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Abstract
Background: Accurate pretherapeutic prognostication is important for tailoring 
treatment in cervical cancer (CC).
Purpose: To investigate whether pretreatment MRI-based radiomic signatures 
predict disease-specific survival (DSS) in CC.
Study Type: Retrospective.
Population: CC patients (n = 133) allocated into training(T) (nT = 89)/validation(V) 
(nV = 44) cohorts.
Field Strength/Sequence: T2-weighted imaging (T2WI) and diffusion-weighted 
imaging (DWI) at 1.5T or 3.0T.
Assessment: Radiomic features from segmented tumors were extracted from 
T2WI and DWI (high b-value DWI and apparent diffusion coefficient (ADC) 
maps).
Statistical Tests: Radiomic signatures for prediction of DSS from T2WI (T2rad) 
and T2WI with DWI (T2 + DWIrad) were constructed by least absolute shrinkage 
and selection operator (LASSO) Cox regression. Area under time-dependent re-
ceiver operating characteristics curves (AUC) were used to evaluate and compare 
the prognostic performance of the radiomic signatures, MRI-derived maximum 
tumor size ≤/> 4 cm (MAXsize), and 2018 International Federation of Gynecology 
and Obstetrics (FIGO) stage (I–II/III–IV). Survival was analyzed using Cox model 
estimating hazard ratios (HR) and Kaplan–Meier method with log-rank tests.
Results: The radiomic signatures T2rad and T2 + DWIrad yielded AUCT/AUCV of 
0.80/0.62 and 0.81/0.75, respectively, for predicting 5-year DSS. Both signatures 
yielded better or equal prognostic performance to that of MAXsize (AUCT/AUCV: 
0.69/0.65) and FIGO (AUCT/AUCV: 0.77/0.64) and were significant predictors 
of DSS after adjusting for FIGO (HRT/HRV for T2rad: 4.0/2.5 and T2 + DWIrad: 
4.8/2.1). Adding T2rad and T2 + DWIrad to FIGO significantly improved DSS 
prediction compared to FIGO alone in cohort(T) (AUCT 0.86 and 0.88 vs. 0.77), 
and FIGO with T2 + DWIrad tended to the same in cohort(V) (AUCV 0.75 vs. 0.64, 
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1   |   INTRODUCTION

Cervical cancer (CC) represents a major global health 
challenge. It is the most common gynecologic malignancy 
and the fourth leading cause of cancer-related death in 
women worldwide.1 CCs are staged according to the 2018 
International Federation of Gynecology and Obstetrics 
(FIGO) system, which guides the stratification of patients 
to different treatment regimens. Surgery is the gold stan-
dard for the management of early-stage disease (FIGO 
IA–IB2), while for patients with large (>4 cm) tumors or 
locally advanced disease (FIGO IB3–IVA), concurrent 
chemoradiation is the recommended treatment.2 Five-
year survival is highly affected by stage, ranging from 92% 
in early-stage disease to 58% in locally advanced disease, 
and 18% in metastatic disease.3

Major prognostic factors in CC include FIGO stage, 
tumor size, and lymph node involvement.4,5 Other well-
known factors affecting survival are histological subtype 
and grade, deep stromal invasion, lymphovascular space 
invasion (LVSI), and patient age.6–8 Importantly, extensive 
histopathologic assessments of primary tumor character-
istics and spread, such as deep stromal invasion, LVSI, and 
lymph node metastases, can only be obtained through ex-
amination of surgical specimens, which is only available 
in patients with presumed early-stage disease who receive 
primary surgery. Clinical non-invasive tools that provide 
refined tumor characterization and prognostication be-
fore start of therapy may guide more targeted therapeu-
tic strategies and thereby improve patient outcome. Thus, 
there is an urgent need to develop non-invasive prethera-
peutic biomarkers to identify high-risk patients and guide 
tailored and targeted treatments in CC.

Given its excellent soft tissue resolution, magnetic res-
onance imaging (MRI) has long been considered the im-
aging method of choice for assessing local tumor extent 
in CC.9 T2-weighted imaging (T2WI) visualizes detailed 
anatomical structures, whereas diffusion-weighted imag-
ing (DWI) depicts functional tissue properties that may 
be highly different in benign and malignant tissue.10 The 
apparent diffusion coefficients (ADC) derived from DWI 

yield quantitative assessments of water diffusion proper-
ties of the tumor, indirectly reflecting the tumor microen-
vironment. Low tumor ADC values have been linked to 
reduced survival in CC.11 However, quantitative metrics 
obtained from MRI are usually presented as mean tumor 
values in selected regions of interest (ROIs), which inher-
ently are incapable of capturing whole-volume features 
reflecting, for example, tumor heterogeneity.

Radiomic tumor profiling involves the extraction of 
large-scale quantitative imaging features based on radio-
logical images.12 The radiomic features are typically invis-
ible to the naked eye but may reveal tumor characteristics 
linked to clinical phenotype and prognosis.13 As such, ra-
diomics allows non-invasive tumor profiling that may cap-
ture intratumoral complexity and heterogeneity.14 Studies 
on CC have linked MRI tumor radiomics to FIGO stage 
and histopathological markers.15–21 Furthermore, MRI-
based radiomic signatures have recently been recognized 
as valuable biomarkers for predicting recurrence and sur-
vival in CC patients.22–26

The purpose of this study was to investigate whether 
pretreatment MRI radiomic whole-volume tumor profil-
ing based on T2WI and DWI may aid in prognostication 
in CC. Furthermore, we aimed to compare the prognos-
tic performance of radiomic signatures with conventional 
clinical markers and explore the potential added value of 
radiomic signatures for guiding therapeutic strategy in 
CC.

