the end of each such iteration, we project all the data
items to the first two principal components ρ′ and compare ρ′ to the initially
computed ρ. The comparison is done by a similarity metric called neighborhood
preservation ratio (NPR) suggested by van der Maaten and Hinton [194]. This
metric is computed by finding the set of k nearest neighbors of each point xi in
both of the projections ρ and ρ′, which are denoted as Gi and G

′

i respectively.

We then compute the NPR between ρ and ρ′ as: 1/n ·
n∑
i=1

(
∥∥∥Gi ∩G′i∥∥∥ /k). Here, if

the two projections are completely the same, the NPR score is 1 and gets closer
to zero as two projections differ from each other.
We run 5 comparative tests (using k = 10) with 5 different datasets which are

either artificial or taken from the UCI repository [12]. The datasets are:

1. Artificial dataset n = 4050, p = 35 where the dimensions have distinct charac-
teristics, e.g., normal, log-normal, uniform.

2. US Census Dataset (see Section 3) with n = 2216, p = 86.
3. An artificial dataset with n = 1024, p = 256 where the dimensions all together

encode 16 clusters.
4. Low Resolution Spectrometer dataset with n = 532, p = 97.
5. Protein Homology Dataset (see Section 8) with n = 10498, p = 77.

Figure 12 displays the NPR scores for each of the dataset for 10% sample size
increments. We observe that with the datasets that are taken from the UCI
repository, even with 10% of the data, we obtained NPR scores close to 1, meaning
that there is little difference with the projections computed by using only 10%
of the data and those computed by an offline algorithm. However, for artificial
datasets with structures, i.e., such as the 16 clusters in Test-3, or with dimensions
that have very skewed distributions, i.e., such as log-normal distributions in Test-
1, the NPR scores tend to be lower. This is due to the variability in sampling
from these structured dimensions and more advanced sampling schemes may be
utilized to overcome these problems [143]. These results show that even with
very small portions of the data used, the online algorithm manages to provide
approximate results that are reasonably reliable. It has been reported for PCA
that in order to obtain reliable results, one has to use at least around 400 items
or keep a 10:1 item to dimension ratio, i.e., at least 10 items per dimension [142].
When the amount of data that can be processed by our algorithm in 1 sec. is
considered in the above tests (listed in Table 2), we observe that our algorithm
manages to process sample sizes that are sufficient to achieve reliable results.
The results also show that the number of data items consumed by the algorithm
depends on the number of dimensions of the data. As a result, for the 256
dimensional dataset, our sampling method was not able to keep the 10:1 item to
dimension ratio in 1 sec. but was able to maintain the 400 items consideration.
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Figure 12: Neighborhood preservation ratio values computed for 10 different sample sizes
for 5 datasets.

This implies that for datasets with very large dimension counts, the results of
the algorithm may be unstable due to the low number of samples that can be
consumed within the temporal limitations.
Moreover, we cross the % of samples in Table 2 with the NPR scores in

Figure 12. We observe that for most of the datasets, our algorithm manages to
reach high NPR scores either in a single iteration (tests 1, 2 and 4) or three to
four iterations (tests 3 and 5).

Scope & Limitations of Online Algorithms Researchers in machine learning
and in data mining have been developing online algorithms mainly due to their
time and memory efficiency when dealing with large datasets, and, the updat-
ing capabilities due to changes in the data [102]. However compared to offline
versions, i.e., algorithms that process the whole data in a complete batch, online
algorithms can lead to inaccurate results and might suffer from over-fitting to the
data that has been processed [24]. Such problems are tackled via error-bounded
methods [44] and advanced sampling strategies [68].
Depending on the task and type of computational tool that needs to be em-

ployed, there are incremental versions of different algorithms in literature that
can be integrated as the computation module (O in Algorithm 1). In addition
to PCA and clustering, online algorithms have been used in classification [68],
time series analysis [68], regression analysis [128], and, even for non-linear pro-
jection methods such as ISOMAP [121]. However, there are, of course, tasks that
are not suitable to approach with online algorithms. Outlier analysis in nov-
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Test ID # of dimensions # of processed % of data
1 35 1700 41%
2 86 1200 55%
3 256 210 20%
4 97 532 100%
5 77 1330 22%

Table 2: Performance evaluation for online PCA computations (the # and % of items
processed in 1 second).

elty detection or statistical procedures that require highly precise results such
as hypotheses testing, may not be easily possible with incremental methods. In
such cases, it is advisable for visualization designers to focus on improving the
performance of the system, using methods such as pre-computing or caching, to
maintain interactivity within the limits of human time constants, one successful
example in this line of work is the ATLAS system by Chan et al. [27].

10 Discussion
When working with massive datasets, our methods can enable the user to get an
understanding of the data very quickly. After finding interesting relations in the
data, e.g., which dimension subset to use for clustering, the user can refer to a
sophisticated offline algorithm (which potentially takes a long time to compute)
to get more accurate results. This amounts to a more efficient pipeline compared
to using the costly algorithms without any prior investigation of the data.
Our online algorithm utilization methodology (Algorithm 1) could be improved

further by incorporating a sampling of the dimensions (variables) in addition
to the sampling over the data items. This could be achieved through a pre-
processing step of the dataset that creates a hierarchical clustering of the vari-
ables. This hierarchy can then be used to progressively improve the results
similar to a level-of-detail rendering mechanism in computer graphics [67]. Such
an addition can improve the robustness and performance of the method when
the dimension count gets very large.
When realizing our methods, we focused on the functionality of the mechanisms

rather than their performance. Our approach could certainly benefit from a
mechanism that involves high-performance computing techniques, for instance
those introduced by Piringer et al. [146].
We see a number of visualization problems that can benefit from the suggested

three levels of operation. In this paper, we investigated the utilization of our
methods on static datasets. However, in the visual analysis of dynamic data,
such as temporal datasets, dynamic visualizations are employed frequently. The
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consideration of the levels of operation in such dynamic systems can lead to
visualizations that are perceptually more suitable for the analysis.
As immediate future extension, our sampling and online algorithm approach

can be extended to handle streaming data. In essence, our proposed sampling
strategy turns a static dataset into a data stream and feeds the data in smaller
chunks to the computational tools and the visualization system. In the case
of streaming data, however, further improvements to the visualization system
need to be incorporated. These include the progressive computation of descrip-
tive measures such as statistics, and the representation of how the computations
evolve as new data becomes available.

11 Conclusions
In this paper, we introduce three levels of operation for visual analysis tasks
that involve the integration of computational tools and interactive methods. The
three levels address important characteristics of humans when they are engaged
in a communication (dialogue). We respect the three human time constants [25]
and design the temporal characteristics of the three levels, accordingly. With
our approach, we take a solid step to realize one of the recommendations in
Illuminating the Path by Thomas and Cook [187], that reads “. . . identify and
develop interaction techniques that address the rational human timeframe.”.
We observe that analysis processes can be improved when human factors are

considered. As the data size and the complexity of typical analytical questions
increase, the careful consideration of human characteristics plays an important
role in achieving efficient and effective results.
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Abstract

High dimensional, heterogeneous datasets are challenging for do-
main experts to analyze. A very large number of dimensions often

pose problems when visual and computational analysis tools are con-
sidered. Analysts tend to limit their attention to subsets of the data
and lose potential insight in relation to the rest of the data. Generat-
ing new hypotheses is becoming problematic due to these limitations.
In this paper, we discuss how interactive analysis methods can help
analysts to cope with these challenges and aid them in building new
hypotheses. Here, we report on the details of an analysis of data
recorded in a comprehensive study of cognitive aging. We performed
the analysis as a team of visualization researchers and domain experts.
We discuss a number of lessons learned related to the usefulness of
interactive methods in generating hypotheses.

This article was published in Human-Computer Interaction and Knowledge Discovery in
Complex, Unstructured, Big Data. Lecture Notes in Computer Science, Volume 7947:1–12,
2013.

167



168 1. Introduction

1 Introduction
As in many other domains, experts in medical research are striving to make sense
out of data which is collected and computed through several different sources.
Along with new imaging methodologies and computational analysis tools, there
is a boom in the amount of information that can be produced per sample (usu-
ally an individual in the case of medical research). This increasingly often leads
to heterogeneous datasets with very large number of dimensions (variables), up
to hundreds or even thousands. This already is a challenging situation since
most of the common analysis methods, such as regression analysis or support
vector machines [134], for example, do not scale well to such a high dimension-
ality. Consider for instance applying factor analysis to understand the dominant
variations within a 500-dimensional dataset. It is a great challenge to correctly
interpret the resulting factors even for the most skilled analyst.
On top of this challenge, the number of samples is usually very low in medical

research due to a number of factors such as the availability of participants in
a study or high operational costs. This results in datasets with small number
of observations (small n) but a very high number of variables (large p). Since
most of the statistical methods need sufficiently large number of observations to
provide reliable estimates, such “long” data matrices lead to problematic com-
putations [29]. Both the high dimensionality of the datasets and the “p � n
problem”, pose big challenges for the analyst and the computational tools. These
challenges lead to the fact that the experts tend to limit their analyses to a subset
of the data based on a priori information, e.g., already published related work.
Limiting the analysis to a subset of the data dimensions hides relations in the
data that can potentially lead to new, unexpected hypotheses.
At this stage, the field of visual analytics can offer solutions to analysts to

overcome these limitations [111] [108]. The visual analysis methods enable an-
alysts to quickly build new hypotheses through interaction with the data. The
user also gets immediate feedback on whether or not these hypotheses call for a
further investigation. Moreover, the interactive tools enable analysts to check for
known hypotheses and relationships that have been already studied and reported
in the related literature.
In this application paper, we discuss how interactive visual analysis meth-

ods facilitate the hypothesis generation process in the context of heterogeneous
medical data. We discuss how we utilize the dual analysis of items and dimen-
sions [189] in the interactive visual analysis of high dimensional data. We report
on the analysis of data related to a longitudinal study of cognitive aging [8] [215].
We demonstrate how our explorative methods lead to findings that are used in
the formulation of new research hypotheses in the related study. We additionally
showcase observations that are in line with earlier studies in the literature. We
then comment on a number of lessons learned as a result of the analysis sessions
that we performed as a team of visualization researchers and domain experts.
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2 Interactive Visual Analysis Environment

