Stefan Bruckner is a full professor of visualization at the Department of Informatics of the University of Bergen, Norway. He received his master's degree (2004) and Ph.D. (2008), both in Computer Science, from the TU Wien, Austria, and was awarded the habilitation (venia docendi) in Practical Computer Science in 2012. Before his appointment in Bergen in 2013, he was an assistant professor at the Institute of Computer Graphics and Algorithms of the TU Wien.
His research interests include all aspects of data visualization, with a particular focus on interactive techniques for the exploration and analysis of complex heterogeneous data spaces. He has made significant contributions to areas such as illustrative visualization, volume rendering, smart visual interfaces, biomedical data visualization, and visual parameter space exploration. In addition to his contributions in basic research, he has successfully led industry collaborations with major companies such as GE Healthcare and Agfa HealthCare, and has 7 granted patents.
He is a recipient of the Eurographics Young Researcher Award, the Karl-Heinz-Höhne Award for Medical Visualization, and his research has received 11 best paper awards and honorable mentions at international events. He was program co-chair of EuroVis, PacificVis, the Eurographics Workshop on Visual Computing for Biology and Medicine, the Eurographics Medical Prize, and is a member of the editorial boards of IEEE Transactions on Visualization and Computer Graphics as well as Computers & Graphics. He currently serves on the Eurographics Executive Committee, and is a member of ACM SIGGRAPH, Eurographics, and the IEEE Computer Society.
Starting February 2023, I’m heading the Chair of Visual Analytics at the University of Rostock in Germany. Please update your contact information.
Publications
2024
@article{pokojna2024language,
title={The Language of Infographics: Toward Understanding Conceptual Metaphor Use in Scientific Storytelling},
author={Pokojn{\'a}, Hana and Isenberg, Tobias and Bruckner, Stefan and Kozl{\'i}kov{\'a}, Barbora and Garrison, Laura},
journal={IEEE Transactions on Visualization and Computer Graphics},
year={2024},
month={Oct},
publisher={IEEE},
abstract={We apply an approach from cognitive linguistics by mapping Conceptual Metaphor Theory (CMT) to the visualization domain to address patterns of visual conceptual metaphors that are often used in science infographics. Metaphors play an essential part in visual communication and are frequently employed to explain complex concepts. However, their use is often based on intuition, rather than following a formal process. At present, we lack tools and language for understanding and describing metaphor use in visualization to the extent where taxonomy and grammar could guide the creation of visual components, e.g., infographics. Our classification of the visual conceptual mappings within scientific representations is based on the breakdown of visual components in existing scientific infographics. We demonstrate the development of this mapping through a detailed analysis of data collected from four domains (biomedicine, climate, space, and anthropology) that represent a diverse range of visual conceptual metaphors used in the visual communication of science. This work allows us to identify patterns of visual conceptual metaphor use within the domains, resolve ambiguities about why specific conceptual metaphors are used, and develop a better overall understanding of visual metaphor use in scientific infographics. Our analysis shows that ontological and orientational conceptual metaphors are the most widely applied to translate complex scientific concepts. To support our findings we developed a visual exploratory tool based on the collected database that places the individual infographics on a spatio-temporal scale and illustrates the breakdown of visual conceptual metaphors.},
pdf = {pdfs/garrisonVIS24.pdf},
images = {images/garrisonVIS24.png},
thumbnails = {images/garrisonVIS24thumb.png},
project = {VIDI},
git={https://osf.io/8xrjm/}
}
2023
@article{mittenentzwei2023heros,
journal = {Computer Graphics Forum},
title = {{Do Disease Stories need a Hero? Effects of Human Protagonists on a Narrative Visualization about Cerebral Small Vessel Disease}},
author = {Mittenentzwei, Sarah and Weiß, Veronika and Schreiber, Stefanie and Garrison, Laura A. and Bruckner, Stefan and Pfister, Malte and Preim, Bernhard and Meuschke, Monique},
year = {2023},
publisher = {The Eurographics Association and John Wiley & Sons Ltd.},
ISSN = {1467-8659},
DOI = {10.1111/cgf.14817},
abstract = {Authors use various media formats to convey disease information to a broad audience, from articles and videos to interviews or documentaries. These media often include human characters, such as patients or treating physicians, who are involved with the disease. While artistic media, such as hand-crafted illustrations and animations are used for health communication in many cases, our goal is to focus on data-driven visualizations. Over the last decade, narrative visualization has experienced increasing prominence, employing storytelling techniques to present data in an understandable way. Similar to classic storytelling formats, narrative medical visualizations may also take a human character-centered design approach. However, the impact of this form of data communication on the user is largely