Julius Parulek

Adjunct associate professor

Publications

2017

    [PDF] [Bibtex]
    @ARTICLE {Furmanova2017Ligand,
    author = "Furmanov{\'a}, Katar{\'\i}na and Jare{\v{s}}ov{\'a}, Miroslava and By{\v{s}}ka, Jan and Jur{\v{c}}{\'i}k, Adam and Parulek, J{\'u}lius and Hauser, Helwig and Kozl{\'i}kov{\'a}, Barbora",
    title = "Interactive exploration of ligand transportation through protein tunnels",
    journal = "BMC Bioinformatics",
    year = "2017",
    volume = "18(Suppl 2)",
    number = "22",
    month = "feb",
    abstract = "Background: Protein structures and their interaction with ligands have been in the focus of biochemistry andstructural biology research for decades. The transportation of ligand into the protein active site is often complexprocess, driven by geometric and physico-chemical properties, which renders the ligand path full of jitter andimpasses. This prevents understanding of the ligand transportation and reasoning behind its behavior along the path.Results: To address the needs of the domain experts we design an explorative visualization solution based on amulti-scale simplification model. It helps to navigate the user to the most interesting parts of the ligand trajectory byexploring different attributes of the ligand and its movement, such as its distance to the active site, changes of aminoacids lining the ligand, or ligand “stuckness�. The process is supported by three linked views – 3D representation of thesimplified trajectory, scatterplot matrix, and bar charts with line representation of ligand-lining amino acids.Conclusions: The usage of our tool is demonstrated on molecular dynamics simulations provided by the domainexperts. The tool was tested by the domain experts from protein engineering and the results confirm that it helps tonavigate the user to the most interesting parts of the ligand trajectory and to understand the ligand behavior",
    pdf = "pdfs/Furmanova2017.pdf",
    images = "images/Furmanova2016Interactive.png",
    thumbnails = "images/Furmanova2016Interactive.png",
    note = "https://doi.org/10.1186/s12859-016-1448-0"
    }
    [PDF] [Bibtex]
    @ARTICLE {Kocincova2017SS,
    author = "Kocincov{\'a}, Lucia and Jare{\v{s}}ov{\'a}, Miroslava and By{\v{s}}ka, Jan and Parulek, J{\'u}lius and Hauser, Helwig and Kozl{\'i}kov{\'a}, Barbora",
    title = "Comparative visualization of protein secondary structures",
    journal = "BMC Bioinformatics",
    year = "2017",
    volume = "18(Suppl 2)",
    number = "23",
    month = "feb",
    abstract = "Background: Protein function is determined by many factors, namely by its constitution, spatial arrangement, anddynamic behavior. Studying these factors helps the biochemists and biologists to better understand the proteinbehavior and to design proteins with modified properties. One of the most common approaches to these studies is tocompare the protein structure with other molecules and to reveal similarities and differences in their polypeptidechains.Results: We support the comparison process by proposing a new visualization technique that bridges the gapbetween traditionally used 1D and 3D representations. By introducing the information about mutual positions ofprotein chains into the 1D sequential representation the users are able to observe the spatial differences between theproteins without any occlusion commonly present in 3D view. Our representation is designed to serve namely forcomparison of multiple proteins or a set of time steps of molecular dynamics simulation.Conclusions: The novel representation is demonstrated on two usage scenarios. The first scenario aims to compare aset of proteins from the family of cytochromes P450 where the position of the secondary structures has a significantimpact on the substrate channeling. The second scenario focuses on the protein flexibility when by comparing a setof time steps our representation helps to reveal the most dynamically changing parts of the protein chain.",
    pdf = "pdfs/Kocincova2017.pdf",
    images = "images/Lucia2016Comparative.png",
    thumbnails = "images/Lucia2016Comparative.png",
    note = "https://doi.org/10.1186/s12859-016-1449-z"
    }