The analysis of the cognitive aging study data is performed through a coordinated
multiple view system [202], that primarily makes use of scatterplots. The user is
able to make selections in any of the views and combine these selections through
Boolean operators, i.e., ∪,∩,¬. In order to indicate the selections and achieve the
focus+context mechanism, we employ a coloring strategy, i.e, the selected points
are in a reddish color and the rest is visualized in gray with a low transparency
(see Fig. 1-b) to aid the visual prominence of the selection. One additional note
here is that we use a density based coloring such that overlapping points lead to
a more saturated red color. We use Principal Component Analysis (PCA) – on
demand – to reduce the dimensionality of the data when needed. Additionally,
we use Multidimensional Scaling (MDS) directly on the dimensions similar to
the VAR display by Yang et al. [212]. In this visualization approach, the authors
represent a single dimension by a glyph that demonstrates the distribution of
the items in the dimension. Later authors apply MDS on the dimensions to
lay them out on a 2D-display. Similarly in this work, we feed the correlations
between the dimensions as a distance metric to MDS and as a result, it places the
highly inter-correlated groups close to each other. These computational analysis
tools are available through the integration of the statistical computation package
R [184].
The analysis approach employed in this paper is based on the dual analysis

method by Turkay et al. [189]. In this model, the visualization of data items is
accompanied by visualizations of dimensions. In order to construct visualizations
where dimensions are represented by visual entities, a number of statistics, such as
mean (µ), standard deviation (σ), median, inter-quartile-range (IQR), skewness,
and, kurtosis are computed for each dimension (i.e., column of the data). These
computed statistics are then used as the axes of a visualization of dimensions.
In Fig. 1-a, the dimensions are visualized with respect to their skewness and
kurtosis, where each dot here represents a dimension.
An additional mechanism we employ is the deviation plot, which enables us to

see the changes in the statistical computations for dimensions in response to a
subset selection of items [192]. In Fig. 1-b, we select a sub-group of participants
(from the study data) who are older and have a lower education. We now com-
pute the µ and σ values for each dimension twice, once with using all the items
(participants) and once with using only the selected subset. We then show the
difference between the two sets of computations in a deviation plot (Fig. 1-c).
The dashed circle shows the dimensions that have larger values for the selected
subset of items, i.e., for the elderly with lower education. Such a visualization
shows the relation between the selection and the dimensions in the data and
provides a quick mechanism to check for correlations. Throughout the paper,
the views that show items have blue background and those that visualize the
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Figure 1: Dual analysis framework where visualizations of items have a blue and those
of dimensions a yellow background. a) We employ a visualization of the dimensions
over their skewness and kurtosis values, where each dot represents a single dimension
b) We select a group of participants who are older and have a lower education. c) The
deviation plot shows how the µ and σ values change when the selection in (b) is made.

dimensions have a yellow background. Further details on the methods could be
found in the related references [189] [192].

3 Cognitive Aging Study Data
We analyze the data from a longitudinal study of cognitive aging where the
participants were chosen among healthy individuals [8] [215]. All the participants
were subject to a neuropsychological examination and to multimodal imaging.
One of the expected outcomes of the study is to understand the relations between
image-derived features of the brain and cognitive functions in healthy aging [215].
The study involves 3D anatomical magnetic resonance imaging (MRI) of the
brain, followed by diffusion tensor imaging (DTI) and resting state functional
MRI in the same imaging session [89] [214]. In this paper, we focus on the
anatomical MRI recordings together with the results from the neuropsychological
examination. The examination included tests related to intellectual function
(IQ), memory function, and attention/executive function. IQ was estimated from
two sub tests from the Wechsler Abbreviated Scale of Intelligence [206]. The total
learning score across the five learning trials of list A (learning), the free short
and long delayed recall and the total hits on the Recognition scores from the
California Verbal Learning Test (CVLT) II [39] were together with the subtest
Coding from Wechsler Adult Intelligence Scale-III [205] used to assess memory
function. The Color Word Interference Test from the Delis-Kaplan Executive
Function System [40] and the Trail Making Test A and B from the Halstead-
Reitan Test Battery [151] were used to assess attention/executive function.
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The resulting dataset from the study contains information on 82 healthy indi-
viduals who took part in the first wave of the study in 2004/2005. T1-weighted
MRI images were segmented into 45 anatomical regions. For each segmented
brain region, seven features were derived automatically, namely: number of vox-
els, volume and mean, standard deviation, minimum, maximum and range of the
intensity values in the regions. All these automated computations were done in
the FreeSurfer software suite [62]. This automated process creates 45× 7 = 315
dimensions per individual. Additional information on the participants, such as
age and sex, and, the results of two neuropsychological tests are added to the
data. With this addition, the resulting dataset has 373 dimensions, i.e., the re-
sulting table’s size is 82 × 373. Moreover, meta-data on the dimensions is also
incorporated. This meta-data contains whether each dimension is a test score or
a brain segment statistic, which brain regions that dimension is related to, and,
which statistical feature (e.g., volume or mean intensity) is encoded.

4 Analysis of Cognitive Aging Study Data
In this study, our analysis goal is to determine the relations between age, sex,
neuropsychological test scores, and the statistics for the segmented brain regions.
The conventional routine to analyze this dataset is to physically limit the analysis
to a subset of the dimensions and perform time-consuming, advanced statistical
analysis computations on this subset, e.g., loading only the data on specific brain
regions and training a neural network with this data. In this setting, if the same
analysis needs to be applied on a slightly different subset (which is often the case),
all the operations need to be redone from the beginning – a considerably long
time to build/evaluate a single hypothesis. On the contrary, in our interactive
methods, the whole data is available throughout the analysis and analysts switch
the current focus quickly through interactive brushes.
In order to direct the analysis, we treat age, sex, and the test scores as the de-

pendent variables and try to investigate how they relate to the imaging based vari-
ables. Moreover, we investigate the relations within the brain segments. In each
sub-analysis, we derive a number of observations purely exploratively. We then
discuss these findings as an interdisciplinary team of visualization researchers,
experts in neuroinformatics and neuropsychology. We comment on the obser-
vations using a priori information and suggest explanations/hypotheses around
these new findings. These hypotheses, however, needs to be confirmed/rejected
through more robust statistical and/or clinical tests to be considered for further
studies. Our aim here is to enable analysts to generate new hypotheses that
could potentially lead to significant findings when careful studies are carried out.
Prior to our analysis we handle the missing values and perform normalization

on the data. To treat missing values, we apply one of the methods known as
statistical imputation and replace the missing values with the mean (or mode)
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Figure 2: a) MDS is applied on the test score dimensions, where related dimensions are
placed close to each other. Two groups for the test scores (Group-1: IQ and memory
related, Group-2: attention) show up in the results. b) Each group is represented
through an application of PCA and the resulting first principal components are mapped
to the axes of the scatterplot. A group of participants, who are better in learning and
attentive function is selected. c) Some brain regions are smaller for this subgroup,
i.e., have smaller median value. d) We select one of the dimensions that shrink the
most, right lateral ventricle volume (red circle), and visualize these values against the
learning scores from CVLT. We notice that there is indeed a negative correlation with
the learning score from the CVLT.

of each column [163]. We continue with a normalization step where different
normalization schemes are employed for different data types. Here, dimensions
related to the imaging of the brain are z-standardized and the rest of the columns
are scaled to the unit interval.



Paper E Hypothesis Generation by Interactive Visual Exploration of
Heterogeneous Medical Data 173

Inter-relations in Test Results.

We start our analysis by looking at the relations between the test scores. We
first focus our attention on the results related to IQ & Memory function and
attention/executive functions related tests and apply a correlation-based-MDS
on the 15 dimensions. The rest of the dimensions are not used in the computation
and are placed in the middle of the view and colored in gray in Fig. 2-a. Here,
we choose to focus on the two large groups, that are to the left and to the right
of the view. For a micro analysis, one can focus on the sub-groupings that are
visible in both of the clusters. The first group relates to test results assessing
IQ and memory function (Group-1). The second group relates to test scores
assessing attention and executive function (Group-2). This grouping is in line
with the interpretation of these scores and we investigate these two sub-groups
separately in the rest of the analysis. We interactively select these sub-groups
and locally apply PCA on them. We then use the resulting principal components
(PC) to represent these two groups of test scores. We observed that for both of
the groups much of the variance is captured by a single PC, so we decide to use
only the first PC for each group.
Hypothesis 1: There are two dominant factors within the test results, IQ &
memory and attention & executive function.

Findings Based on Sex.

As a continuation of our analysis, we now focus on available meta-data on pa-
tients, such as age and sex, to derive interesting relations. We begin by a visuali-
zation of age vs. sex and select the male participants (Fig. 3-a) with a brush and
observe how the test scores change in the linked deviation view (Fig. 3-b). The
visualization shows that the male participants performed worse in IQ & memory
function related tasks. In tests related to attention and executive function, how-
ever, there were no significant changes between sexes. This is a known finding
that has been already observed throughout the study. Another observation that
is also confirmed by prior information is the differences in brain volumes between
sexes. An immediate reading in Fig. 3-c is that male participants have larger
brains (on average) compared to women, which is a known fact. We analyze fur-
ther by selecting one of the regions that changed the most, Thalamus volume,
and look at its relation with sex (Fig. 3-d). We see that there is a significant
change, however, this apparent sex difference in thalamic volume has shown to
be negligible when the intracranial volume (ICV) difference between sexes are
taken into account [179]. This finding could probably be further explored by
normalizing segmented brain volumes with the subject’s ICV (if this measure is
available).
Hypothesis 2: Males perform worse in IQ & memory related tests but not in
those related to attention & executive function.
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Figure 3: Male participants are selected (a) and the deviation plot shows that for IQ
& memory related tasks, males generally perform worse. However, for attentive and
executive function related tests, there is no visible difference (b). When the changes
in volume for the brain segments are observed, it is clearly seen that males have larger
brains (c). When the volume of one of the segments, thalamus, is visualized with a
linear regression line, the sex based difference is found to be significant.

Findings Based on Age.