2   |   MATERIALS AND METHODS

2.1  |  Patients and study setting

This retrospective study on prospectively collected data 
was approved by the Regional Committee for Medical 
Research Ethics (2015/2333/REK vest) with written in-
formed consent at primary diagnosis from all patients. 
Patients admitted to the hospital with histologically veri-
fied CC and a complete, pretreatment MRI from May 
2009 to December 2017 (n = 339) were enrolled (Figure 1). 

Award Number: 311350; Trond Mohn 
stiftelse, Grant/Award Number: 
BFS2018TMT06

p = 0.07). High radiomic score for T2 + DWIrad was significantly associated with 
reduced DSS in both cohorts.
Data Conclusion: Radiomic signatures from T2WI and T2WI with DWI may 
provide added value for pretreatment risk assessment and for guiding tailored 
treatment strategies in CC.
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Inclusion criteria were: (I) 2018 FIGO stage ≥IB1, (II) 
visible tumor on T2WI confirmed by two radiologists, 
and (III) the MRI protocol included axial/axial oblique 
(perpendicular to the long axis of the cervix) T2WI and 
axial/axial oblique DWI. A total of 133 CC patients met 
the inclusion criteria and were allocated in a 2:1 ratio to 
a training cohort(T) (nT = 89, diagnosed from March 2009 
to December 2015) and a validation cohort(V) (nV = 44, 

diagnosed from December 2015 to October 2017) accord-
ing to the time the MRI was acquired (Figure 1).

Clinical- and histopathological patient data (e.g., age, 
menopausal status, histologic tumor type and grade, and 
primary treatment) was retrieved from medical records. 
All patients were retrospectively restaged according to the 
2018 FIGO criteria.27 Conventional radiological staging 
parameters, including maximum tumor size measured 

F I G U R E  1   (A) Study flowchart. 
The study cohort is based on a cohort of 
consenting patients (participation rate 
in the order of >95%) with histologically 
verified cervical cancer diagnosed from 
2009 to 2017 at our hospital who were 
subjected to pretreatment pelvic MRI. The 
included patients (n = 133) in this study 
were diagnosed with 2018 FIGO stage 
≥IB1, had visible tumor on MRI, and 
an imaging protocol that included axial 
(oblique) T2-weighted imaging (T2WI) 
and diffusion-weighted imaging (DWI). 
(B) Bar graph depicting the number of 
cervical cancer patients diagnosed each 
year during the same period (2009–
2017; n = 437), showing the subgroups 
of patients without pretreatment MRI 
(n = 98; red); and of patients with 
pretreatment MRI (n = 339; blue and light 
blue), among whom 133 patients (light 
blue) were eligible for MRI radiomic 
tumor profiling.

(A)

Consenting patients with cervical cancer 
        diagnosed from 2009 to 2017
                        n = 437

Patients with pretreatment MRI
                   n = 339

 Patients included in this study
                 n = 133

No pretreatment MRI 
           n = 96

       Training cohort 
(March 2009–Dec. 2015)
              nT = 89 

       Validation cohort 
  (Dec. 2015–Oct. 2017)
               nV = 44 

  • 
  • 
  • 

2018 FIGO stage < 1B1, n = 77
Tumor invisible at MRI, n = 53
No axial (oblique) T2WI and DWI, n = 76

Incomplete MRI 
        n = 2
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irrespective of plane on T2WI, were recorded as previ-
ously described.28

Compared with the entire MRI CC cohort (n = 339), 
patients in the radiomics cohort (n = 133) were older, had 
larger MRI-derived maximum tumor size, higher 2018 
FIGO stage, and more frequently received radiotherapy ± 
chemotherapy (p < 0.05 for all) (Table S1).

Date of last follow-up was August 2022. Disease-
specific survival (DSS) was defined as time from primary 
diagnosis until death caused by CC. By last follow-up, 
26% (23/89) of the patients in cohort(T)  and 23% (10/44) 
in cohort(V) had died from CC (Table 1). Median (mean) 
[interquartile range, IQR] follow-up for survivors in co-
hort(T)/cohort(V) was 102 (103) [91–112]/70 (69) [64–73] 
months.

2.2  |  MRI scanning

Pretreatment pelvic MRI, performed as part of routine 
clinical workup, was acquired on scanners from different 
vendors (GE Healthcare, USA; Siemens Healthineers, 
Germany; Philips Healthcare, Netherlands), comprising 
1.5T (96/133 patients) or 3.0T (37/133 patients) systems 
at three different hospitals in Western Norway. The im-
aging protocols and scanning parameters varied across 
scanners and institutions. However, all examinations 
were dedicated pelvic protocols, mainly in accordance 
with the European Society of Urogenital Radiology 
(ESUR) guidelines for staging of CC.9 Pelvic axial and/
or axial oblique, sagittal, and coronal and/or coronal 
oblique (parallel to the long axis of the cervix) T2WI, 
axial T1-weighted imaging (T1WI), and axial and/or 
axial oblique DWI (b-values 0/50–800/1000 s/mm2) 
were performed for all patients. A detailed overview of 
MRI acquisition parameters is listed in Table  S2. The 
MRI examinations in cohort(T) and cohort(V) had similar 
distributions in terms of institutions and vendors used. 
Cohort(T) comprised mainly 1.5T examinations (1.5T 
92%; 82/89 vs. 3.0T 8%; 7/89), whereas cohort(V) were 
mostly 3T examinations (1.5T 32%; 14/44 vs. 3.0T 68%; 
30/44).