2016

    [DOI] [Bibtex]
    @ARTICLE {Michael2016Visual,
    author = "Michael Krone and Barbora Kozlikova and Norbert Lindow and Marc Baaden and Daniel Baum, and Julius Parulek and Hans-Christian Hege and Ivan Viola",
    title = "Visual Analysis of Biomolecular Cavities: State of the Art",
    journal = "Computer Graphics Forum",
    year = "2016",
    abstract = "In this report we review and structure the branch of molecular visualization that is concerned with the visual analysis of cavities in macromolecular protein structures. First the necessary background, the domain terminology, and the goals of analytical reasoning are introduced. Based on a comprehensive collection of relevant research works, we present a novel classification for cavity detection approaches and structure them into four distinct classes: grid-based, Voronoi-based, surface-based, and probe-based methods. The subclasses are then formed by their combinations. We match these approaches with corresponding visualization technologies starting with direct 3D visualization, followed with non-spatial visualization techniques that for example abstract the interactions between structures into a relational graph, straighten the cavity of interest to see its profile in one view, or aggregate the time sequence into a single contour plot. We also discuss the current state of methods for the visual analysis of cavities in dynamic data such as molecular dynamics simulations. Finally, we give an overview of the most common tools that are actively developed and used in the structural biology and biochemistry research. Our report is concluded by an outlook on future challenges in the field.",
    images = "images/STARcavities2016.png",
    thumbnails = "images/STARcavities2016.png",
    publisher = "The Eurographics Association and John Wiley \& Sons Ltd.",
    issn = "1467-8659",
    doi = "10.1111/cgf.12928",
    project = "physioillustration"
    }
    [Bibtex]
    @INPROCEEDINGS {Kolesar2016VCBM,
    author = "Ivan Kolesar and Jan By\v{s}ka and Julius Parulek and Helwig Hauser and Barbora Kozl\'{i}kov\'{a}",
    title = "Unfolding and Interactive Exploration of Protein Tunnels andtheir Dynamics",
    booktitle = "Eurographics Workshop on Visual Computing for Biology and Medicine",
    year = "2016",
    pages = "1--10",
    month = "sep",
    abstract = "The presence of tunnels in protein structures substantially influences their reactivity with other molecules. Therefore, studying their properties and changes over time has been in the scope of biochemists for decades. In this paper we introduce a novel approach for comparative visualization and exploration of ensembles of tunnels. Our goal is to overcome occlusion problems present in traditional tunnel representations while providing users a quick way to navigate through the input dataset to identify potentially interesting tunnels. First, we unfold the input tunnels to a 2D representation enabling to observe the mutual position of amino acids forming the tunnel surface and the amount of surface they influence. These 2D images are subsequently described by image moments commonly used in image processing. This way we are able to detect similarities and outliers in the dataset, which are visualized as clusters in a scatterplot graph. The same coloring scheme is used in the linked bar chart enabling to detect the position of the cluster members over time. These views provide a way to select a subset of potentially interesting tunnels that can be further explored in detail using the 2D unfolded view and also traditional 3D representation. The usability of our approach is demonstrated on case studies conducted by the domain experts.",
    images = "images/Kolesar-2016-VCBM.png",
    thumbnails = "images/Kolesar-2016-VCBM-thumbnail.jpg",
    proceedings = "Proceedings of Eurographics Workshop on Visual Computing in Biology and Medicine",
    keywords = "unfolding, storytelling, game visualization",
    location = "Bergen, Norway",
    project = "physioillustration"
    }