We continue our investigation by limiting our interest to the elderly patients
to understand the effects of aging on the brain and the test results. We select
the patients over the age of 60 (Fig. 4-a) and visualize how brain volumes and
test scores change. We observed no significant difference in IQ & memory and
attentive functions for the elderly patients (Fig. 4-b). However, when we observe
the change in brain volumes, we observe that there is an overall shrinkage in
most of the brain segments with age. This is clearly seen in Fig. 4-c, where
most of the dimensions have smaller median values (i.e., to the left of the center
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Figure 4: Elderly patients (> 60 years old) are selected (a). No significant relation is
observed in the test scores (b). When we focus on the volumes of the segments, we
see most of the regions are shrinking with age, but some, especially the ventricles, are
enlarging (c). Apart from the expected enlargement of the ventricles, the right caudate
is also found to enlarge with age (d).

line). Although most of the brain regions are known to shrink with age [200],
some regions are reported to enlarge with age. When the dimensions that have
a larger median value due to the selection (i.e., enlargement due to aging) are
observed, they are found to be the ventricles (not the 4th ventricle) and the CSF
space. Since this is a known fact [200], we focused on the regions that shows
smaller enlargements and decide to look at the right caudate more closely. When
the right caudate is visualized against age, a significant correlation is observed
(Fig. 4-d). This is an unexpected finding that needs to be investigated further.
Hypothesis 3: There is no significant relation between age and performance
in IQ & memory and attentive & executive functions for individuals undergoing
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a healthy aging. Moreover, in contrast to the most of the brain regions, there is
a significant enlargement in the right caudate in healthy aging individuals.

IQ & Memory Function vs. Brain Segment Volumes.

We oppose the first principal components for the two groups of test scores (Fig. 2-
a) and select the participants that show better IQ & memory function perfor-
mance (Fig. 2-b). A linked deviation plot shows the change in median and IQR
values where we observe the change in the imaging related variables (Fig. 2-c).
We limit our interest to the variables that are the volumes of the brain segments
by selecting the volume category through a histogram that displays the related
meta-data (not shown in the image). In the deviation plot, we see a sub-group
of segments (dashed circle) that have lower volumes for the selected participants
(i.e., those that showed better performance). Among those segments are the lat-
eral ventricles that show a significant change. Lateral ventricles are filled with
cerebrospinal fluid and have no known function in learning and IQ. We use the
integrated linear regression computation on a scatterplot showing learning vs.
right lateral ventricle volume and observe that there is in fact a negative correla-
tion. This could be explained such that, when the ventricles have larger sizes, it
indicates less gray matter volume in the brain parenchyma responsible in cogni-
tive function, and is thus associated with reduced performance in IQ & memory
function. However, although ventricles tend to grow with age, we observed no
significant relation between aging and the performance (See Hypothesis 3). These
are now two related observations that leads to an interesting hypothesis.
Hypothesis 4: Regardless of age, the larger sizes of the ventricles are associated
with low performance. However, the (expected) enlargement of the ventricles
with aging does not directly influence the overall performance.

Relations within Brain Segments.

We continue by delimiting the feature set for the brain regions to their volume
and apply MDS on the 45 dimensions (one for each segment) using the correlation
between the dimensions as the distance metric. We identify a group of dimen-
sions that are highly correlated in the MDS plot (Fig. 5-a). This group consists
of the volumes for different ventricles (lateral, inferior) and non-white matter
hypointensities. We investigate this finding closely by looking at the relations
between left lateral ventricle and non-WM-hypointensities and found a positive
correlation relation (Fig. 5-b) due to a sub-group of patients that have outlying
values. This is an interesting finding since non-white matter hypointensities (as
segmented by FreeSurfer) might represent local lesions in gray matter such as
vascular abnormalities that have a predilection for involving the thalamus and
the basal ganglia. Such vascular abnormalities in deeper brain structure could
then lead to substance loss and enlarged lateral ventricles. One might further
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Figure 5: After MDS is applied on the volume dimensions for brain segments, a corre-
lated group of brain segments is observed (a). Although most of these dimensions are
related to the volume of different parts of the ventricles (which is expected), non white
matter hypointensities (scars on the white matter) is also related. This is an interesting
finding which led to an hypothesis on the relation between the enlargement of the scars
on the white matter and the ventricles.

expect that this pathophysiological process would be increasingly frequent with
age, but such relationship between age and non-white matter hypointensities was
observed to be insignificant in our analysis.
Hypothesis 5: There is a positive relation between lesions on brain tissue and
the volume of the ventricles. However, no significant relation with such lesions
and age has been detected, this is likely due to the fact that the study involves
only participants going through healthy aging.

5 Discussions, Lessons Learned & Conclusions
In a typical analysis of this data, domain experts usually utilize complex machine
learning methods, such as neural networks [134], to analyze the data and confirm
hypotheses. With such methods however, the process is not transparent and the
results can be hard to interpret.
Explorative methods, such as this one presented here, offers new opportunities

in building hypotheses. However, the hypotheses built in such systems may
suffer from over-fitting to the data, i.e., the finding could be a great fit for a
specific selection but harder to generalize [86]. In order to provide feedback on
this problem of over-fitting, interactive systems could include cross-validation
(or bootstrapping) functionalities to report on the sensibility of the results [115].
In these methods, the hypotheses are tested for several subsets of the data to
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check the validity of the findings [115]. Another important feature that needs
to be present in such interactive systems is the immediate use of more robust
and solid statistical verification methods. In our current framework, we employ
linear regression to check for the statistical significance of certain relations (see
Fig. 4-d). Such functionalities, and even more advanced inferential statistics, are
feasible to incorporate through the embedding of R. Such extensions are desirable
for domain experts and can increase the reliability of the results considerably in
interactive frameworks.
In this work, we only employed scatterplots and the deviation plot. One can

easily extend the selection of visualizations using more advanced methods dis-
cussed in the literature. The changes can be encoded by flow-based scatter-
plots [28] and the comparison of groups can be enhanced by using clustered
parallel coordinates [98].
In a significantly short analysis session, we were able to build 5 hypotheses

from the healthy aging data. Building this many potential hypotheses using
the conventional analysis process would require a considerable amount of time.
Throughout the analysis, we discovered relations that lead to novel hypotheses
for the healthy aging domain. In addition, we came up with a number of findings
that have been already confirmed in the related literature.

Acknowledgments
We would like to thank Peter Filzmoser for the valuable insights on the statistical
foundations of this work. The study on cognitive aging was supported by grants
from the Western Norway Regional Health Authority (# 911397 and #911687
to AJL and 911593 to AL).



Paper F

Characterizing Cancer Subtypes using the
Dual Analysis Approach in Caleydo

Cagatay Turkay1, Alexander Lex2, Marc Streit3, Hanspeter Pfister2,
and Helwig Hauser1

1Department of Informatics, University of Bergen, Norway
2School of Engineering and Applied Sciences, Harvard University, Cambridge,
MA, USA
3Institute of Computer Graphics, Johannes Kepler University Linz, Linz, Austria

Abstract

The comprehensive analysis and characterization of cancer sub-
types is an important problem to which significant resources have

been devoted in recent years. In this paper we integrate the dual
analysis method, which uses statistics to describe both dimensions
and rows of a high dimensional dataset, into StratomeX, a Caleydo
view tailored to cancer subtype analysis. We introduce significant dif-
ference plots for showing the elements of a candidate cancer subtype
that differ significantly from other subtypes, thus enabling analysts
to characterize cancer subtypes. We also enable analysts to investi-
gate how samples relate to the subtype they are assigned and to the
other groups of samples. Furthermore, our approach give analysts the
ability to create well-defined candidate subtypes based on statistical
properties. We demonstrate the utility of our approach in three case
studies, where we show that we are able to reproduce findings from a
published cancer subtype characterization.

This article is in submission to: IEEE Computer Graphics and Applications, 2013.
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1 Introduction
Cancer is one of the most-common causes of death and virtually everyone is or
will be either directly or indirectly affected by it. While there has been signif-
icant progress in the diagnosis, prevention, and treatment of cancer, there are
still many open questions to be answered, methods to be improved, and drugs to
be developed. While cancer is a multi-factorial disease, involving environmental
factors and lifestyle choices, it has a strong genetic component. In the post-
genomic age research on cancer is largely conducted using methods of molecular
biology to record and analyze the genetic alterations responsible for cancer. One
important field in cancer research is the analysis and characterization of cancer
subtypes. While cancers are colloquially referred to by the tissue they originate
from (e.g., lung cancer because it occurs in the lung), there are in fact significant
differences between cancers from the same tissue, which are characterized by var-
ious biomolecular properties. These different forms of cancer are called subtypes.
Large scale research projects such as The Cancer Genome Atlas (TCGA)1 elicit
comprehensive genomic and clinical datasets with the goal of characterizing the
molecular alterations responsible for cancer; and of identifying and characterizing
cancer subtypes.
Due to next-generation sequencing and micro-array technology, these projects

can utilize large and heterogeneous datasets capturing more aspects of the com-
plex process from the genomic information to the functional consequences than
ever before. However, deriving insight from these complex datasets remains a
challenging task. Current analysis largely relies on custom scripts to find in-
teresting genes or clusters of patients in these datasets. To remedy this, we
have developed Caleydo StratomeX [124], an interactive visualization method
to analyze and discover relationships within large and heterogeneous biomolec-
ular datasets. StratomeX can be used to evaluate overlaps and relationships of
stratifications of patients, i.e., groupings or clusterings of patients.
However, StratomeX does not enable analysts to identify the characteristic

genes of candidate subtypes, nor does it communicate how patients relate to
a given subtype. The former is important since the characteristic genes are
also potentially causally involved in a subtype and thus may be a target for a
therapeutic or diagnostic approach. The latter, investigating how sample relates
to a subtype, can be used to estimate the quality of candidate subtypes and to
build a deeper characterization of a subtype.
In this paper, we address these limitations by integrating the dual analy-

sis approach [189], a general high-dimensional data analysis methodology, into
StratomeX. Our primary contribution is the embedded use of dual analysis views
and significant difference plots, a novel visual representation of the differences be-
tween data subsets, within StratomeX. This approach enables domain scientists

1http://cancergenome.nih.gov

http://cancergenome.nih.gov
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to (1) discover genes that are distinctive for specific subtypes, and (2) observe
the properties of the member samples of a cluster and compare how they behave
in different datasets and clusters. With these, we provide a deeper understanding
of the stratifications of heterogeneous genomics datasets. As a secondary contri-
bution, we investigate the potential of the dual analysis approach to interactively
generate patient stratifications in StartomeX.
We demonstrate our application in three case studies with data from TCGA

and validate our findings against those published by the TCGA consortium.