2.3  |  Tumor segmentation

CC primary lesions were segmented manually on axial 
oblique (when available) or axial T2WI on all slices de-
picting tumor (Figure 2B,F). The open-source software 
ITK-SNAP (version 3.6.0, www.itksn​ap.org29) was used 
for the tumor segmentation. DWI images and contrast-
enhanced T1WI (CE T1WI) (performed in 14/133 pa-
tients) were available for visual inspection to verify 

tumor borders. The tumor segmentations were con-
ducted by one radiologist in 106 cases (Reader 1 [K.W.L]: 
n = 59; Reader 2 [N.L]: n = 47), and by both radiologists 
in 27 randomly chosen cases. The two radiologists had 
12 and 7 years of experience reading pelvic MRIs and 
segmented the tumors independently and blinded for 
clinicopathological patient information. The two read-
ers demonstrated good agreement on the manual tumor 
segmentations with a median [IQR] Dice score of 0.81 
[0.73–0.86]. The extracted tumor masks were exported 
in the Neuroimaging Informatics Technology Initiative 
(NIfTI) file format.30

2.4  |  Image resampling

For each patient, the DWI images (high b-value DWI and 
ADC maps) were resampled using trilinear interpolation 
to the same slice thickness and voxel size as the corre-
sponding axial (oblique) T2WI used for tumor segmen-
tation. After transformation, image voxel data for each 
patient were specified on the same spatial grid. Out-of-
grid extrapolation values were set to zero.

2.5  |  Feature extraction

Image data and tumor masks were loaded using the Im-
agedata library.31 Before feature extraction, the T2WI 
and DWI series were normalized to obtain a standard-
ized distribution of image voxel intensities. For this nor-
malization, each data f set was divided by its own average, 
computed for voxels greater than zero, and then multi-
plied by a factor of 100;

Radiomic feature extraction was conducted using the 
Image Biomarkers Standardization Initiative (IBSI)32 
compliant PyRadiomics package for Python.33 Radiomic 
features were extracted from the T2WI axial (oblique) 
images and from the DWI images (high b-value DWI 
and ADC maps) that were resampled on the T2WI axial 
(oblique) grid. The position of the tumor masks on each 
slice of the resampled DWI series was validated by a ra-
diologist (Reader 1).

A total of 292 radiomic features of primary tumor were 
extracted for each patient; 106 from T2WI (including 13 
from the tumor mask), 93 from high b-value DWI, and 
93 and from ADC maps. The radiomic features included 
shape-based features (n = 13), first-order statistical features 
(n = 54), and textural features (n = 225). Textural features 

f ← f ∙
100

f f>0
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comprised five classes: 72 Gray Level Co-occurrence Ma-
trix (GLCM), 42 Gray Level Dependence Matrix (GLDM), 
48 Gray Level Run Length Matrix (GLRLM), 48 Gray Level 
Size Zone Matrix (GLSZM), and 15 Neighboring Gray Tone 
Difference Matrix (NGTDM). The extracted features were 

z-normalized according to each vendor and field strength, 
except for shape-based features that were z-normalized 
across the entire dataset. The shape-based features were 
calculated from the tumor mask, thus largely independent 
of vendor and field strength.

T A B L E  1   Clinical- and pathological patient characteristics for the 133 cervical cancer patients included in the study; and separate 
figures for the training cohort (nT = 89; diagnosed March 2009–December 2015), and the validation cohort (nV = 44; diagnosed December 
2015–October 2017).

Radiomics cohort 
(n = 133)

Training cohort 
(nT = 89)

Validation cohort 
(nV = 44) p

Age, median (IQR) (n = 133) 48 (37–60) 46 (36–60) 49 (45–59) 0.15

BMI, kg/m2, median (IQR) (n = 133) 26 (22–28) 26 (22–29) 24 (22–27) 0.38

n (%) nT (%) nV (%)

Menopausal status (n = 130) 0.34

Pre-/perimenopausal 74 (57) 53 (60) 21 (50)

Postmenopausal 56 (43) 35 (40) 21 (50)

MRI-derived maximum tumor size (n = 133) 0.23

≤2 cm 19 (14) 10 (11) 9 (20)

>2 and ≤4 cm 38 (29) 24 (27) 14 (32)

>4 cm 76 (57) 55 (62) 21 (48)

2018 FIGO stage (n = 133) 0.55

I 41 (31) 25 (28) 16 (36)

II 30 (23) 19 (21) 11 (25)

III 47 (35) 35 (39) 12 (27)

IV 15 (11) 10 (11) 5 (11)

Histologic type (n = 133) 0.89

Squamous cell carcinoma 104 (78) 69 (78) 35 (80)

Adenocarcinoma 21 (16) 15 (17) 6 (14)

Othera 8 (6) 5 (6) 3 (7)

Histologic grade (n = 124) 0.62

1&2 102 (82) 66 (81) 36 (86)

3 22 (18) 16 (20) 6 (14)

Primary treatment (n = 133) 0.39

Surgery onlyb 34 (26) 19 (21) 15 (34)

Surgeryc and adjuvant treatmentd 12 (9) 8 (9) 4 (9)

Radiotherapy ± chemotherapy 79 (59) 57 (64) 22 (50)

Othere 8 (6) 5 (6) 3 (7)

Dead from cervical cancer (n = 133) 0.83

Yes 33 (25) 23 (26) 10 (23)

No 100 (75) 66 (74) 34 (77)