2015

    [DOI] [Bibtex]
    @INPROCEEDINGS {eurovisstar20151112,
    author = "Kozlikova, Barbora and Krone, Michael and Lindow, Norbert and Falk, Martin and Baaden, Marc and Baum, Daniel and Viola, Ivan and Parulek, Julius and Hege, Hans-Christian",
    title = "Visualization of Biomolecular Structures: State of the Art",
    booktitle = "Eurographics Conference on Visualization (EuroVis) - STARs",
    year = "2015",
    editor = "R. Borgo and F. Ganovelli and I. Viola",
    volume = "-",
    publisher = "The Eurographics Association",
    abstract = "Structural properties of molecules are of primary concern in many fields. This report provides a comprehensiveoverview on techniques that have been developed in the fields of molecular graphics and visualization with a focuson applications in structural biology. The field heavily relies on computerized geometric and visual representationsof three-dimensional, complex, large, and time-varying molecular structures. The report presents a taxonomy thatdemonstrates which areas of molecular visualization have already been extensively investigated and where the fieldis currently heading. It discusses visualizations for molecular structures, strategies for efficient display regardingimage quality and frame rate, covers different aspects of level of detail, and reviews visualizations illustrating thedynamic aspects of molecular simulation data. The report concludes with an outlook on promising and importantresearch topics to enable further success in advancing the knowledge about interaction of molecular structures.",
    images = "images/molvis_star.png",
    thumbnails = "images/molvis_star.png",
    proceedings = "Eurographics Conference on Visualization (EuroVis) - STARs",
    doi = "10.2312/eurovisstar.20151112",
    journal = "-",
    number = "-",
    keywords = "-",
    project = "physioillustration"
    }
    [Bibtex]
    @INPROCEEDINGS {cellVIEW_2015,
    author = "Mathieu Le Muzic and Ludovic Autin and Julius Parulek and Ivan Viola",
    title = "cellVIEW: a Tool for Illustrative and Multi-Scale Rendering of Large Biomolecular Datasets",
    booktitle = "EG Workshop on Visual Computing for Biology and Medicine",
    year = "2015",
    month = "sep",
    abstract = "In this article we introduce cellVIEW, a new system to interactively visualize large biomolecular datasets on the atomic level. Our tool is unique and has been specifically designed to match the ambitions of our domain experts to model and interactively visualize structures comprised of several billions atom. The cellVIEW system integrates acceleration techniques to allow for real-time graphics performance of 60 Hz display rate on datasets representing large viruses and bacterial organisms. Inspired by the work of scientific illustrators, we propose a level-of-detail scheme which purpose is two-fold: accelerating the rendering and reducing visual clutter. The main part of our datasets is made out of macromolecules, but it also comprises nucleic acids strands which are stored as sets of control points. For that specific case, we extend our rendering method to support the dynamic generation of DNA strands directly on the GPU. It is noteworthy that our tool has been directly implemented inside a game engine. We chose to rely on a third party engine to reduce software development work-load and to make bleeding-edge graphics techniques more accessible to the end-users. To our knowledge cellVIEW is the only suitable solution for interactive visualization of large bimolecular landscapes on the atomic level and is freely available to use and extend.",
    images = "images/cellview2015.png",
    thumbnails = "images/cellview2015.png",
    proceedings = "Proceedings of Eurographics Workshop on Visual Computing in Biology and Medicine",
    project = "physioillustration"
    }
    [DOI] [Bibtex]
    @INPROCEEDINGS {7156384,
    author = "Le Muzic, Mathieu and Waldner, Manuela and Parulek, Julius and Viola, Ivan",
    title = "Illustrative Timelapse: A technique for illustrative visualization of particle-based simulations",
    booktitle = "Visualization Symposium (PacificVis), 2015 IEEE Pacific",
    year = "2015",
    pages = "247-254",
    month = "April",
    abstract = "Animated movies are a popular way to communicate complex phenomena in cell biology to the broadaudience. Animation artists apply sophisticated illustration techniques to communicate a story, while trying to maintain a realistic representation of a complex dynamic environment. Since suchhand-crafted animations are time-consuming and cost-intensive to create, our goal is to formalizeillustration techniques used by artists to facilitate the automatic creation of visualizations generated from mesoscale particle-based molecular simulations. Our technique Illustrative Timelapse supports visual exploration of complex biochemical processes in dynamic environments by(1) seamless temporal zooming to observe phenomena in different temporal resolutions, (2) visualabstraction of molecular trajectories to ensure that observers are able to visually follow themain actors, (3) increased visual focus on events of interest, and (4) lens effects to preserve arealistic representation of the environment in the context. Results from a first user studyindicate that visual abstraction of trajectories improves the ability to follow a story and isalso appreciated by users. Lens effects increased the perceived amount of molecular motion in theenvironment while trading off traceability of individual molecules.",
    images = "images/illustrative_timelapse.png",
    thumbnails = "images/illustrative_timelapse.png",
    proceedings = "Proceedings of IEEE Pacific Visualization",
    keywords = "Biological system modeling;Data models;Data visualization;Lenses;Trajectory;Videos;Visualization;I.3.7[COMPUTER GRAPHICS]: Three-Dimensional Graphics and Realism—Animation;I.6.3 [SIMULATION AND MODELING]: Applications—",
    doi = "10.1109/PACIFICVIS.2015.7156384",
    project = "physioillustration"
    }