2 Biological Background and Analysis Tasks
Modern cancer subtype analysis is based on a variety of biomolecular datasets
that capture different aspects of the process of life, starting with the information
stored in the genome to the functional products that trigger biochemical reactions
in the cells. Projects such as TCGA capture information on gene activity, on
factors influencing the process of expression, and on the actual structure and
sequence of the genome. An example for gene activity data is mRNA data (“gene
expression”), which measures the abundance of mRNA in the cell. mRNA is
translated into proteins, which are the functional products. Methylation and
miRNAs influence the process of gene expression in various ways and thus are an
important factor in many processes and diseases.
All these processes play a role in the development of certain cancers, and

consequently, a comprehensive analysis solution needs to take all these datasets,
in addition to meta-data, such as clinical data about patients, into account.
In this paper, we demonstrate our method by investigating mRNA, miRNA,
and methylation data. However, in a comprehensive analysis one would also
incorporate other datasets, for instance, related to structural variations occurring
on various scales in the genome. Such datasets are equally important to get a
full picture of the disease.
In previous work, we have elicited analysis tasks for cancer subtype analy-

sis [124]. These tasks are concerned with finding and evaluating stratifications
of patients based on multiple datasets. We recently revisited these requirements
in collaboration with domain scientists and found the need to supplement them
with the following tasks to characterize the stratifications further:
T1 Find Distinctive Elements

Identifying distinctive elements of clusters in a stratification provides a
deeper understanding of why a particular cluster exists and how it relates
to other clusters within the analysis. Distinctive elements are also good
candidates to investigate as diagnostic markers or may even be causally
involved in the disease.

T2 Compare Samples



182 3. Methodological Building Blocks

Investigating the characteristics of the samples over several datasets and in
comparison to other stratifications is important in building a more complete
picture of the properties of a group of samples. One can observe how
strongly the members of a cluster are related and explore whether they
show similar properties in a dataset that is different than the one used for
clustering.

T3 Create Clusters
Analysts should be able to create clusters in an exploratory manner and
interactively compare the intermediate results to meta-data such as clinical
data. Moreover, this manual clustering process should enable the analyst to
merge observations made using different datasets. The thus created clusters
are well defined in terms of statistical properties and richer in terms of the
sources of information included in the construction phase.

Combined with the previously elicited tasks, this makes it possible to analyze,
create, and characterize cancer subtypes based on multiple biomolecular datasets.

3 Methodological Building Blocks
Our solution that enables the aforementioned tasks is based on an integration
of two visual analysis methodologies, Caleydo StratomeX and the Dual Analysis
Approach. Before introducing the details of how we improve these methodologies
by joining their strengths, we provide brief descriptions of them.

3.1 Caleydo and StratomeX
Caleydo2 is an open-source visualization framework focused on biomolecular data
analysis. Caleydo provides rich functionality for loading and handling multiple
heterogeneous datasets as well as stratifications defined on the data. A core
strength of Caleydo is the ability to slice datasets into meaningful subsets and to
flexibly combine multiple small visualizations of these subsets, using views such
as histograms or heat maps, to a fully integrated composite visualization [122].
Caleydo is one of the examples where visual methods have shown to improve the
analysis of genomics data [167, 42].
StratomeX is a comparative visualization technique that makes use of this

mechanism and enables analysts to investigate the relationships between multiple
stratifications. In StratomeX stratifications are represented as columns. Each
column consists of multiple stacked “bricks”, where each brick corresponds to
a group of patients in the column’s stratification. Ribbons with varying width
visualize the overlap between groups of neighboring stratifications, resulting in
an overall appearance similar to Parallel Sets [116] or Sankey Diagrams [153].

2http://www.caleydo.org

http://www.caleydo.org
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A single sample

A single gene
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Figure 1: Setting up dual analysis views where the data is depicted as a 2D heatmap
for illustration. Samples and genes are visualized in separate views over statistical
measures. In order to construct a view that depicts samples (yellow background),
statistics, µ and σ in this case, for each sample are computed using a row of the data.
A visualization for the genes (light-green background), on the other hand, is constructed
with statistics computed over a column of the data.

Wide ribbons indicate a strong overlap between two groups and thin or absent
ribbons correspond to only a few or no shared patients. Each brick contains a
visualization showing the data of the patients in that group. Analysts can switch
between different types of visualizations on-demand. For numerical data we use
clustered heat maps as default views within the bricks in StratomeX, since they
are very effective for communicating global trends and patterns in the data.

3.2 The Dual Analysis Approach
The dual analysis approach [189] was shown to be effective in the analysis of
high dimensional data. In this method, the visual analysis is carried out in
parallel on both the data items and the dimensions. This duality is achieved by
using statistics computed both over the rows and the columns of a dataset. The
utilization of statistical measures have been shown to be effective in the analysis
of datasets from different domains [106].
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As an example, consider a mRNA gene expression dataset given as a 2D data
table with n rows and p columns, where each row corresponds to a single sample
(patient) and each column to a single gene. The expression values are contained
in the cells of the matrix.
After appropriate normalization is applied on the data, we calculate the central

tendency (µ or median) and the spread (standard deviation σ or inter-quartile
range IQR) using each one of the n samples and p genes separately. Notice
that we calculate the robust counterparts of statistical moments to increase the
resistance of the statistics to outlier values. Figure 1 illustrates how the dual
analysis views are constructed. Notice that visualizations of samples have a
yellow background with each point representing a sample, and visualizations
of genes have a light-green background with each point depicting a gene. The
location of a single point in a scatterplot is determined by the computed statistics.
The analysis process can be elaborated through the use of statistics other than
the first two statistical moments. For the analysis that are carried out in this
paper, we also compute the skewness (skew) that indicates how asymmetric a
distribution of values is (and also in which direction) and the kurtosis (kurt) that
characterize the “peakedness”. Utilization of these measures are demonstrated
later in the case studies.

4 Characterizing Cancer Subtypes through Visual
Analysis

To facilitate the characterization of cancer subtypes in heterogeneous genomic
and clinical datasets, we introduce a visual analysis methodology that makes
use of the dual analysis approach to construct specialized views that represent
clusters in Caleydo. We achieve this by incorporating two different visualizations
as bricks in StratomeX: (1) dual analysis based scatterplots depicting either the
genes or the samples, and (2) significant difference plots. In addition, we also
use these visualizations as separate linked views to enhance the interactive visual
exploration process and achieve tasks such as manual creation of clusters (Task
T3 in Section 2).

4.1 Embedded dual analysis views
In this work, we extend the visualization options for bricks in StratomeX with
scatterplots of either the genes or the samples constructed using the dual anal-
ysis approach. The embedded dual analysis views in StratomeX can be seen in
Figure 2. If the embedded scatterplot is a visualization of the samples (having
a yellow background), it only displays those samples that are members of the
represented cluster (see columns 1 and 2 in Figure 2). On the other hand, if a
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Figure 2: Embedded dual analysis views in StratomeX. The first column shows a 4-
cluster stratification for a microRNA dataset. The scatterplots show median versus
inter-quartile-range for the samples in the cluster. The second column shows a 3-cluster
stratification for an mRNA dataset, again showing samples. The third column uses the
same 3-cluster stratification for the same dataset, but shows genes instead of samples.
The scatterplots of samples (yellow background) depict the statistical characteristics
of the members of each cluster and the scatterplots of genes (light-green background)
depict statistics computed for the genes using only the samples from the cluster rep-
resented by the brick. The selection of samples is highlighted in the first two columns
and also in the ribbons. The selection of the genes makes it possible to investigate the
distribution of expression values for the genes for different clusters in a stratification.

scatterplot of genes is preferred, the brick displays the statistics for all the genes
computed using only the members of the cluster being represented.

We enhance the interactive exploration functionalities by enabling a selection
mechanism that is linked with all the views in StratomeX. It is possible to select
both samples (selection in the second cluster in the second column of Figure 2)
and genes (selection in the second cluster in the third column in Figure 2) at the
same time. Also note that the ribbons in StratomeX highlight the selection of
the samples in Figure 2.
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4.2 Significant difference plots
Since the comparison of subsets is one of the fundamental tasks in tumor subtype
analysis, we facilitate the visual comparison of subsets with a novel visualization
called significant difference plot. In previous work, we used similar plots to effec-
tively display the changes in statistical computations in response to a selection
made by the user [192]. In this paper, we extend this approach with the de-
termination and the communication of the significance of the differences being
visualized.
Figure 3 illustrates how significant difference plots (or, shortly difference plots)

are constructed. The user first selects (brushes) a subset of samples (we denote
the set of selected samples as B and the rest as R). In response, the system
automatically calculates the µ and σ values for each gene using only the set
of selected samples B (µB and σB) and the rest of samples R (µR and σR)
separately. We then compute the differences between the values with:

∆µ = µB − µR , ∆σ = σB − σR (1)

Sample selection

Δ
μ 
vs. Δ

σ

Differences for 

a single gene

σσσσσσσσσσσσσσσσσσσσσσσσσ

μR

σR

μB

σB

μ vs. σ

Figure 3: Significant difference view. A set of samples is selected. The differences of the
selected samples (B) compared to the not-selected sample (R) is plotted for the genes.
Genes that show significant differences are depicted in red and all others in blue.
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Note that ∆µ and ∆σ are both data vectors of size p, the number of genes.
The difference plot then visualizes these values for all the p genes. When there is
no difference for the expression values of a gene for subsets S and R, it is placed
at the origin (0, 0) of the view.
The difference plot in Figure 3 (right) displays the distribution of the differ-

ences in the statistic computations in response to the selection in the scatterplot.
Notice that in this example most genes have lower µ values for the selected items,
i.e., placed to the left of the y-axis.