unexplored. This study investigates the protagonist's influence on user experience in terms of engagement, identification, self-referencing, emotional response, perceived credibility, and time spent in the story. Our experimental setup utilizes a character-driven story structure for disease stories derived from Joseph Campbell's Hero's Journey. Using this structure, we generated three conditions for a cerebral small vessel disease story that vary by their protagonist: (1) a patient, (2) a physician, and (3) a base condition with no human protagonist. These story variants formed the basis for our hypotheses on the effect of a human protagonist in disease stories, which we evaluated in an online study with 30 participants. Our findings indicate that a human protagonist exerts various influences on the story perception and that these also vary depending on the type of protagonist.},
pdf = {pdfs/garrison-diseasestories.pdf},
images = {images/garrison-diseasestories.png},
thumbnails = {images/garrison-diseasestories-thumb.png},
project = {VIDI}
}
@incollection{garrison2023narrativemedvisbook,
title = {Current Approaches in Narrative Medical Visualization},
author = {Garrison, Laura Ann and Meuschke, Monique and Preim, Bernhard and Bruckner, Stefan},
year = 2023,
booktitle = {Approaches for Science Illustration and Communication},
publisher = {Springer},
address = {Gewerbestrasse 11, 6330 Cham, Switzerland},
pages = {},
note = {in publication},
editor = {Mark Roughley},
chapter = 4,
pdf = {pdfs/garrison2023narrativemedvisbook.pdf},
images = {images/garrison2023narrativemedvisbook.png},
thumbnails = {images/garrison2023narrativemedvisbook-thumb.png},
project = {VIDI}
}
@article{mittenentzwei2023investigating,
title={Investigating user behavior in slideshows and scrollytelling as narrative genres in medical visualization},
author={Mittenentzwei, Sarah and Garrison, Laura A and M{\"o}rth, Eric and Lawonn, Kai and Bruckner, Stefan and Preim, Bernhard and Meuschke, Monique},
journal={Computers \& Graphics},
year={2023},
publisher={Elsevier},
abstract={In this study, we explore the impact of genre and navigation on user comprehension, preferences, and behaviors when experiencing data-driven disease stories. Our between-subject study (n=85) evaluated these aspects in-the-wild, with results pointing towards some general design considerations to keep in mind when authoring data-driven disease stories. Combining storytelling with interactive new media techniques, narrative medical visualization is a promising approach to communicating topics in medicine to a general audience in an accessible manner. For patients, visual storytelling may help them to better understand medical procedures and treatment options for more informed decision-making, boost their confidence and alleviate anxiety, and promote stronger personal health advocacy. Narrative medical visualization provides the building blocks for producing data-driven disease stories, which may be presented in several visual styles. These different styles correspond to different narrative genres, e.g., a Slideshow. Narrative genres can employ different navigational approaches. For instance, a Slideshow may rely on click interactions to advance through a story, while Scrollytelling typically uses vertical scrolling for navigation. While a common goal of a narrative medical visualization is to encourage a particular behavior, e.g., quitting smoking, it is unclear to what extent the choice of genre influences subsequent user behavior. Our study opens a new research direction into choice of narrative genre on user preferences and behavior in data-driven disease stories.},
pdf = {pdfs/mittenentzwei2023userbehavior.pdf},
images = {images/mittenentzwei2023userbehavior.png},
thumbnails = {images/mittenentzwei2023userbehavior-thumb.png},
project = {VIDI},
doi={10.1016/j.cag.2023.06.011}
}
@article{garrison2023molaesthetics,
author={Garrison, Laura A. and Goodsell, David S. and Bruckner, Stefan},
journal={IEEE Computer Graphics and Applications},
title={Changing Aesthetics in Biomolecular Graphics},
year={2023},
volume={43},
number={3},
pages={94-101},
doi={10.1109/MCG.2023.3250680},
abstract={Aesthetics for the visualization of biomolecular structures have evolved over the years according to technological advances, user needs, and modes of dissemination. In this article, we explore the goals, challenges, and solutions that have shaped the current landscape of biomolecular imagery from the overlapping perspectives of computer science, structural biology, and biomedical illustration. We discuss changing approaches to rendering, color, human–computer interface, and narrative in the development and presentation of biomolecular graphics. With this historical perspective on the evolving styles and trends in each of these areas, we identify opportunities and challenges for future aesthetics in biomolecular graphics that encourage continued collaboration from multiple intersecting fields.},
pdf = {pdfs/garrison-aestheticsmol.pdf},
images = {images/garrison-aestheticsmol.png},
thumbnails = {images/garrison-aestheticsmol-thumb.png},
project = {VIDI}
}
2022
@inproceedings {Trautner-2022-HCP,
author = {Trautner, Thomas and Sbardellati, Maximilian and Stoppel, Sergej and Bruckner, Stefan},
title = {{Honeycomb Plots: Visual Enhancements for Hexagonal Maps}},
booktitle = {Proc. of VMV 2022: Vision, Modeling, and Visualization},