Note: p values refer to test of differences between the training- and validation cohort (Wilcoxon rank-sum test for continuous variables and Fisher's exact test 
for categorical variables). Significant p values are given in bold.
Abbreviations: BMI, body mass index; FIGO, International Federation of Gynecology and Obstetrics; IQR, interquartile range.
aAdenosquamous (n = 2), neuroendocrine (n = 4), or undifferentiated carcinomas (n = 2).
bHysterectomy ± bilateral salpingectomy/salpingo-oophorectomy.
cConization (n = 1), trachelectomy (n = 1), or hysterectomy ± bilateral salpingectomy/salpingo-oophorectomy (n = 10).
dChemoradiation combined (n = 10) or chemotherapy only (n = 2).
eNeoadjuvant chemotherapy followed by surgery (n = 1) or palliative treatment (n = 7).
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2.6  |  Feature selection and radiomic 
signature construction

A two-step procedure was applied for radiomic feature 
selection. First, the robustness of the radiomic features 
extracted from the segmentations performed by both 
radiologists was assessed by intraclass correlation coef-
ficients (ICCs). Radiomic features with ICC >0.75 were 
considered reliable and retained for further analysis. 
This resulted in a radiomic dataset consisting of 206 
features: 60 features from T2WI, 77 from high b-value 
DWI, and 69 from ADC (Table  S3). Second, least ab-
solute shrinkage and selection operator (LASSO) Cox 
regression34 and Elastic net Cox regression35 for predic-
tion of DSS were applied for radiomic feature selection 
and radiomic signature development in cohort(T). Both 
methods were utilized to assess the optimal approach 
for feature selection in this dataset. The regularization 
parameter λ (LASSO Cox and Elastic net Cox) was op-
timized by leave-one-out cross-validation, and the regu-
larization parameter α (Elastic net Cox) was set to 0.5.

Radiomic signatures were constructed with the se-
lected features from T2WI only (T2rad) and from both 
T2WI and the DWI series (high b-value DWI and ADC 
map) (T2 + DWIrad), respectively. Radiomic scores were 
then calculated by a linear combination of final se-
lected significant features multiplied by their respective 
coefficients.

Elastic net Cox selected a larger number of radiomic 
features than LASSO Cox; however, this did not improve 
the prognostic performance of the radiomic signatures 
(Table  S4). Thus, LASSO Cox, representing a simpler 
model with fewer radiomic features, was used for further 
analyses.

2.7  |  Model performance assessment

The radiomic signatures were derived from cohort(T) and 
tested in cohort(V). All subsequent analyses were done 
separately for the two respective cohorts. The perfor-
mance of the radiomic signatures for predicting 5-year 

F I G U R E  2   Cervical cancer depicted by sagittal T2-weighted imaging (T2WI) (A, E), axial oblique T2WI (with manually segmented 
tumor mask) (B, F), axial/axial oblique diffusion-weighted imaging (DWI) (b = 1000 s/mm2 and b = 800 s/mm2) (C, G) with corresponding 
apparent diffusion coefficient (ADC) maps (D, H) in two different patients diagnosed with 2018 FIGO stage IIIC1. (A–D) Patient 1: A 
48-year-old woman having low radiomic score for the signatures T2rad and T2 + DWIrad and a large cervical tumor (white arrows; squamous 
cell carcinoma) with central ulceration (A, black asterisk). MRI-measured maximum tumor size is 5.9 cm. The tumor extends to the upper 
1/3 of the vagina (A, yellow arrowheads) and invades the parametrium (B, white arrowheads). An enlarged pelvic lymph node (short axis 
diameter 1.2 cm) is depicted with restricted diffusion (C, D red arrows). The primary tumor also exhibits restricted diffusion (white arrows) 
with hyperintensity on high b-value (C), and hypointensity on the corresponding ADC map (D). The patient was subjected to primary 
chemoradiotherapy with no signs of recurrence 5.5 years after treatment. (E–H) Patient 2: A 47-year-old woman having high radiomic 
score for both T2rad and T2 + DWIrad and a large cervical tumor (white arrows; adenocarcinoma). MRI-measured maximum tumor size is 
4.8 cm, and the tumor extends to the upper part of the vagina (E, yellow arrowheads). The primary tumor exhibits restricted diffusion (white 
arrows) with hyperintensity on high b-value (G), and hypointensity on the corresponding ADC map (H). The patient also had an enlarged 
pelvic lymph node (short axis diameter 1.2 cm; not shown) with restricted diffusion close to the left external iliac vessels. The patient 
received primary chemoradiotherapy, but experienced lymph node recurrence and died from cervical cancer 3.5 years after treatment.
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DSS was assessed and compared with MRI-measured 
maximum tumor diameter ≤/> 4 cm (MAXsize) and 
2018 FIGO stage (I–II/III–IV) using area under time-
dependent receiver operating characteristic (tdROC) 
analyses (AUC). Harrell's concordance index (C-index) 
for overall DSS was calculated for further discrimination 
of prognostic performance of the two radiomic signa-
tures. The value of the radiomic signatures for predicting 
DSS was compared with that of standard clinicopatho-
logical variables (FIGO stage, MRI-derived tumor size, 
age, and histologic grade) using the Cox proportional 
hazards model. All variables satisfied the assumption of 
proportional hazard (the Schoenfeld test of residuals and 
graphical diagnostics), except histologic grade (1 & 2 vs. 
3) in the cohort(V) (p < 0.05). To determine whether radi-
omic signatures combined with FIGO stage and MAXsize 
could improve DSS prediction, the significant predictors 
of DSS in the univariable Cox analysis in cohort(T) were 
used to build models combining radiomic signatures 
and FIGO stage (I–II/III–IV)/MAXsize: FIGO with T2rad, 
FIGO with T2 + DWIrad, MAXsize with T2rad, and MAXsize 
with T2 + DWIrad. The models were evaluated by AUC 
from tdROC analysis, nested likelihood ratio test, and 
Akaike information criterion (AIC).