Communicating significance – One very important consideration when dif-
ferences between two subsets are analyzed is the notion of statistical significance,
i.e., whether the difference occurs by chance or not. As in many other domains,
statistical hypothesis tests are employed to test for significance in the analysis of
genomic data [5]. In this work we enhance difference plots with the integrated
use of the statistical hypothesis testing.
In order to compute the significance, we utilize the two-sample Welch’s t-test

as the integrated hypothesis testing procedure [161]. We choose this test since it
does not assume that the two subsets have equal variance, which makes it more
suitable for our application. We perform the statistical test on the two subsets
B and R (as introduced above), and test against the (null) hypothesis that these
two subsets have equal central tendencies. We compute the t statistic and the
degrees of freedom d.f. with:

t = µB − µR√
s2

B

NB
+ s2

R

NR

(2)

d.f. = (s2
B/NB + s2

R/NR)2

(s2
B/NB)2/(NB − 1) + (s2

R/NR)2/(NR − 1) (3)

where µi is the sample mean, s2
i is the sample variance and Ni is the sample

size of subsets B and R.
We then use these values together with the t-distribution and test the null

hypothesis with a significance level of 0.05 and using a two-tail strategy. This
test is performed for all the p genes in the data. For each gene, we store whether
it shows a significant difference between the two subsets B and R. We communi-
cate this significant difference information by modifying the color of each gene in
the difference plot. Genes that have significant differences are colored red, while
the others are shown in blue, as can be seen in Figure 3 (right). This enhance-
ment to the difference view enables analysts to get immediate feedback on the
significance of differences. Based on this initial assessment, analysts can employ
more advanced routines to confirm the significance of the changes between the
two subsets.
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Difference plots as bricks – Similar to scatterplots, we also embed difference
plots as bricks in StratomeX. While constructing the difference views as bricks,
we again compute the ∆µ and ∆σ values for each of the genes using Equation 1.
Here, however, B corresponds to the samples that are members of the cluster be-
ing represented while R corresponds to the rest of the samples in the dataset. In
addition, we also compute the significance of the differences and color the visu-
alization accordingly. The resulting difference view bricks communicate which
genes are more distinctive for each cluster. Moreover, the selection mechanism
enables the analyst to compare these distinctive genes between different clusters.
For an utilization of this feature, refer to the first part of Section 5.

5 Case Studies
We demonstrate the effectiveness of our approach by analyzing a comprehensive
breast invasive carcinoma (BRCA) dataset collected by the TCGA consortium.
We use the mRNA expression data, miRNA sequencing data, and DNA methy-
lation data from over 800 breast cancer patients. The goal of the case studies
is to demonstrate how the proposed visual analysis approach enables analysts to
execute the three tasks described in Section 2. To begin with, we load the BRCA
data which is available pre-packaged for Caleydo. In addition to the raw data,
we load a recently published stratification of samples [114] that will serve as a
basis for comparisons.

5.1 T1 Case Study: Find Distinctive Elements
We start our analysis by comparing the significantly distinctive genes that are
suggested by our computations and those that have been identified in the afore-
mentioned article. The 4 subtypes that are reported in the reference study are:
Luminal-A, Basal-like, Luminal-B, and HER2-enriched, as shown in Figure 4-a).
The reference study identified a list of genes that are differentially expressed for
the HER2-enriched subtype by using unsupervised clustering (refer to supple-
mentary Table 7 in [114]). We select the 7 most significantly under-expressed
genes3 and 10 most significantly over-expressed genes4 as marked in Figure 4-a.
7 out of the 7 under-expressed and 6 out of 10 over-expressed genes are identi-
cal to the ones found in the reference study. This match demonstrates that our
interactive visual analysis approach quickly yields relevant results in determining
descriptive genes.
We continue our analysis with the investigation of distinctive genes between

particular subtypes (see task T1). We focus our attention on the Luminal-A sub-
type and explore the expression characteristics of distinctive genes for Luminal-A

3AGR3, ESR1, GFRA1, NPY1R, PGR, SERPINA3, SUSD3
4ABCA12, CALML5, CLCA2, CRYM, DCD, GLYATL2, MUCL1, NXPH1, PNMT, SOX11
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a) b) c)

Figure 4: Using embedded difference plots to find descriptive genes. (a) Descriptive
genes are marked for the HER2-enriched subtype. A comparison to the reference study
shows the relevance of the marked genes (b) Under-expressed genes for the Luminal-A
subtype are selected and we observe that they show over-expression for the Basal-like
subtype, i.e., constitute good features to discriminate these two subtypes. (c) The
over-expressed genes for Luminal-A could also be considered good discriminators for
this subtype but show similar expression profiles for Basal-like and HER2-enriched
subtypes.

in comparison to the other subtypes. We first select the significantly under-
expressed genes5 for the Luminal-A subtype in Figure 4-b. We observe that the

5AQP9, FAM83D, GGH, MCM10, and MMP1 being some of the lowest
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significantly under-expressed genes for Luminal-A are often over-expressed for the
Basal-like subtype. This leads to the conclusion that these genes are good mark-
ers to distinguish the Luminal-A from the Basal-like subtype. Similarly, when
the over-expressed genes are selected for the Luminal-A subtype (Figure 4-c),
we observe that these genes are under-expressed for Basal-like subtype. How-
ever unlike the previous set, these genes also show similar expression profiles
for the HER2-enriched subtype. Consequently, these genes carry less distinctive
characteristics compared to the previous set.

5.2 T2 Case Study: Compare Samples
In the second case study we investigate how certain properties of samples from
a particular subtype, for instance outliers or trends, are shared among different
datasets (T2). We start with an investigation of the characteristics of samples
from the Basal-like subtype by considering the mRNA, microRNA, and DNA
methylation datasets. We bring up a StratomeX view with the subtypes from
the reference study as the first column and unstratified versions of the datasets
mRNA, microRNA, and methylation from left to right, as shown in Figure 5-a.
When all the samples from the Basal-like subtype are selected, we can observe
the following that further characterizes this subtype: samples from the Basal-like
subtype have lower expression values with a high variance in mRNA and have
higher expression values in the microRNA dataset. When looking at their DNA
methylation values, however, we do not observe any dominant characteristics.
We use the same approach to determine the characteristics of a cluster that is

computed as a result of an unsupervised clustering of the mRNA dataset (first
column in Figure 5-b). We select the “core members” of the second cluster, i.e.,
those which have similar expression values and variance. We observe that these
samples do not show any dominant characteristics in an unsupervised clustering
of microRNA data (second column in Figure 5-b). However, when considering the
reference subtypes from the BRCA study, we observe that the selected samples
constitute a subgroup of the Luminal-A subtype. We can also see that these
samples are the over-expressed Luminal-A members with a lower variance. Based
on this observation, we can claim that cluster-2 from the mRNA stratification
can be utilized to determine a subgroup of Luminal-A.

5.3 T3 Case Study: Create Clusters
In certain cases in tumor subtype analysis, the stratification information is not
readily available. In these cases, we make use of the dual analysis methodology
to manually create stratifications as an alternative to automated methods. This
mechanism enables the analyst to discover structures through different views of
multiple datasets and represent these structures as a stratification.
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Figure 6: Manual clustering of unstratified mRNA dataset using dual analysis views.
Negatively skewed genes are selected through skew vs. kurt visualization (a) and the
difference plot for the samples is updated automatically (b) where we observe a group
of samples with lower values and mark them as our first cluster (b). We then switch to
mRNA-seq dataset and select the genes that are higher-expressed with a large variety
within the values (c,e). We identify two groups and mark them as clusters 2 (d) and 3
(f). For validation, we compare our stratification with the subtypes from the reference
study and observe a significant overlap with the subtypes.

For demonstration, we perform such a manual clustering process on the BRCA
data. In this process, we use dual analysis views as separate linked views rather
than embedded in StratomeX. We bring up two linked views of the mRNA
dataset: skew vs. kurt visualization of the genes (Figure 6-a) and a difference
plot for the samples for ∆µ vs. ∆σ (Figure 6-b). Also, we add two other views of
the mRNA-seq dataset: median vs. IQR visualization of the genes (Figure 6-c,e)
and a difference plot for the samples for ∆µ vs. ∆σ (Figure 6-d,f).
We start by marking an unstratified mRNA dataset as the target for the manual

clustering (through a user interface not shown in the images) and clustering
process is then as follows:
Step-1: We select the genes that are left-skewed (negative skew values) (Fig-
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ure 6-a) and select a group of samples that are separated from the rest to the left
of the difference view (Figure 6-b). At this point we mark this subset of samples
as a stratification of the mRNA dataset (the first cluster in the first column of
StratomeX in Figure 6-g). This operation is performed through the UI which is
not shown in the image.
Step-2: We now switch to the mRNA-seq dataset and select those genes that

have higher expression values and higher variety (Figure 6-c). The difference
view is updated automatically and we select those samples which have higher
expression values and lower variance (Figure 6-d). We make this selection due to
the fact that one would expect to see higher variance and higher values for the
samples in response to the selection of genes in Figure 6-c. We finish this step
by marking the selection of samples as a second cluster.
Step-3: Without updating the selection of genes, we move on by selecting the

samples that have higher variety but smaller mRNA-seq values for the selected
genes (Figure 6-f). This last selection of samples is marked as the third cluster
in the data. The rest of the samples are left as an unclustered set.
In order to evaluate our custom stratification, we compare it against the classi-

fication from the reference study (Figure 6-g). We observe that the cluster made
in Step-1, characterized with genes that have negative skewness, has almost a
complete overlap with the Basal-like subtype. The second cluster from Step-2
largely corresponds to a subgroup of Luminal-A subtype. Finally, more than half
of the samples from the third cluster belong to the HER2-enriched. This overlap
between the manually created clusters and the reference subtypes show that the
manual clustering leads to relevant results. We have also seen that considering
different data sources in the manual clustering steps, e.g., mRNA and mRNA-
seq in this case, enables the analyst to merge interesting structures observed in
different datasets.

6 Conclusion
In this paper, we integrate dual analysis views and significant difference plots
within Caleydo StratomeX, a state-of the art cancer subtype visualization tool.
Our approach facilitates the characterization of cancer subtypes by enabling an
investigation of them over both the samples and the genes. Such a duality in
representing stratifications provide deeper insight on the characteristics of sub-
types. The ability to handle multiple datasets in Caleydo extends such insights
over to different datasets (such as T2 in Section 5).
We have also demonstrated how the dual analysis approach can be used to

create clusters based on statistical properties and merge structures from different
datasets, a challenging task to achieve through automated methods. We have
demonstrated the utility of our approach in three case studies. In concert with
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the existing StratomeX functionality, we believe that we have created a powerful
tool for experts to analyze and characterize cancer subtypes.
In the future, we aim to integrate advanced statistical tests and procedures,

such as the analysis of variance (ANOVA), or Bonferroni correction [5]. We also
consider to extend the capability of difference view to depict the comparison of
more than two groups. Furthermore, instead of comparing one cluster to all the
other elements, we plan to implement mechanisms to compare clusters with each
other.
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Abstract

Cluster analysis is a useful method which reveals underlying struc-
tures and relations of items after grouping them into clusters. In

the case of temporal data, clusters are defined over time intervals
where they usually exhibit structural changes. Conventional cluster
analysis does not provide sufficient methods to analyze these struc-
tural changes, which are, however, crucial in the interpretation and
evaluation of temporal clusters. In this paper, we present two novel
and interactive visualization techniques that enable users to explore
and interpret the structural changes of temporal clusters. We intro-
duce the temporal cluster view, which visualizes the structural qual-
ity of a number of temporal clusters, and temporal signatures, which
represents the structure of clusters over time. We discuss how these
views are utilized to understand the temporal evolution of clusters.
We evaluate the proposed techniques in the cluster analysis of mixed
lipid bilayers.

