Publications

Our Resilient Genome: The Making of a Science Film

P. Kingman

Abstract

Every single human cell has to fix 10,000 to 20,000 lesions in its DNA every day. Our cells are constantly exposed to many different types of threats that damage our genome. These lesions could cause mutations in our DNA, potentially leading to cancer and other diseases. With such continuous onslaught, how can our cells possibly protect our DNA from damage and mutations? This presentation will showcase the first public screening of a short film about DNA repair, which blends computer graphics and biology to communicate exciting up-and-coming research. This film was developed in conjunction with the Department of Informatics and the Department of Molecular Biology at the University of Bergen, and the Institute of Computer Graphics and Algorithms at the Vienna University of Technology. Along with a discussion on the visualisation process, I will also talk about the intersection between film and science that helps us communicate complex information.

P. Kingman, Our Resilient Genome: The Making of a Science Film, 2014.
[BibTeX]

Every single human cell has to fix 10,000 to 20,000 lesions in its DNA every day. Our cells are constantly exposed to many different types of threats that damage our genome. These lesions could cause mutations in our DNA, potentially leading to cancer and other diseases. With such continuous onslaught, how can our cells possibly protect our DNA from damage and mutations? This presentation will showcase the first public screening of a short film about DNA repair, which blends computer graphics and biology to communicate exciting up-and-coming research. This film was developed in conjunction with the Department of Informatics and the Department of Molecular Biology at the University of Bergen, and the Institute of Computer Graphics and Algorithms at the Vienna University of Technology. Along with a discussion on the visualisation process, I will also talk about the intersection between film and science that helps us communicate complex information.
@MISC {Kingman14GenomeMaking,
author = "Pina Kingman",
title = "Our Resilient Genome: The Making of a Science Film",
howpublished = "Presentation in the EG VCBM workshop 2014",
month = "September",
year = "2014",
abstract = "Every single human cell has to fix 10,000 to 20,000 lesions in its DNA every day. Our cells are constantly exposed to many different types of threats that damage our genome. These lesions could cause mutations in our DNA, potentially leading to cancer and other diseases. With such continuous onslaught, how can our cells possibly protect our DNA from damage and mutations? This presentation will showcase the first public screening of a short film about DNA repair, which blends computer graphics and biology to communicate exciting up-and-coming research. This film was developed in conjunction with the Department of Informatics and the Department of Molecular Biology at the University of Bergen, and the Institute of Computer Graphics and Algorithms at the Vienna University of Technology. Along with a discussion on the visualisation process, I will also talk about the intersection between film and science that helps us communicate complex information.",
images = "images/no_thumb.png",
thumbnails = "images/no_thumb.png",
location = "Wien, Austria",
project = "physioillustration"
}
projectidphysioillustrationprojectid

Media