2014

    [PDF] [Bibtex]
    @ARTICLE {Natali14Rapid,
    author = "Mattia Natali and Julius Parulek and Daniel Patel",
    title = "Rapid Modelling of Interactive Geological Illustrations with Faults and Compaction",
    journal = "Proceedings of Spring Conference on Computer Graphics (SCCG)",
    year = "2014",
    abstract = "In this paper, we propose new methods for building geological illustrations and animations. We focus on allowing geologists to create their subsurface models by means of sketches, to quickly communicate concepts and ideas rather than detailed information. The result of our sketch-based modelling approach is a layer-cake volume representing geological phenomena, where each layer is rock material which has accumulated due to a user-defined depositional event. Internal geological structures can be inspected by different visualization techniques that we employ. Faulting and compaction of rock layers are important processes in geology. They can be modelled and visualized with our technique. Our representation supports non-planar faults that a user may define by means of sketches. Real-time illustrative animations are achieved by our GPU accelerated approach.",
    pdf = "pdfs/Natali14Rapid.pdf",
    images = "images/Natali2014Rapid0.png, images/Natali2014Rapid1.png",
    thumbnails = "images/Natali2014Rapid0.png, images/Natali2014Rapid1.png",
    url = "http://dx.doi.org/10.1145/2643188.2643201",
    project = "geoillustrator"
    }
    [PDF] [Bibtex]
    @MISC {LeMusic14Temporal,
    author = "Mathieu Le Muzic and Julius Parulek and Manuela Waldner and Ivan Viola",
    title = "Illustrative Visualization of Biochemical Processes Featuring Multiple Temporal Scales",
    howpublished = "Poster presented at the EG VCBM workshop 2014",
    month = "September",
    year = "2014",
    pdf = "pdfs/LeMusic14Temporal.pdf",
    images = "images/LeMuzic14Temporal.png",
    thumbnails = "images/LeMuzic14Temporal_thumb.png",
    location = "Wien, Austria",
    project = "physioillustration"
    }
    [PDF] [VID] [Bibtex]
    @INPROCEEDINGS {Kolesar-2014-IPT,
    author = "Ivan Kolesar and Julius Parulek and Ivan Viola and Stefan Bruckner and Anne-Kristin Stavrum and Helwig Hauser",
    title = "Illustrating Polymerization using Three-level Model Fusion",
    booktitle = "Proceedings of IEEE BioVis 2014",
    year = "2014",
    month = "aug",
    abstract = "Research in cell biology is steadily contributing new knowledge about  many different aspects of physiological processes like polymerization,  both with respect to the involved molecular structures as well as  their related function. Illustrations of the spatio-temporal development  of such processes are not only used in biomedical education, but  also can serve scientists as an additional platform for in-silico  experiments. In this paper, we contribute a new, three-level modeling  approach to illustrate physiological processes from the class of  polymerization at different time scales. We integrate physical and  empirical modeling, according to which approach suits the different  involved levels of detail best, and we additionally enable a simple  form of interactive steering while the process is illustrated. We  demonstrate the suitability of our approach in the context of several  polymerization processes and report from a first evaluation with  domain experts.",
    pdf = "pdfs/Kolesar-2014-IPT.pdf",
    vid = "vids/Kolesar14Polymers.mp4",
    images = "images/Kolesar-2014-IPT.jpg",
    thumbnails = "images/Kolesar-2014-IPT.png",
    keywords = "biochemical visualization, L-system modeling, multi-agent modeling, visualization of physiology, polymerization",
    owner = "bruckner",
    project = "physioillustration",
    timestamp = "2014.12.29"
    }
    [PDF] [DOI] [Bibtex]
    @ARTICLE {Parulek-2014-CLV,
    author = "Julius Parulek and Daniel J{\"o}nsson and Timo Ropinski and Stefan Bruckner and Anders Ynnerman and Ivan Viola",
    title = "Continuous Levels-of-Detail and Visual Abstraction for Seamless Molecular Visualization",
    journal = "Computer Graphics Forum",
    year = "2014",
    volume = "33",
    number = "6",
    pages = "276--287",
    month = "sep",
    abstract = "Molecular visualization is often challenged with rendering of large  molecular structures in real time. We introduce a novel approach  that enables us to show even large protein complexes. Our method  is based on the level-of-detail concept, where we exploit three different  abstractions combined in one visualization. Firstly, molecular surface  abstraction exploits three different surfaces, solvent-excluded surface  (SES), Gaussian kernels and van der Waals spheres, combined as one  surface by linear interpolation. Secondly, we introduce three shading  abstraction levels and a method for creating seamless transitions  between these representations. The SES representation with full shading  and added contours stands in focus while on the other side a sphere  representation of a cluster of atoms with constant shading and without  contours provide the context. Thirdly, we propose a hierarchical  abstraction based on a set of clusters formed on molecular atoms.  All three abstraction models are driven by one importance function  classifying the scene into the near-, mid- and far-field. Moreover,  we introduce a methodology to render the entire molecule directly  using the A-buffer technique, which further improves the performance.  The rendering performance is evaluated on series of molecules of  varying atom counts.",