This article was published in Computer Graphics Forum, 30(3):711–720, 2011.
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1 Introduction
With the advance of data acquisition and simulation systems, large amounts
of data with a high number of dimensions and temporally varying values are
produced. In various fields like bioinformatics, financial analysis and engineering,
it is of great importance to explore and understand the groups of data which share
common characteristics over time. These groups are usually analyzed further to
gain insight into the processes that are governed by these common characteristics.
Cluster analysis is a widely used method to discover grouping structures in both
static and time-varying data. This analysis results in a set of clusters, each
of which represents a group of similar items with respect to certain features
of the data. However, when performing cluster analysis on temporal datasets,
interpreting and evaluating the resulting clusters is not as straightforward as it
is with static data.
Most of the algorithms developed for clustering time series (temporal) data

are either modifications of the static data clustering algorithms, or time-series
are converted into static representations such that existing algorithms can be
used [125]. Therefore, these clustering algorithms focus mainly on the design of
a proper distance function to use in clustering or in the conversion of the data
into feature vectors of lower dimensionality. These custom distance functions and
conversion operations applied to large, high-dimensional time series may easily
produce low-quality clusters [201]. As a consequence, the interpretation and
evaluation of clusters become a very important part of cluster analysis. Current
methods for cluster assessment, however, are mainly tailored for static data [125],
yielding a need for new mechanisms to analyze temporal clusters.
In the following, we illustrate a simple situation where advanced analysis tech-

niques are required to understand the variation of time-dependent cluster struc-
tures. We consider a simple scenario as illustrated in Fig. 1. In this setting,
two well separated and equally sized groups merge into a single, heterogeneous
group at time t1 and split into two groups again at time t2. This simple scenario
demonstrates a typical example of structural changes which clusters can exhibit
over time. Also note that, clustering different time intervals (i.e., t0, t1 or t2)
yields completely different clusters.
As the overall clustering structure changes temporally in time-series data, clus-

ter analysis of such data is generally performed over intervals of time [166].
Therefore, unlike clusters of static data, temporal clusters have temporal spans
in addition to the group of items they represent. Due to the fact that tempo-
ral clusters do not exhibit stable structures usually, both cluster-cluster relations
and the structure of temporal clusters vary over time. However, if an experienced
user could evaluate such variations, then she/he could consequently discard or
update the clusters. The analysis of these variations are not really addressed
by the current methods and techniques in cluster analysis. In order to interpret
and evaluate temporal clusters, the analyst has to answer at least two questions;
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Figure 1: An example of structural changes in clusters of temporal data. Two well-
separated clusters (at t0) merge into a single group at t1 and split into two groups again
at t2.

firstly, “How does the quality of clusters vary over time?” and secondly, “What
type of structural changes do clusters exhibit?”.
In this paper, we propose two novel and interactive visualization techniques

to analyze temporal clusters. We firstly introduce the temporal cluster view that
visualizes the structural quality of temporal cluster sets over time. Secondly,
we present temporal signatures which are visual summaries of temporal cluster
structures. The cluster view provides mechanisms to visualize and interactively
analyze a set of temporal clusters that are computed from different time intervals.
This view also encodes silhouette coefficients [157], which are quite widely used
cluster structure metrics. They are used to evaluate the structural quality of
cluster sets. Temporal signatures are representations of statistical properties
of clusters over time. These properties are based on cluster cohesion which
represents the tightness of its items, and cluster homogeneity which correspond
to the uniformity of the distribution of the member items [181].
When used in conjunction, these two views provide intuitive mechanisms to

analyze and evaluate temporal clusters. They are utilized to explore structural
changes in clusters; namely, splitting, merging, and changes in cluster size. We
present these two views in an interactive visual analysis framework. To summa-
rize, our contributions in this paper are:

• The temporal cluster view, visualizing a number of temporal clusters to-
gether with their structural quality variation.

• Temporal signatures, that are visual representations of the structural changes
of groups over time.

• Interactive visual analysis procedures for temporal cluster analysis with the
help of these two views.
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2 Related Work

Our work relates to the analysis of temporal clusters using interactive techniques
and visual representations for temporally varying structures. Thus, the related
literature is presented in three subsections:
Analyzing clusters – Vectorized radial visualizations are used in exploring

different clustering results by projecting data records on a vectorized cluster
space [169]. This approach proves to be useful in validating the clusters when
a number of cluster sets for the same dataset exist. Rinzivillo et al. proposes a
visually guided clustering called progressive clustering [154], where the cluster-
ing is done with different distance functions in successive steps. In hierarchical
clustering explorer [167], Seo and Shneiderman use an interactive dendogram,
coupled with a color mosaic to represent clustering information in a linked visu-
alization. They propose a cluster comparison view where two clustering results
can be compared. However, their method is only suited for clusters of static
data. In a recent study, Lex et al. introduce the MatchMaker [123], visualizing
and comparing multiple groups of dimensions to represent cluster memberships.
Their cluster visualization method is similar to our temporal cluster view, how-
ever, their solution does not provide information on the structural quality of
clusters over time. Moreover, their method is designed for static clusters only. In
the MultiClusterTree [195], Long and Linsen discuss how clusterings are utilized
to analyze multi-dimensional data. They use a radial layout, linked with sev-
eral other views to explore hierarchical clusters. Telea and Auber [185] visualize
changes in code structures using a flow layout where they try to identify steady
code blocks and when certain splits in the code occur.
Cluster analysis of temporal data – One of the earliest works on cluster-based

visualization of temporal data is by Wijk and Selow [198], where they cluster
time-series data and visualize them on a calendar. Interactive clustering of tra-
jectory data is discussed in a paper by Andrienko et al. [10], where they describe
a user-driven clustering methodology. They use graphical summaries of trajec-
tory clusters to indicate the number of cluster members. These summaries are
sufficient when the analyst is interested in changes of the cluster sizes only. In
an application of molecular dynamics analysis, Grottel et al. [74] use interactive
visual tools to analyze clusters. The authors introduce the concept of flow groups
and a schematic view, which displays cluster evolution over time. In a recent
study, Rubel et al. [159] introduce a framework that integrates clustering and
visualization for the analysis of 3D gene expression data. The authors integrate
the data clustering for 3D gene expression analysis into their PointCloudXplore
visualization tool. The approach in this study is application oriented, limiting a
utilization in other fields. Self organizing maps (SOM) have been utilized in a
recent study by Andrienko et al. [9]. They propose the interactive utilization of
SOMs that are integrated in a visual analysis framework. Their solution aims to
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discover spatiotemporal relations by analyzing the temporal evolution of a spatial
situation and the distribution of temporal changes sequentially.
Visual representations of temporal data – In this paper, we provide visual a

representation of the structural changes of temporal clusters. There is a large
number of studies on how to represent temporal data in visualization [204, 135].
One of the important studies which represents temporal changes visually is the
ThemeRiver [85] by Havre et al. The authors provide a visual representation of
thematic changes in document collections over time. The ThemeRiver visualizes
a single value per item and proposes a cumulative representation for each time
step. In our temporal signatures, however, we encode a number of temporally
varying statistics that are not suitable for a cumulative visualization due to their
different scales.
In this paper, we extend the state of the art in the visual analysis of temporal

clusters with the temporal cluster view, that integrates temporal clusters into
interactive visual analysis procedures, and temporal signatures that visualize the
temporal structure of clusters.

3 Overview
The proposed solution for analyzing temporal clusters is based on a new tempo-
ral cluster view (in the following just “cluster view”) and temporal signatures.
Firstly, we introduce the cluster view, that visualizes the quality of clusters to-
gether with structural changes that are related to item-cluster and cluster-cluster
relationships. Secondly, we present temporal signatures, which are visual sum-
maries of the statistical properties of clusters over time. The variations of these
statistical properties reveals structural changes in groups of items.
These two views are utilized in an interactive visual analysis (IVA) cycle to

analyze temporal clusters. Prior to the analysis, the analyst constructs a set
of temporal clusters using a clustering algorithm. Information from the cluster
view and the temporal signatures are combined with information on properties
of items as provided by conventional views. The resulting insight is used to
interpret and/or validate the clusters. This analysis is performed iteratively
until sufficient clusters and insight in group relations is achieved. Fig. 2 is an
overview illustration of our solution.
We present our solution in an IVA framework where we incorporate different

types of linked views: histograms, scatterplots, parallel coordinates, (for regular
variables), and functions graphs and animated scatterplots for temporal variables.
In order to update these temporally varying views synchronously, we use a global
time parameter τ . We define the dataset of independent variables (items) as
O = {o1, . . . , on}, where each item has a set of m = p + q dependent values
F (oi) = [f1(oi), . . . , fp(oi), gp+1(oi, t), . . . , gp+q(oi, t)]. Here, f represents regular
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Figure 2: An overview of our approach. A subset of temporal clusters are analyzed
using our techniques and conventional IVA tools in terms of their structural changes
and quality variations. Plausible clusters are analyzed to derive more insight on data.
Low quality clusters are updated or discarded.

variables and g represents time-series which are defined over time interval [0, t′].
We define a temporal cluster ci as:

ci = {Ici
, Tci

: Ici
⊆ O, Tci

= [t0, t1], 0 ≤ t0 ≤ t1 ≤ t′} (1)

In order to obtain such clusters, the analyst first defines a time interval T and then
uses a clustering algorithm to cluster the data in T . This clustering operation is
performed k times using different time intervals and/or item subsets which are
determined by the user. We refer to the set of clusters obtained at each such step
as a clustering Cj and the set of all the clusterings as U = {C0, .., Ck} where Cj
is defined as:

Cj = {c1, .., cnj : ∀ca, cb(Tca = Tcb
∧ ca 6= cb ⇒ ca ∩ cb = ∅)} (2)

with nj as the total number of clusters in Cj . Additionally, we do not neces-
sarily expect Cj to include all the items in O, i.e.,

⋃
c∈Cj

⊆ O. Note that in a
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clustering, there are no overlapping clusters in terms of their items. However,
it is possible that temporal spans of clusterings can overlap. In this paper, we
use both hierarchical and k-means clustering [181]. As these algorithms are orig-
inally developed for static data, we modified the distance measures as suggested
by Liao [125]. Our solution is well-suited to temporal versions of hierarchical and
partitioning clustering algorithms, as they operate on distances between items.
However, there exist also other algorithms which operate on densities and sta-
tistical models [125]. To generalize our approach to a wider-variety of algorithm
results, different quality metrics needs to be included into the analysis procedure.