Optimal cutoff values for the radiomic signatures T2rad 
and T2 + DWIrad derived in cohort(T) were identified from 
tdROC curves using Youden Index, and the patients were 
subsequently divided into high (high-risk)- and low (low-
risk) radiomic score groups. Differences in DSS between 
the groups were explored using the Kaplan–Meier method 
with the log-rank tests.

2.8  |  Statistical analyses

Statistical analyses were conducted using R 4.2.1 (R Core 
Team, 202236) and STATA 17.0 (StataCorp. 202137). Dif-
ferences in clinicopathological characteristics between 
cohort(T) versus cohort(V) and the radiomics cohort ver-
sus the entire MRI CC cohort were assessed using the 
Wilcoxon rank sum test for continuous variables and 
the Fisher's exact test for categorical variables, respec-
tively. LASSO Cox and Elastic net Cox regression were 
implemented using the “glmnet” R-package. The “tim-
eROC” R-package was used for calculating AUC for DSS 
at 5 years. The “survivalROC” R-package was adopted 
for determining the optimal cutoff values for the tdROC 
curves in the training cohort using Youden Index. 
Spearman's rank correlation coefficient measured the 
correlation between the selected radiomic features in 
the signatures T2rad and T2 + DWIrad. All reported p val-
ues were generated by two-sided tests and considered 
significant when <0.05.

3   |   RESULTS

3.1  |  Clinical characteristics

The median [IQR] age at primary diagnosis for the patient 
cohort (n = 133) was 48 [37–60] years. Altogether, 53% 
(71/133) were diagnosed with 2018 FIGO stage I–II and 
47% (62/133) with stage III–IV. The clinical- and patho-
logical characteristics of the patients are shown in Table 1. 
There was no significant difference in clinicopathologi-
cal parameters or DSS between cohort(T) and cohort(V) 
(p = 0.15–0.89) (Table 1).

3.2  |  Radiomic signature construction

The constructed radiomic signature from the Lasso Cox 
regression model for T2WI only (T2rad) included one 
GLSZM- and three shape-based features. The radiomic 
signature from both T2WI and DWI (T2 + DWIrad) in-
cluded three GLSZM-, one shape-based-, and one GLCM 
feature (Table 2). Details of the radiomic signature for-
mulas and radiomic score calculation are described in 
Appendix S1.

There were moderate-to-strong positive correlations 
between the radiomic features in T2rad (rS = 0.51–0.94, 
p < 0.05 for all) (Table  S5). In T2 + DWIrad, the radio-
mic features were only weak to moderately correlated 
(rS = −0.07–0.10 for the non-significant correlations, 
p ≥ 0.23 for all; rS = 0.38–0.58 for the significant correla-
tions, p < 0.05 for all), except for Shape Surface Area 
T2WI and GLSZM Gray Level Non-Uniformity ADC, 
which were strongly correlated (rS = 0.78, p < 0.05) 
(Table S6).

3.3  |  Prognostic performance of the 
radiomic signatures

The tdROC curves for predicting 5-year DSS yielded 
AUCT/AUCV of 0.80/0.62 for T2rad, 0.81/0.75 for 
T2 + DWIrad, 0.69/0.65 for MAXsize, and 0.77/0.64 
for FIGO (Figure  3 and Table  2). In cohort(T), T2rad 
and T2 + DWIrad yielded significantly higher AUCT 
than MAXsize (p < 0.05 for both) but similar AUCT to 
FIGO (p = 0.67 and p = 0.54) (Figure 3A). In cohort(V), 
T2 + DWIrad tended to yield higher AUC than MAX-
size and FIGO (p = 0.10 and p = 0.15, respectively) 
(Figure  3B). While T2rad and T2 + DWIrad yielded 
similar performance metrics in cohort(T) (p = 0.60), 
T2 + DWIrad outperformed T2rad in the cohort(V) 
(p < 0.05) (Figure 3). T2 + DWIrad also yielded higher C-
indexes than T2rad in both cohorts (C-indexT/C-indexV 
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for T2 + DWIrad and T2rad of 0.76/0.72 and 0.73/0.63, 
respectively) (Table 2).

T2rad and T2 + DWIrad significantly predicted DSS 
(HRT/HRV of 5.3/2.8 and 5.8/2.2, respectively; p < 0.05 
for all) (Table 3). Furthermore, when adjusting for FIGO 
stage (I–II/III–IV), the radiomic signatures remained in-
dependent predictors of DSS in both cohorts (HRT/HRV 
of 4.0/2.5 and 4.8/2.1; p < 0.05 for all). Also when adjust-
ing for MAXsize, both signatures remained significantly 
associated with reduced survival in cohort(T) (HRT: 4.6 
and 5.7; p < 0.05 for both) and tended to the same in the 
cohort(V) (HRV: 2.1 and 1.7; p = 0.09 and p = 0.14, respec-
tively) (Table 3).