    pdf = "pdfs/Parulek-2014-CLV.pdf",
    images = "images/Parulek-2014-CLV.jpg",
    thumbnails = "images/Parulek-2014-CLV.png",
    issn = "1467-8659",
    doi = "10.1111/cgf.12349",
    keywords = "level of detail algorithms, implicit surfaces, clustering, scientific visualization",
    project = "physioillustration"
    }
    [Bibtex]
    @ARTICLE {lemuzic2014ivm,
    author = "Mathieu Le Muzic and Julius Parulek and Anne-Kristin Stavrum and Ivan Viola",
    title = "Illustrative Visualization of Molecular Reactions using Omniscient Intelligence and Passive Agents ",
    journal = "Computer Graphics Forum",
    year = "2014",
    volume = "33",
    number = "3",
    pages = "141--150",
    month = "jun",
    abstract = "In this paper we propose a new type of a particle systems, tailored for illustrative visualization purposes, in particular for visualizing molecular reactions in biological networks. Previous visualizations of biochemical processes were exploiting the results of agent-based modeling. Such modeling aims at reproducing accurately the stochastic nature of molecular interactions. However, it is impossible to expect events of interest happening at a certain time and location, which is impractical for storytelling. To obtain the means of controlling molecular interactions, we propose to govern passive agents with an omniscient intelligence, instead of giving to the agents the freedom of initiating reaction autonomously. This makes it possible to generate illustrative animated stories that communicate the functioning of the molecular machinery. The rendering performance delivers for interactive framerates of massive amounts of data, based on the dynamic tessellation capabilities of modern graphics cards. Finally, we report an informal expert feedback we obtained from the potential users.",
    images = "images/Lemuzic14Illustrative.png, images/Lemuzic14Illustrative.png",
    thumbnails = "images/Lemuzic14Illustrative0_thumb.png, images/Lemuzic14Illustrative1_thumb.png",
    event = "EuroVis",
    url = "http://www.cg.tuwien.ac.at/research/publications/2014/lemuzic-2014-ivm/",
    project = "physioillustration"
    }
    [PDF] [DOI] [YT] [Bibtex]
    @ARTICLE {Kolesar-2014-IIP,
    author = "Ivan Kolesar and Julius Parulek and Ivan Viola and Stefan Bruckner and Anne-Kristin Stavrum and Helwig Hauser",
    title = "Interactively Illustrating Polymerization using Three-level Model Fusion",
    journal = "BMC Bioinformatics",
    year = "2014",
    volume = "15",
    pages = "345",
    month = "oct",
    abstract = "Research in cell biology is steadily contributing new knowledge about  many aspects of physiological processes, both with respect to the  involved molecular structures as well as their related function.  Illustrations of the spatio-temporal development of such processes  are not only used in biomedical education, but also can serve scientists  as an additional platform for in-silico experiments. Results In this  paper, we contribute a new, three-level modeling approach to illustrate  physiological processes from the class of polymerization at different  time scales. We integrate physical and empirical modeling, according  to which approach best suits the different involved levels of detail,  and we additionally enable a form of interactive steering, while  the process is illustrated. We demonstrate the suitability of our  approach in the context of several polymerization processes and report  from a first evaluation with domain experts. Conclusion We conclude  that our approach provides a new, hybrid modeling approach for illustrating  the process of emergence in physiology, embedded in a densely filled  environment. Our approach of a complementary fusion of three systems  combines the strong points from the different modeling approaches  and is capable to bridge different spatial and temporal scales.",
    pdf = "pdfs/Kolesar-2014-IIP.pdf",
    images = "images/Kolesar-2014-IIP.jpg",
    thumbnails = "images/Kolesar-2014-IIP.png",
    youtube = "https://www.youtube.com/watch?v=iMl5nDicmhg",
    doi = "10.1186/1471-2105-15-345",
    keywords = "biochemical visualization, L-system modeling, multi-agent modeling, visualization of physiology, polymerization",
    owner = "bruckner",
    project = "physioillustration",
    timestamp = "2014.12.29",
    url = "http://www.ii.uib.no/vis/projects/physioillustration/research/interactive-molecular-illustration.html"
    }