In our framework, we utilize a brushing mechanism which is similar to com-
posite brushing as proposed by Allen and Ward [130]. We extend this mech-
anism with selections over time. A brush b = {I, T} is composed of an item
selection, I (I ⊆ O), and a time interval selection, T ([t0, t1]). Each brush is
combined with existing brushes by a Boolean operator S with S ∈ {∪,∩,¬},
where ∪ represents the union, ∩ represents the intersection and ¬ represents
the not operator. The result of this combination is a composite brush B, which
is computed “in parallel” as the user makes brushes. Individual brushes bi are
combined into composite brushes Bi using the selected S by Bi = S(Bi−1, bi)
starting with B1 = S(b0, b1). For simplicity, in the following, we denote the final
set of brushed items as BL = {IL, TL}. Note that, our definitions of a brush and
a cluster (1) is the same, i.e., b = {I, T} = c. This enables the interpretation of
clusters directly as brushes in our system. Due to the fact that non-continuous
selections with respect to time would cause an additional complexity in the tem-
poral analysis and related calculations, ∪ operator on time results in a single
continuous time interval. The resulting time interval encapsulates both input
intervals, i.e., [t0, t1] ∪ [t2, t3] = [min(t0, t2),max(t1, t3)]. One other exception
in the brushing mechanism is related to the ∩ operator in the temporal cluster
view. In this view, when two brushes are combined using ∩, the item groups are
intersected as expected with ∩. The temporal spans, however, are joined using
∪. This modification enables the use of the ∩ operator between clusters defined
over non-overlapping temporal spans.

In order to demonstrate our approach in the following, we consider an artificial
dataset (Fig. 3). In this dataset, two groups, composed of 20 points each, merge
and split at certain points in time. There is a point that moves vertically from the
bottom to the top. Additionally, one point shortly gets away from its group and
returns back at the first half of the sequence. Prior to the analysis of this dataset,
a number of clusterings are added to U . In order to avoid extra complexity in
the analysis, we use all the items in consecutive clustering operations.
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1 2

3

4

Figure 3: In this artificial dataset, two groups move towards each other following the
paths 1 and 2. One point follows path 3 and one item shortly gets away from its group
(4).

4 The Temporal Cluster View
The proposed temporal cluster view enables the visual exploration of clusters
which are defined over different time intervals. It visually depicts how cluster
memberships evolve over time. Moreover, it encodes cluster quality metrics and
enables cluster level selections.
In the cluster view, each vertical axis visualizes a clustering Ck, where k in-

dicates the order of the clustering in the view, i.e., for the leftmost axis, k = 1
(Fig. 4 a). Each rectangle on an axis corresponds to cluster cki in Ck and each
curve between the axes represents a single data item, oi. When the user selects
a cluster c in this view, Ic and Tc are handled by the selection mechanism as any
other brush b with the above mentioned exception related to the ∩ operator.
We visualize the temporal span of clusters in order to link this view to the

other temporally updating views. In Fig. 4 a, five clusterings C1−5, performed
on different time intervals, are visualized together with their temporal span on
top. A black cursor is displayed at the top of the view to indicate τ . Temporal
span of the clusterings, which are defined at τ , are highlighted by a saturated
red color at the top of the view, e.g., C2 in Fig. 4 a. Here, brushes b1 and b2 are
combined using the ∩ operator, selecting the intersection of the items and the
union of the temporal spans.
In order to encode information about the structural quality of clusters, we

utilize the silhouette coefficient [157], which is a popular method in data mining
for evaluating the structural quality of clusters. Silhouette values ski are computed
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per each item of cluster cki and they are in the range [−1, 1]. Items close to
cluster centers have higher values, and items on the borders of a cluster with
close neighboring clusters have values close to 0. Moreover, when an item has
a silhouette value close to −1, this item is wrongly placed in this cluster as an
artifact of the clustering algorithm. In cluster view, we use silhouette values
to color code curves and cluster rectangles. The color coding map, extracted
from ColorBrewer [21], is included in Fig. 4 b. The color of a single curve is
interpolated between ski and sk+1

i and each cluster rectangle is colored according
to the average of the ski values of its members. Here, green colored curves and/or
rectangles represent high-quality clusters (with respect to silhouette values).
In the cluster view, ordering is crucial for the ease of interpretation. Firstly, we

order clusterings Ck according to the “start” of their time intervals TCk
. Secondly,

the cki on each axis are ordered with a greedy algorithm in order to minimize over-
lapping curves between clusters. This ordering starts with the first clustering C1
placed randomly. The algorithm then continues with the bottom-most cluster
c11 of C1 and finds the cluster x ∈ C2 which has the biggest overlap with c11,
i.e., argmaxx∈C2

∣∣c11 ∩ x∣∣. Then x is placed to the first available position on the
second axis. The algorithm continues with c12 and traverses all the clusters on the
first axis. The same procedure is then applied for all the axes up to Cn−1 where n
is the number of axes. This crossing minimization problem is a well-known prob-
lem called “two layer crossing reduction problem” and more optimized solutions
exist in literature [104]. Although it does not provide the optimum solution, we
use the presented greedy algorithm due to its low computational complexity and
its sufficient outcome for the requirements of our solution. Finally, we order the
items in the clusters. All the members of the clusters are first grouped according
to the branches between Ck and Ck+1, where a branch represents overlapping
items between two clusters, i.e., cki ∩ ck+1

j . As the final step in this ordering, all
the items in a single branch are organized in an ascending order with respect to
ski values. The effect of ordering on the perception of cluster relations and cluster
quality is illustrated in Fig 5.
Although our clustering definition (2) allows for items that are not members

of any clusters, the clustering algorithms we use in this paper assigns all the
items to clusters. In case of items which are not in a cluster (can be referred to
as outliers), these items are grouped together and visualized just like any other
cluster in the cluster view. If the analyst plans to focus on these outliers, this
group of outlier items can be visualized in a distinctive color in the cluster view.

5 Temporal Signatures
In order to explore the structural changes in temporal clusters, we rely on a
qualitative approach based on structural statistics, which is easy to interpret,
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Figure 4: (a) Five clusterings visualized in the cluster view. The temporal span of each
clustering is visualized on top. Brushes b1 and b2 are made to select two clusters. (b)
Color coding for silhouette values.

calculate, and visualize. Fig. 6 demonstrates the proposed measures. We utilize
a group coherence measure that is based on mutual distances between items in IL
for every time step in TL. Note that IL can consist of any group of items that are
selected by the brush combinations in the framework. Here, we compute average
distance boundaries, which can be thought of as computing the extent covered by
points IL—referred to as cluster diameter [52]. The minimum average distance
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a)

b)

Figure 5: Ordering cluster view improves the overall perception of cluster quality. Be-
fore (a) and after ordering (b).

Mintavg and maximum average distance Maxtavg are calculated for all time steps
separately as follows:

Mintavg =
∑|IL|
i=1 d

t
min(oi)
|IL|

, (3)

where dtmin(oi) = min({dt(oi, oj)|oi,j ∈ IL ∧ oj 6= oi}) and t represents a single
time step. Maxtavg is computed likewise with max instead of min in equation (3).
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Figure 6: For four 2D points (a), we compute minimum distances (b), maximum dis-
tances (c), and vicinity measure V (d). V is the sum of neighboring items within a
sphere of radius D (0 + 0 + 1 + 1 = 2).

Per each time step, we additionally compute the sum of number of items “closer”
to each other than a distance threshold D. This number, which we refer to as
vicinity measure V , describes the compactness (cohesion) of the group [181]. D
is a free parameter, which users can interactively change according to the Minavg
and Maxavg values. V t(D) is defined by:

V t(D) =
|IL|∑
i=1

∣∣{j|oj ∈ IL ∧ oj 6= oi ∧ dt(oi, oj) < D}
∣∣ . (4)

For equations (3) and (4), the Euclidean distance is preferred for dt(·, ·), which is
defined as: dt(oi, oj) =

√∑q
k=1 (gk(oi, t)− gk(oj , t))2 where g are the temporal

variables in our dataset. The selection of distance functions is an essential element
of cluster analysis and the utilization of several distance functions can be found
in the literature [171]. Therefore, the distance function should be chosen to fulfill
domain specific constraints.
The temporal signature view computes the above defined metrics for the cur-

rently selected group of items (not necessarily from a cluster) over the selected
time interval to construct the visualization. Fig. 7 (left) shows an example of such
a temporal signatures view, where IL contains all the items for the whole time
span of the dataset. The upper bound represent maximum average distances,
while the lower one represent minimum average distances. We also compute the
standard deviations of these distances and render them in a transparent green
band around the actual minimum and maximal values. Moreover, we utilize
the space between the boundaries to display V values by color intensities. The
saturated blue colors represent sparsely distributed items, while the saturated
red colors represent packed items, i.e., higher number of neighboring items. The
color scaling is done according to the minimum and the maximum values of V
for the current IL and TL. In Fig. 7 (left), we can observe an instability between
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Minavg and Maxavg values, where the band gets thinner in the middle as time
progresses. This is due to the fact that the groups at t0 cross each other at t1
making the overall cluster diameter smaller.
Both standard deviations, stdev(Minavg) and stdev(Maxavg), encodes cluster

homogeneity. In Fig. 7, we select first IL = c1, then IL = c2, and eventually
IL = c1∪c2 over TL = [t0, t1]. The signature of cluster c1 indicates a high quality
cluster due to the stable values of the metrics. However, cluster c2 contains an
outlier (Fig. 3-4), that is recognized through the peaking standard deviations. In
general, stdev(Minavg) reveals outliers. stdev(Maxavg) is mainly associated with
cluster homogeneity where lower values identify tightly packed items or groups
of such tightly packed items. For instance, although group c1 ∪ c2, separates at
t0, the resulting stdev(Maxavg) values do not vary when c1 and c2 merges at t1,
except for the outlier in c2.
For all the views in Fig. 7, we specify D = max{Minavg}, which means that

there is a number of items above D for all the time steps. This choice of D reveals
only the most compact configuration of the items over the whole time interval.
In the rightmost signature view in Fig. 7, it can be seen that items are in the
most compact form at t2 (saturated red color) where c1 and c2 merges.
Instead of arbitrary groups of items, the analyst can prefer to directly brush

clusters. In this case, the signature view enables the user to perform a number
of analysis tasks on clusters:

• A single cluster can be visualized to evaluate its temporal structural vari-
ations.