3.4  |  Prognostic performance of the 
combined models

For the combined radiomic- and FIGO model the tdROC 
analysis for prediction of 5-year DSS yielded AUCT/AUCV 
of 0.86/0.66 for FIGO with T2rad, 0.88/0.75 for FIGO with 
T2 + DWIrad, and 0.77/0.64 for FIGO alone (Figure 4 and 
Table  4). Both FIGO-radiomic models performed sig-
nificantly better than FIGO alone (p < 0.05 for both) in 

cohort(T), while FIGO with T2 + DWIrad showed a strong 
tendency to the same in cohort(V) (p = 0.07) (Figure  4). 
Whereas FIGO with T2 + DWIrad and FIGO with T2rad 
yielded similar prognostic performance in cohort(T) 
(p = 0.50), FIGO with T2 + DWIrad outperformed FIGO 
with T2rad in cohort(V) (p < 0.05) (Figure 4).

The FIGO-radiomic models had a better model fit 
than FIGO alone in cohort(T) as demonstrated by nested 
likelihood ratio test (p < 0.05 for both models) and lower 
AICT (175.3 and 167.3 for FIGO with T2rad, FIGO with 
T2 + DWIrad vs. 186.3 for FIGO), with a similar tendency 
in cohort(V) (p = 0.06 for both models and corresponding 
AICV of 68.0 and 67.9 vs. 69.6) (Table 4).

Similarly, the combined MAXsize-radiomic models 
mostly yielded higher AUCs than MAXsize alone; how-
ever, without a significant improvement in model fit in 
cohort(V) (Figure S1 and Table S7).

3.5  |  Prediction of survival in low- and 
high-radiomic score groups

Higher radiomic score for T2rad and T2 + DWIrad was as-
sociated with reduced DSS in cohort(T) (p < 0.05 for both). 

T A B L E  2   Radiomic feature coefficients selected by LASSO Cox regression from T2WI alone and T2WI in combination with DWI for 
prediction of disease-specific survival (DSS) in cervical cancer. The regularization parameter (λ) was optimized by leave-one-out cross-
validation. The radiomic signatures were derived from the training cohort (nT = 89) and tested in the validation cohort (nV = 44). The 
performance metrics of the radiomic signatures for predicting DSS are given as AUC (5-year DSS) and C-index (overall DSS).

Radiomic features
Radiomic signature  
T2rad

a
Radiomic signature 
T2 + DWIrad

b

GLSZM large area low gray level emphasis T2WI 0.188 0.276

Shape major axis length T2WI 0.333

Shape maximum 2D diameter slice T2WI 0.003

Shape surface area T2WI 0.093 0.291

GLCM cluster shade DWI (high b-value) 0.001

GLSZM size zone non-uniformity DWI (high b-value) 0.173

GLSZM gray level non-uniformity ADC 0.276

Regularization parameter λ 0.112 0.097

Metrics for prognostic performance
Radiomic signature  
T2rad

a
Radiomic signature 
T2 + DWIrad

b

(nT = 89/nV = 44) LASSO Cox LASSO Cox

AUCT 0.80 0.81

AUCV 0.62 0.75

C-indexT 0.73 0.76

C-indexV 0.63 0.72

Abbreviations: ADC, apparent diffusion coefficient; AUC, area under the time-dependent receiver operating characteristic (tdROC) curves; C-Index, 
concordance index; DWI, diffusion-weighted imaging; GLCM, gray level co-occurrence matrix; GLSZM, gray level size zone matrix; LASSO, least absolute 
shrinkage and selection operator; T2WI, T2-weighted imaging.
aRadiomic features derived only from T2WI.
bRadiomic features derived from T2WI and DWI (high b-value and ADC).
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In cohort(V), patients with high T2 + DWIrad score dem-
onstrated worse DSS (p < 0.05), whereas no significant 
difference in survival was observed between low- and 
high-score groups for T2rad (p = 0.67) (Figure 5). Moreo-
ver, patients with high T2rad and T2 + DWIrad radiomic 
scores were more often diagnosed with local or distant 
tumor progression than patients with low radiomic 
scores (Table S8). Imaging findings in two patients hav-
ing similar 2018 FIGO stage (IIIC1) but displaying dif-
ferent low-risk/high-risk radiomic scores are presented 
in Figure 2.

4   |   DISCUSSION

This study demonstrates that whole-volume radiomic 
tumor profiling from T2WI and DWI may contribute to 
pretherapeutic non-invasive prognostication in CC. The 
developed radiomic signatures based on T2WI (T2rad) 
alone and both T2WI and DWI (T2 + DWIrad) yielded 
moderate-to-high diagnostic performance for predict-
ing DSS. Importantly, both radiomic signatures demon-
strated better or equal prognostic performance to that of 
MRI-derived maximum tumor size ≤/> 4 cm (MAXsize) 
and 2018 FIGO stage (I–II/III–IV). Combining radiomic 
signatures with FIGO stage yielded higher DSS prediction 
accuracy than FIGO stage alone. MRI radiomic tumor 
profiling may represent a promising supplement to con-
ventional MRI staging information allowing refined pre-
treatment prognostication and treatment tailoring in CC.

