Illustrative Visualization of Physiological Models and Imaging
Abstract
Physiological processes are of multi-scale and multi-system nature. In general they are very difficult to comprehend. This talk discusses challenges of an upcoming research project that aims at proposing an entirely novel research agenda within the data visualization research field to enable understanding, communication, and evaluation of physiology through interactive and easy-to-understand visualization. The visualization metaphors investigated are inspired by textbook illustrations and handcrafted animated illustrations. The primary focus is on development of novel graphics data representations, visual representations, occlusion handling, visual guidance and storytelling, zooming, interaction and integration of physiological models and medical imaging. The visualization technology will be developed and evaluated on multiple scale levels, from molecular machines, up to the organ level. The physiological context for the technological development and evaluation will be primarily the muscular system. The outcome of the discussed project is new visualization technology in form of algorithms, concepts, and proof of concept implementations. The utilization of the outcome can lead to advances in the field of physiology by providing intuitive visual representation, which the user can observe and interact with.
I. Viola, Illustrative Visualization of Physiological Models and Imaging, 2012.
[BibTeX]
Physiological processes are of multi-scale and multi-system nature. In general they are very difficult to comprehend. This talk discusses challenges of an upcoming research project that aims at proposing an entirely novel research agenda within the data visualization research field to enable understanding, communication, and evaluation of physiology through interactive and easy-to-understand visualization. The visualization metaphors investigated are inspired by textbook illustrations and handcrafted animated illustrations. The primary focus is on development of novel graphics data representations, visual representations, occlusion handling, visual guidance and storytelling, zooming, interaction and integration of physiological models and medical imaging. The visualization technology will be developed and evaluated on multiple scale levels, from molecular machines, up to the organ level. The physiological context for the technological development and evaluation will be primarily the muscular system. The outcome of the discussed project is new visualization technology in form of algorithms, concepts, and proof of concept implementations. The utilization of the outcome can lead to advances in the field of physiology by providing intuitive visual representation, which the user can observe and interact with.
@MISC {Viola12Physiological,
author = "Ivan Viola",
title = "Illustrative Visualization of Physiological Models and Imaging",
howpublished = "Talk in the MedViz Conference 2012",
month = "January",
year = "2012",
abstract = "Physiological processes are of multi-scale and multi-system nature. In general they are very difficult to comprehend. This talk discusses challenges of an upcoming research project that aims at proposing an entirely novel research agenda within the data visualization research field to enable understanding, communication, and evaluation of physiology through interactive and easy-to-understand visualization. The visualization metaphors investigated are inspired by textbook illustrations and handcrafted animated illustrations. The primary focus is on development of novel graphics data representations, visual representations, occlusion handling, visual guidance and storytelling, zooming, interaction and integration of physiological models and medical imaging. The visualization technology will be developed and evaluated on multiple scale levels, from molecular machines, up to the organ level. The physiological context for the technological development and evaluation will be primarily the muscular system. The outcome of the discussed project is new visualization technology in form of algorithms, concepts, and proof of concept implementations. The utilization of the outcome can lead to advances in the field of physiology by providing intuitive visual representation, which the user can observe and interact with.",
images = "images/no_thumb.png",
thumbnails = "images/no_thumb.png",
location = "Bergen, Norway",
project = "physioillustration, medviz"
}