2013

    [PDF] [DOI] [Bibtex]
    @INPROCEEDINGS {Natali13Modeling,
    author = "Mattia Natali and Endre M. Lidal and Julius Parulek and Ivan Viola and Daniel Patel",
    title = "Modeling Terrains and Subsurface Geology",
    booktitle = "EuroGraphics 2013 State of the Art Reports (STARs)",
    year = "2013",
    pages = "155--173",
    abstract = "The process of creating terrain and landscape models is important in a variety of computer graphics and visualization applications, from films and computer games, via flight simulators and landscape planning, to scientific visualization and subsurface modelling. Interestingly, the modelling techniques used in this large range of application areas have started to meet in the last years. In this state-of-the-art report, we present two taxonomies of different modelling methods. Firstly we present a data oriented taxonomy, where we divide modelling into three different scenarios: the data-free, the sparse-data and the dense-data scenario. Then we present a workflow oriented taxonomy, where we divide modelling into the separate stages necessary for creating a geological model. We start the report by showing that the new trends in geological modelling are approaching the modelling methods that have been developed in computer graphics. We then give an introduction to the process of geological modelling followed by our two taxonomies with descriptions and comparisons of selected methods. Finally we discuss the challenges and trends in geological modelling.",
    pdf = "pdfs/Natali13Modeling.pdf",
    images = "images/Natali13Modeling.png",
    thumbnails = "images/Natali13Modeling.png",
    proceedings = "EuroGraphics 2013 State of the Art Reports (STARs)",
    url = "http://diglib.eg.org/EG/DL/conf/EG2013/stars/155-173.pdf",
    doi = "10.2312/conf/EG2013/stars/155-173",
    location = "Girona, Spain",
    project = "geoillustrator"
    }
    [PDF] [Bibtex]
    @INPROCEEDINGS {Parulek13Seamless,
    author = "Julius Parulek and Timo Ropinski and Ivan Viola",
    title = "Seamless Abstraction of Molecular Surfaces",
    booktitle = "Proceedings of the 29th Spring Conference on Computer Graphics",
    year = "2013",
    series = "SCCG '13",
    pages = "120--127",
    abstract = "Molecular visualization is often challenged with rendering of large sequences of molecular simulations in real time. We introduce a novel approach that enables us to show even large protein complexes over time in real-time. Our method is based on the level-ofdetail concept, where we exploit three different molecular surface models, solvent excluded surface (SES), Gaussian kernels and van der Waals spheres combined in one visualization. We introduce three shading levels that correspond to their geometric counterparts and a method for creating seamless transition between these representations. The SES representation with full shading and added contours stands in focus while on the other side a sphere representation with constant shading and without contours provide the context. Moreover, we introduce a methodology to render the entire molecule directly using the A-buffer technique, which further improves the performance. The rendering performance is evaluated on series of molecules of varying atom counts. ",
    pdf = "pdfs/Parulek13Seamless.pdf",
    images = "images/Parulek13Seamless01.png, images/Parulek13Seamless02.png",
    thumbnails = "images/Parulek13Seamless01_thumb.png, images/Parulek13Seamless02.png",
    proceedings = "Proceedings of the 29th Spring Conference on Computer Graphics",
    isbn = "978-80-223-3377-1",
    location = "Smolenice, Slovak Republic",
    numpages = "8",
    project = "physioillustration"
    }
    [DOI] [Bibtex]
    @ARTICLE {Parulek13Visual,
    author = "Julius Parulek and Cagatay Turkay and Nathalie Reuter and Ivan Viola",
    title = "Visual cavity analysis in molecular simulations",
    journal = "BMC Bioinformatics",
    year = "2013",
    volume = "14",
    number = "Suppl 19",
    pages = "S4",
    month = "Nov.",
    abstract = "Molecular surfaces provide a useful mean for analyzing interactions between biomolecules; such as identification and characterization of ligand binding sites to a host macromolecule. We present a novel technique, which extracts potential binding sites, represented by cavities, and characterize them by 3D graphs and by amino acids. The binding sites are extracted using an implicit function sampling and graph algorithms. We propose an advanced cavity exploration technique based on the graph parameters and associated amino acids. Additionally, we interactively visualize the graphs in the context of the molecular surface. We apply our method to the analysis of MD simulations of Proteinase 3, where we verify the previously described cavities and suggest a new potential cavity to be studied.",
    images = "images/Parulek13Visual01.png, images/Parulek13Visual02.png",
    thumbnails = "images/Parulek13Visual01_thumb.png, images/Parulek13Visual02_thumb.png",
    url = "http://www.biomedcentral.com/1471-2105/14/S19/S4",
    doi = "10.1186/1471-2105-14-S19-S4",
    issn = "1471-2105",
    project = "physioillustration"
    }
    [PDF] [Bibtex]
    @MISC {Parulek13Importance,
    author = "Julius Parulek and Timo Ropinski and Ivan Viola",
    title = "Importance Driven Visualization of Molecular Surfaces",
    howpublished = "Poster presented at the BioVis conference 2013",
    month = "October",
    year = "2013",
    pdf = "pdfs/Parulek13Importance.pdf",
    images = "images/Parulek13Importance.png",
    thumbnails = "images/Parulek13Importance.png",
    location = "Atlanta (GA)",
    project = "physioillustration"
    }
    [Bibtex]
    @MISC {Parulek13Analysis,
    author = "Julius Parulek",
    title = "Interactive Visual Exploration and Analysis of High-Dimensional, Temporal, and Heterogeneous Biological Data",
    howpublished = "Presentation in the VisBio 2013",
    month = "September",
    year = "2013",
    abstract = "High-dimensional data (hundreds of dimensions, or more) and temporal data (thousands of time frames) pose substantial challenges for both computational and interactive analysis. To reveal relevant intrinsic relations between items or dimensions, the utilization of only computational methods or standard visualization techniques is not enough. In this talk, we introduce the concept of interactive visual analysis (IVA) that enables us to combine computational methods with the user knowledge through a system of multiple linked views on the data and advanced interaction mechanisms. Our approach allows us to interact with the data on the level of individual items and also on the level of dimensions, exploiting a number of useful statistical methods in addition. To improve the understanding of temporal data, we utilize clustering methods, where the user is provided means to understand the internal cluster structure. Moreover, we also showcase how IVA can be beneficial when analyzing molecular dynamics.",
    images = "images/no_thumb.png",
    thumbnails = "images/no_thumb.png",
    location = "Bergen, Norway",
    project = "physioillustration"
    }
    [PDF] [Bibtex]
    @ARTICLE {Parulek13Fast,
    author = "Julius Parulek and Andrea Brambilla",
    title = "Fast Blending Scheme for Molecular Surface Representation",
    journal = "Visualization and Computer Graphics, IEEE Transactions on",
    year = "2013",
    pages = "2653--2662",
    month = "Dec.",
    abstract = "Representation of molecular surfaces is a well established way to study the interaction of molecules. The state-of-theart molecular representation is the SES model, which provides a detailed surface visualization. Nevertheless, it is computationally expensive, so the less accurate Gaussian model is traditionally preferred. We introduce a novel surface representation that resembles the SES and approaches the rendering performance of the Gaussian model. Our technique is based on the iterative blending of implicit functions and avoids any pre-computation. Additionally, we propose a GPU-based ray-casting algorithm that efficiently visualize our molecular representation. A qualitative and quantitative comparison of our model with respect to the Gaussian and SES models is presented. As showcased in the paper, our technique is a valid and appealing alternative to the Gaussian representation. This is especially relevant in all the applications where the cost of the SES is prohibitive.",
    pdf = "pdfs/Parulek13Fast.pdf",
    images = "images/Parulek13Fast01.png, images/Parulek13Fast02.png",
    thumbnails = "images/Parulek13Fast01_thumb.png, images/Parulek13Fast02_thumb.png",
    event = "Vis2013",
    project = "physioillustration",
    extra = "extra/Parulek13Fast_code.pdf"
    }