In CC, MRI radiomic signatures have previously been 
shown to predict high-risk clinicopathological features, 
that is, parametrial- or deep stromal tumor invasion,15,16 
LVSI,17 high histologic grade,18 and lymph node metas-
tases19–21 in subgroups of patients receiving primary sur-
gical treatment. Furthermore, MRI-based CC radiomic 
tumor profiles have been linked to increased risk of re-
currence or death in a few recent studies.22–26 The latter 
studies (comprising 183–248 patients) report moderate-
to-high performance metrics for predicting disease-free/
progression-free survival based on radiomic signatures 
from various combinations of MRI-sequences (T2WI, 
DWI, and CE T1WI). Their reported AUCs (training/vali-
dation cohort) are in the range of 0.73–0.86/0.66–0.8122–24 
and C-indexes (training/validation cohort) in the range 
of 0.74–0.79/0.67–0.81.23–26 In the present study, the 
achieved prognostic performance metrics of the radiomic 
signatures (AUCs for 5-year DSS for T2rad: 0.80/0.62 and 
T2 + DWIrad: 0.81/0.75; C-indexes for T2rad: 0.73/0.63 and 
T2 + DWIrad: 0.76/0.72) are broadly in line with that previ-
ously reported. However, large methodological variations 
exist among MRI studies, that is, differences in MRI se-
quences, field strength, patient demographics, approaches 
for radiomic feature extraction, and statistical methods. 
This makes direct comparison of reported performance 
metrics from radiomic models difficult as the impact of 
methodological variation is not fully known. Importantly, 
the potential clinical utility, robustness, and reproducibil-
ity of radiomic tumor profiling for prognostication in CC 
need to be tested and validated in independent CC cohorts 
at different centers prior to implementation in the clinic.

Currently, MRI-derived tumor size and 2018 FIGO 
stage are routinely used in the clinic to guide choice of 
therapy in CC.2 To the best of our knowledge, this is the 
first study to comprehensively evaluate the predictive abil-
ity of MRI radiomic signatures with rigorous separation 

F I G U R E  3   Time-dependent receiver operating characteristic 
(tdROC) curves for prediction of 5-year disease-specific survival 
(DSS) based on the radiomic signature from T2WI only (T2rad), 
from both T2WI and DWI (T2 + DWIrad), MRI-measured maximum 
tumor size ≤/> 4 cm (MAXsize), and 2018 FIGO stage (I–II/
III–IV) in the training (nT = 89) (A) and validation (nV = 44) (B) 
cohorts. p values refer to the test of equal area under the tdROC 
curves (AUC). FIGO, International Federation of Gynecology and 
Obstetrics.
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of the training- and validation cohorts in all analyses, in 
comparison and combination with these conventional 
markers. Interestingly, the radiomic signatures in the 

present study yielded better or similar prognostic per-
formance to that of MRI-derived maximum tumor size 
≤/> 4 cm (MAXsize) and 2018 FIGO stage (I–II/III–IV). 
Furthermore, the radiomic signatures remained indepen-
dent predictors of DSS even after adjusting for 2018 FIGO 
stage (both in cohort(T) and cohort(V)) and after adjusting 
for MAXsize (in cohort(T)). This emphasizes the possible 
benefit of combining radiomic signatures and conven-
tional staging markers to enhance the prediction of pre-
treatment prognosis in CC.

We found that T2 + DWIrad outperformed T2rad for 
predicting 5-year DSS in cohort(V), suggesting that DWI 
radiomic features may capture biologically relevant fea-
tures not fully captured by T2WI, which are important 
for prognosis. In line with this, two previous studies on 
early-stage CC report that combined T2WI- and DWI 
radiomic signatures outperform T2WI signatures for 
predicting parametrial invasion15 and lymph node me-
tastases19; both being surrogate markers of poor prog-
nosis. Similarly, a recent study of CC patients by Zheng 
et al., reports that a combined T2WI- and DWI radiomic 
signature yields better prediction of 3-year disease-free 
survival than the T2WI signature (AUCs of 0.83/0.77 vs. 
0.73/0.66 in the training/validation cohorts) (n = 207).22 
However, Zheng et al. included only patients diagnosed 
with early-stage disease at a single center using 3.0T 
MRI,22 whereas our study included patients with all 
FIGO stages ≥IB1, diagnosed at multiple centers with 
1.5T and 3.0T MRI systems. Despite these differences, 
the overall similar findings support a likely benefit of 
a combined T2WI and DWI radiomic tumor profile for 
prognostication in CC.

The 2018 revision of the FIGO classification system 
for CC allows including clinical-, radiological-, or patho-
logical findings in stage assignment.2 The 2018 FIGO 
stage is strongly linked to prognosis as it incorporates key 
factors such as tumor size, parametrial invasion, lymph 
node metastases, and distant spread, all known to impact 
survival. Importantly, the final 2018 FIGO stage is based 
on a combination of many examinations, all of which 
are inherently susceptible to subjectivity, and variability. 

F I G U R E  4   Time-dependent receiver operating characteristic 
(tdROC) curves for prediction of 5-year disease-specific survival 
(DSS) based on 2018 FIGO stage (I–II/III–IV), a combined 
model of FIGO with T2rad, and a combined model of FIGO with 
T2 + DWIrad in the training (nT = 89) (A) and validation (nV = 44) 
(B) cohorts. p values refer to the test of equal area under the tdROC 
curves (AUC). FIGO, International Federation of Gynecology and 
Obstetrics.
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T A B L E  4   The performance of combined 2018 FIGO-radiomic models and 2018 FIGO stage alone for predicting 5-year disease-specific 
survival (DSS) in cervical cancer.