• A number of clusters can be brushed using S operators to explore the
resulting group’s behaviors.

• While a single cluster is selected, the temporal selection (TL) can be ex-
panded using other brushes. The resulting signature view visualizes how
this cluster behaves over time intervals where it is not defined.

6 Temporal Cluster Analysis Procedures
Temporal-cluster analysis aims to find a plausible set of clusters and understand
the structural variations of these clusters. The analysis starts with visualizing
the selected clusterings in the cluster view and continues with selecting a num-
ber of clusters and investigating the corresponding temporal signatures. As a
result of the interpretations of these two views, the analyst draws one of these
conclusions; validate a cluster, update the temporal span of a cluster or discard
a cluster. In order to draw such conclusions, interpretation of silhouette values
and discovering where structural changes (like splitting and merging) take place
is quite important.
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Interpreting silhouette values – Silhouette values are higher when the clusters
are well-separated and more coherent. Therefore, in regions with not so apparent
clusters (i.e., where the distribution of items is more uniform), the silhouette
values are generally close to zero or even below zero. In Fig. 8, we can see a clear
example of such a situation. Here, the example dataset (Fig. 3) is clustered over
consecutive time intervals (C1−6). As the distribution of items where two groups
meet is quite uniform, we see that the colors of items and clusters turn to yellow.
However, near the beginning and at the end of the sequences, the overall cluster
quality is high, and this is clearly visible from the colors of C1 and C6. This
observation yields to the fact that clusters performed over the merging interval
are lower in structural quality and therefore, have to considered with more care
when further analysis is performed on them.

Figure 8: Variation of silhouette values. Group structures change as items move over
time. These variations are clearly visible in cluster view by observing the color changes.

Merging and splitting – Two of the important behavior of clusters are merging
and splitting. To analyze these behaviors, we firstly brush a cluster by ∩ oper-
ation, which may represent a cluster that is about to split or to be created as a
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union of several other clusters. Secondly, we observe the accompanied temporal
signatures view, which reveals this structural tendencies.
In Fig. 9 a, we visualize three sequential clusterings, C1, C2 and C3. We

brush a cluster (b1) in C2 by ∩ brush and by brushes b2 and b3 (∪) we extend
time selection TL to contain also time intervals of C1 and C3. This extension
of time interval is crucial to show the behavior of cluster b1 in C1 and C2. The
signatures view is then automatically updated for IL = IC2 and [TC1 ∪ TC3 ]. A
notable tendency is that the band between the Minavg and Maxavg gets smaller
towards TC2 (cluster merging) and gets large again at TC3 (cluster splitting). We
can additionally observe that IL has the most compact form where both groups
merge and a sparse form where the groups are separated by observing V values.
To generalize, we follow a set of informal rules in evaluating the clusters using

our views:
• Items in a cluster should not have many branchings in cluster view
• Cluster rectangle and item curves should be in saturated green
• In a signature of a cluster, values of Minavg and Maxavg and the thickness

of the band between them should not deviate
• Signatures should mostly contain red values in the band (i.e., high V values)

7 Case Study: Analysis of Molecular Dynamics of
Mixed Lipid Bilayers

Molecular modeling of biological membranes is one of the application fields where
analysis of temporal clusters is particularly useful. Cell membranes separate the
interior of cells from the environment and are mostly constituted of a mixture
of different lipids. The lipids can form microdomains or clusters with other
membrane components. Such microdomains are relevant for signal transduction
or cell apoptosis to name but a few [53]. Lipid bilayers are widely used to model
and study cell membranes, and molecular dynamics (MD) simulations are utilized
as powerful tools to describe their atomic structure and dynamic behavior. These
simulations run on a mixture of different types of lipids that form different cluster
sets. These lipid clusters can lead to inhomogeneity in biological membranes [23].
Here we use a dataset obtained from MD simulation of a mixed lipid bi-

layer [23], constituted of DMPC (dimirystoilphosphatidylcholine) and DMPG
(dimirystoilphosphatidylglycerol) lipids composed of 1640 time steps. Each lipid
is represented by one particle, localized at the position of the phosphorus atom.
Additionally, we work on a set of clusterings {C1, . . . , Cn} that are computed as
the final step of the simulation phase.
Our aim here is to evaluate clusters by their stability over time. In case of a

plausible cluster (with respect to cluster view and to signatures view), we perform
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additional IVA analyses to specify the time span where the cluster preserves its
structure.
We start the analysis by displaying the clusterings in the cluster view. Then we

assess the cluster quality, firstly, by brushing individual clusters by ∩ operation
according to silhouette values, and secondly, assessing the cluster coherence via
the signature view. Here, we use the set of rules described in Section 6. Fig. 9 b
displays a set of signatures for the observed clusters C1−5 defined over sequential
time intervals TC1−5 .
In Fig. 9 b, although the signature for the cluster marked with dotted circle

represents a good cluster; the cluster structure over time is not stable due to
branching in cluster view. Therefore, this cluster is not picked for further anal-
ysis. Discarded clusters are marked with an X in the figure. Nevertheless, we
found a cluster (marked with a red circle in Fig. 9 b) that has a plausible signa-
ture and exhibits a stable structure in the neighboring clusterings. We continue
our analysis with this cluster c in C3 (Fig. 10). As the next step, we enlarge the
time selection, from TL = TC3 to TL = [TC1 ∪ TC5 ]. The corresponding signature
Fig. 10 (left-bottom) depicts the stability of cluster c even for the remaining in-
tervals. The stability is observed by the band width between minimum average
distance Minavg and maximum average distance Maxavg. The group extend is
preserved over TL since stdev(Maxavg) has the same width for the whole time.
However, stdev(Minavg) exhibits certain instabilities which are caused by oscil-
lation movements of cluster boundary lipids that gets away from the group for a
few time steps. Additionally, we continue by extending time interval TL with a
brush on time domain (not shown in the figure) to analyze how stable this group
is over a larger time interval. With this update, we observe that the signature
changes rapidly for latter regions (Fig. 10 (top-right)). This limits the time ex-
tend of this cluster to the first peak (arrow). However, later on, we can see that
the vicinity values, depicted by colors, are close to red again, identifying that
the same group is forming. Since we observe this region where the cluster can
be defined, we add clustering C6 for this region of interest. We see in Fig. 10
(bottom-right) that cluster c is formed again, even for this small interval.
Our collaborators working in the field of biomolecular modelling state that,

in their previous work on a similar dataset [23] they faced many limitations in
performing analysis on group behaviors. Due to the complexity of analyzing the
clusters over time, they were doing the clustering on individual time steps and
average the clustering properties over time. As they were not able to relate the
structure of these separate clusterings, they were computing properties of them
and analyze the changes of these values over time. These statistics involve basic
properties like the number of clusters and the number of items in clusters at
each time step. In their analyses, it was not possible to explore the behavior and
quality of clusters over time. They state that our framework provides significant
improvements in the analysis of MD simulations of lipid bilayers. The proposed
framework enables the discovery of grouping behaviors which can lead to new
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214 8. Conclusion

hypotheses on the relations of lipids in lipid bilayers. During this case study, we
came across a number of additional analysis tasks like: identifying the thresh-
old deviations for the “good” lipid clusters, analysis of vanishing clusters and
determining the time when the overall system stabilization takes place. These
are potential tasks where our analysis framework can be utilized. In general, our
collaborators find the procedure to be faster, more powerful and more reliable
than traditional approaches which are usually based on distance criteria applied
to each frame of the sequence.

8 Conclusion
In this paper, we introduce two novel visualization techniques for the interactive
visual analysis of temporal clusters. We firstly introduce cluster view, which
interactively visualizes a number of clusters defined on temporal intervals. This
view visualizes the variation of the structural quality of clusters by representing
the changes of silhouette coefficients. Cluster view visualizes the temporal span
of clusters in order to enable the exploration of clusters over time. Secondly, we
present temporal signatures which are visual representations of the structure of a
group of items over time. This view encodes a number of time-varying statistical
properties of a group to depict its structural transformations. We show how
these views enable an intuitive analysis of temporal clusters, where the analyst
is able to determine the validity of the clusters and interpret the relations that
cause structural changes in clusters. To the best of our knowledge, our solution is
the first interactive visual approach to analyze the structural changes in cluster-
cluster and item-cluster relations of temporal datasets.
We integrated our visualizations into an IVA environment where we performed

visual analysis of temporal clusters. Cluster view enables cluster level interac-
tions and when used in combination with temporal signatures view, it provides
a mechanism to explore temporal clusters in terms of their structural properties.
We describe analysis procedures which enables the analyst to explore the quality
of clusters over time and explore the structural changes exhibited by clusters.
As a consequence of these analyses, the clusters are either validated, updated or
discarded. The analyst then continues with the further analyses of high quality
clusters.
We evaluated our methodologies on the analysis of molecular dynamics simu-

lation, where the analyst is trying to build hypotheses on the grouping behaviors
of lipid-bilayers. We show that our methods reveals certain groups which exhibit
stable behavior over distinct time intervals. Such behavior patterns provides the
basis to make hypotheses on the behavioral properties of lipid bilayers.
As a future work, we plan to extend our temporal signatures with more robust

statistics and different quality metrics, which can provide deeper insight on the
structure of groups of items. Another future direction is to create abstract rep-
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resentations of the structural changes and encode them in the form of an event
based visualization system.
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