2012

    [PDF] [Bibtex]
    @INPROCEEDINGS {Parulek12Implicit,
    author = "Julius Parulek and Cagatay Turkay and Natalie Reuter and Ivan Viola",
    title = "Implicit Surfaces for Interactive Graph Based Cavity Analysis of Molecular Simulations",
    booktitle = "2nd IEEE Symposium on Biological Data Visualization",
    year = "2012",
    series = "BioVis 2012",
    abstract = "Molecular surfaces provide a suitable way to analyze and to study the evolution and interaction of molecules. The analysis is often concerned with visual identification of binding sites of ligands to a host macromolecule. We present a novel technique that is based on implicit representation, which extracts all potential binding sites and allows an advanced 3D visualization of these sites in the con- text of the molecule. We utilize implicit function sampling strategy to obtain potential cavity samples and graph algorithms to extract arbitrary cavity components defined by simple graphs. Moreover, we propose how to interactively visualize these graphs in the con- text of the molecular surface. We also introduce a system of linked views depicting various graph parameters that are used to perform a more elaborative study on created graphs.",
    pdf = "pdfs/Parulek12Implicit.pdf",
    images = "images/Parulek12Implicit01.png, images/Parulek12Implicit02.png",
    thumbnails = "images/Parulek12Implicit01_thumb.png, images/Parulek12Implicit02_thumb.png",
    location = "Seattle (WA), US",
    project = "physioillustration"
    }
    [PDF] [Bibtex]
    @INPROCEEDINGS {Turkay2012DualDNA,
    author = "Cagatay Turkay and Julius Parulek and Helwig Hauser",
    title = "Dual analysis of DNA microarrays",
    booktitle = "Proceedings of the 12th International Conference on Knowledge Management and Knowledge Technologies",
    year = "2012",
    series = "i-KNOW '12",
    pages = "26:1--26:8",
    abstract = "Microarray data represents the expression levels of genes for different samples and for different conditions. It has been a central topic in bioinformatics research for a long time already. Researchers try to discover groups of genes that are responsible for specific biological processes. Statistical analysis tools and visualizations have been widely used in the analysis of microarray data. Researchers try to build hypotheses on both the genes and the samples. Therefore, such analyses require the joint exploration of the genes and the samples. However, current methods in interactive visual analysis fail to provide the necessary mechanisms for this joint analysis. In this paper, we propose an interactive visual analysis framework that enables the dual analysis of the samples and the genes through the use of integrated statistical tools. We introduce a set of specialized views and a detailed analysis procedure to describe the utilization of our framework.",
    pdf = "pdfs/Turkay2012DualDNA.pdf",
    images = "images/Turkay2012DualDNA01.png, images/Turkay2012DualDNA02.png",
    thumbnails = "images/Turkay2012DualDNA01_thumb.png, images/Turkay2012DualDNA02_thumb.png",
    location = "Graz, Austria",
    articleno = "26",
    numpages = "8",
    keywords = "interactive visual analysis, microarray data, visual analytics"
    }
    [PDF] [Bibtex]
    @INPROCEEDINGS {Parulek12ImplicitRepresentation,
    author = "Julius Parulek and Ivan Viola",
    title = "Implicit Representation of Molecular Surfaces",
    booktitle = "Proceedings of the IEEE Pacific Visualization Symposium (PacificVis 2012)",
    year = "2012",
    pages = "217--224",
    month = "March",
    abstract = "Molecular surfaces are an established tool to analyze and to study the evolution and interaction of molecules. One of the most advanced representations of molecular surfaces is called the solvent excluded surface. We present a novel and a simple method for representing the solvent excluded surfaces (SES). Our method requires no precomputation and therefore allows us to vary SES parameters outright. We utilize the theory of implicit surfaces and their CSG operations to compose the implicit function representing the molecular surface locally. This function returns a minimal distance to the SES representation. Additionally, negative values of the implicit function determine that the point lies outside SES whereas positive ones that the point lies inside. We describe how to build this implicit function composed of three types of patches constituting the SES representation. Finally, we propose a method to visualize the iso-surface of the implicit function by means of ray-casting and the set of rendering parameters affecting the overall performance.",
    pdf = "pdfs/Parulek12ImplicitRepresentation.pdf",
    images = "images/Parulek12ImplicitRepresentation.png",
    thumbnails = "images/Parulek12ImplicitRepresentation_thumb.png",
    location = "Songdo, Korea",
    project = "physioillustration"
    }