Training cohort (nT = 89) Validation cohort (nV = 44)

AUCT AICT AUCV AICV

FIGO with T2rad 0.86 175.3 0.66 68.0

FIGO with T2 + DWIrad 0.88 167.3 0.75 67.9

FIGO 0.77 186.3 0.64 69.6

Abbreviations: AUC, area under the time-dependent receiver operating characteristic (tdROC) curves; AIC, akaike information criterion; FIGO, International 
Federation of Gynecology and Obstetrics.
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An objective and accurate supplement to FIGO for prog-
nostication of CC would therefore be of clinical value. In 
the present study, we found that the prognostic models 
combining radiomic profiles (T2rad and T2 + DWIrad) and 
2018 FIGO stage (I–II/III–IV) yielded better prediction 
of survival and better model fit than that of FIGO stage 
alone. Interestingly, a previous study reports that prether-
apeutic computed tomography (CT) radiomic tumor sig-
natures in combination with 2009 FIGO stage (IB1, II, 
III, IVA) yields better prediction of survival and better 
model fit than FIGO stage alone in CC (n = 106).38 The 
added value of radiomic tumor profiling as a supplement 
to FIGO stage for better prognostication in CC may hence 
be shared by both CT- and MRI radiomic profiling. How-
ever, this needs to be validated in larger and independent 
patient cohorts.

Of note, the primary tumor features captured by MRI 
radiomic prognostic profiling do not have a unique his-
topathologic correlate or an obvious pathogenic interpre-
tation. However, increased intratumoral heterogeneity, 
known to be associated with aggressive tumor biology and 

resistance to therapy in CC,39 may putatively be reflected 
in radiomic features. Thus, whole-volume radiomic tumor 
profiling has the potential, by providing non-invasive 
markers of tissue heterogeneity, to yield whole-volume 
tumor heterogeneity markers beyond what is accessible 
from that of tumor biopsies.14 Furthermore, with increas-
ing knowledge about likely links between radiomic tumor 
profiles and potential molecular targets for treatment, ra-
diomic tumor profiling may enable more tailored, and tar-
geted treatment strategies in future CC patient care.

4.1  |  Limitations

First, the MRI examinations were conducted in a mul-
ticenter setting with scanners from different vendors 
comprising both 1.5T and 3.0T systems using a variety 
of image protocols, which might have influenced the 
image quality, tumor segmentation accuracy, and repro-
ducibility of the radiomic feature extraction. However, 
one could argue that this approach to a certain extent 

F I G U R E  5   Kaplan–Meier curves 
depicting disease-specific survival (DSS) 
in cervical cancer patients with low- and 
high-radiomic score for the signatures 
T2rad and T2 + DWIrad in the training 
(nT = 89) (A and B) and validation 
(nV = 44) (C and D) cohorts. The optimal 
cutoff values for the radiomic signatures 
were identified from time-dependent 
receiver operating characteristics (tdROC) 
curve analysis in the training cohort using 
Youden Index.
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reduces the risk of selection bias and demonstrates the 
robustness of predictive models. As such, our results 
may be generalizable and reflect the real-world use of 
MRI-based radiomics in clinical practice. Based on rec-
ommendations in the literature, radiomic features with 
an ICC ≤0.75 from segmentations conducted by both 
radiologists were excluded.14 This criteria for radiomic 
feature selection may reportedly be suboptimal.40 Fur-
ther investigation into the repeatability and stability 
of MRI radiomic features for prognostic modeling is 
clearly warranted. Second, the tumor masks were delin-
eated manually on axial (oblique) T2WI and placed on 
resampled DWI. While a radiologist validated the accu-
racy of the tumor mask placement on each slice of the 
DWI series, it would have been ideal that the primary 
tumor segmentations were drawn specifically on these 
series. However, manual tumor segmentation on high b-
value DWI and ADC maps in addition to T2WI would be 
extremely time-consuming and certainly not feasible in 
a clinical radiology workflow. Thus, the need to develop 
new software applications that allow automated and ac-
curate tumor segmentations on multiparametric MRI is 
crucial if future advancements in radiomic profiling are 
to be introduced in the clinic. Third, to avoid overfitting, 
we used the recommended temporal split method when 
allocating patients into cohorts.41 This splitting resulted 
in the training cohort comprising mainly 1.5T examina-
tions and the validation cohort primarily 3.0T examina-
tions. Thus, since the models were trained using older 
MRI systems and validated in newer MRI systems hav-
ing better imaging technologies, this may have partly 
influenced the diagnostic performance of the radiomic 
models. Fourth, our study encompassed patients who 
underwent varied treatments based on their disease 
stage, potentially influencing patient outcomes. Unfor-
tunately, our relatively small study cohort precluded an 
assessment of how the radiomic signatures differed for 
the various treatment groups. However, future larger 
radiomic studies should ideally include analyses for the 
different treatment groups separately. Lastly, the robust-
ness of our results remains to be externally validated in 
large and independent CC cohorts prior to potential im-
plementation in the clinic.

5   |   CONCLUSION

The radiomic signatures derived from T2WI only (T2rad) 
and both T2WI and DWI (T2 + DWIrad) based on pre-
treatment MRI demonstrated moderate-to-high di-
agnostic performance for predicting DSS in CC. Both 
radiomic signatures performed better or similar to that 
based on MRI-derived maximum tumor size (≤/>4 cm) 

and 2018 FIGO stage (I–II/III–IV). Adding the radiomic 
signatures to 2018 FIGO stage (I–II/III–IV) improved 
DSS prediction compared to FIGO alone in the training 
cohort, and the combination of FIGO with T2 + DWIrad 
tended to the same in the validation cohort. Further-
more, our findings suggest a likely advantage of using 
combined T2WI- and DWI radiomic tumor signatures 
over T2WI signatures for pretreatment risk assessment 
in CC. This study supports the promising role of radi-
omic tumor profiling for refined pretreatment prognos-
tication and for guiding tailored treatment strategies in 
CC.
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