2011

    [PDF] [Bibtex]
    @INPROCEEDINGS {turkay11cluster,
    author = "Cagatay Turkay and Julius Parulek and Nathalie Reuter and Helwig Hauser",
    title = "Integrating Cluster Formation and Cluster Evaluation in Interactive Visual Analysis",
    booktitle = "Proc. Spring Conference on Computer Graphics (SCCG 2011) -- second best paper",
    year = "2011",
    pages = "??--??",
    abstract = "Cluster analysis is a popular method for data investigation wheredata items are structured into groups called clusters. This analysisinvolves two sequential steps, namely cluster formation and clusterevaluation. In this paper, we propose the tight integration of clusterformation and cluster evaluation in interactive visual analysis in orderto overcome the challenges that relate to the black-box nature ofclustering algorithms. We present our conceptual framework in theform of an interactive visual environment. In this realization of ourframework, we build upon general concepts such as cluster comparison,clustering tendency, cluster stability and cluster coherence.Additionally, we showcase our framework on the cluster analysis ofmixed lipid bilayers.",
    pdf = "pdfs/turkay11cluster.pdf",
    images = "images/turkay11cluster2.jpg, images/turkay11cluster1.jpg, images/turkay11cluster3.jpg",
    thumbnails = "images/turkay11cluster2_thumb.jpg, images/turkay11cluster1_thumb.jpg, images/turkay11cluster3_thumb.jpg",
    location = "Budmerice, Slovakia"
    }
    [Bibtex]
    @ARTICLE {turkay11temporalCluster,
    author = "Cagatay Turkay and Julius Parulek and Nathalie Reuter and Helwig Hauser",
    title = "Interactive Visual Analysis of Temporal Cluster Structures",
    journal = "Computer Graphics Forum",
    year = "2011",
    volume = "30",
    number = "3",
    pages = "711--720",
    abstract = "Cluster analysis is a useful method which reveals underlying structures and relations of items after grouping them into clusters. In the case of temporal data, clusters are defined over time intervals where they usually exhibit structural changes. Conventional cluster analysis does not provide sufficient methods to analyze these structural changes, which are, however, crucial in the interpretation and evaluation of temporal clusters. In this paper, we present two novel and interactive visualization techniques that enable users to explore and interpret the structural changes of temporal clusters. We introduce the temporal cluster view, which visualizes the structural quality of a number of temporal clusters, and temporal signatures, which represents the structure of clusters over time. We discuss how these views are utilized to understand the temporal evolution of clusters. We evaluate the proposedtechniques in the cluster analysis of mixed lipid bilayers.",
    images = "images/turkay11temporal1.jpg, images/turkay11temporal2.jpg, images/turkay11temporal3.jpg",
    thumbnails = "images/turkay11temporal1_thumb.jpg, images/turkay11temporal2_thumb.jpg, images/turkay11temporal3_thumb.jpg",
    url = "http://dx.doi.org/10.1111/j.1467-8659.2011.01920.x",
    event = "EuroVis 2011",
    location = "Bergen, Norway"
    }