editor = {Bender, Jan and Botsch, Mario and Keim, Daniel A.},
pages = {65--73},
year = {2022},
publisher = {The Eurographics Association},
ISBN = {978-3-03868-189-2},
DOI = {10.2312/vmv.20221205},
abstract = {Aggregation through binning is a commonly used technique for visualizing large, dense, and overplotted two-dimensional data sets. However, aggregation can hide nuanced data-distribution features and complicates the display of multiple data-dependent variables, since color mapping is the primary means of encoding. In this paper, we present novel techniques for enhancing hexplots with spatialization cues while avoiding common disadvantages of three-dimensional visualizations. In particular, we focus on techniques relying on preattentive features that exploit shading and shape cues to emphasize relative value differences. Furthermore, we introduce a novel visual encoding that conveys information about the data distributions or trends within individual tiles. Based on multiple usage examples from different domains and real-world scenarios, we generate expressive visualizations that increase the information content of classic hexplots and validate their effectiveness in a user study.},
pdf = "pdfs/Trautner-2022-HCP.pdf",
thumbnails = "images/Trautner-2022-HCP-thumb.png",
images = "images/Trautner-2022-HCP-thumb.png",
youtube = "https://youtu.be/mU7QFVP3yKQ",
git = "https://github.com/TTrautner/HoneycombPlots"
}
@inproceedings {EichnerMoerth2022MuSIC,
booktitle = {Eurographics Workshop on Visual Computing for Biology and Medicine},
editor = {Renata G. Raidou and Björn Sommer and Torsten W. Kuhlen and Michael Krone and Thomas Schultz and Hsiang-Yun Wu},
title = {{MuSIC: Multi-Sequential Interactive Co-Registration for Cancer Imaging Data based on Segmentation Masks}},
author = {Eichner, Tanja* and Mörth, Eric* and Wagner-Larsen, Kari S. and Lura, Njål and Haldorsen, Ingfrid S. and Gröller, Eduard and Bruckner, Stefan and Smit, Noeska N.},
note = {Best Paper Honorable Mention at VCBM2022},
project = {ttmedvis},
year = {2022},
abstract = {In gynecologic cancer imaging, multiple magnetic resonance imaging (MRI) sequences are acquired per patient to reveal different tissue characteristics. However, after image acquisition, the anatomical structures can be misaligned in the various sequences due to changing patient location in the scanner and organ movements. The co-registration process aims to align the sequences to allow for multi-sequential tumor imaging analysis. However, automatic co-registration often leads to unsatisfying results. To address this problem, we propose the web-based application MuSIC (Multi-Sequential Interactive Co-registration). The approach allows medical experts to co-register multiple sequences simultaneously based on a pre-defined segmentation mask generated for one of the sequences. Our contributions lie in our proposed workflow. First, a shape matching algorithm based on dual annealing searches for the tumor position in each sequence. The user can then interactively adapt the proposed segmentation positions if needed. During this procedure, we include a multi-modal magic lens visualization for visual quality assessment. Then, we register the volumes based on the segmentation mask positions. We allow for both rigid and deformable registration. Finally, we conducted a usability analysis with seven medical and machine learning experts to verify the utility of our approach. Our participants highly appreciate the multi-sequential setup and see themselves using MuSIC in the future.
Best Paper Honorable Mention at VCBM2022},
publisher = {The Eurographics Association},
ISSN = {2070-5786},
ISBN = {978-3-03868-177-9},
DOI = {10.2312/vcbm.20221190},
pdf = {pdfs/EichnerMoerth_2022.pdf},
thumbnails = {images/EichnerMoerth_2022.PNG},
images = {images/EichnerMoerth_2022.PNG},
}
@inproceedings {Kleinau2022Tornado,
booktitle = {Eurographics Workshop on Visual Computing for Biology and Medicine},
editor = {Renata G. Raidou and Björn Sommer and Torsten W. Kuhlen and Michael Krone and Thomas Schultz and Hsiang-Yun Wu},
title = {{Is there a Tornado in Alex's Blood Flow? A Case Study for Narrative Medical Visualization}},
project = {ttmedvis},
author = {Kleinau, Anna and Stupak, Evgenia and Mörth, Eric and Garrison, Laura A. and Mittenentzwei, Sarah and Smit, Noeska N. and Lawonn, Kai and Bruckner, Stefan and Gutberlet, Matthias and Preim, Bernhard and Meuschke, Monique},
year = {2022},
abstract = {Narrative visualization advantageously combines storytelling with new media formats and techniques, like interactivity, to create improved learning experiences. In medicine, it has the potential to improve patient understanding of diagnostic procedures and treatment options, promote confidence, reduce anxiety, and support informed decision-making. However, limited scientific research has been conducted regarding the use of narrative visualization in medicine. To explore the value of narrative visualization in this domain, we introduce a data-driven story to inform a broad audience about the usage of measured blood flow data to diagnose and treat cardiovascular diseases. The focus of the story is on blood flow vortices in the aorta, with which imaging technique they are examined, and why they can be dangerous. In an interdisciplinary team, we define the main contents of the story and the resulting design questions. We sketch the iterative design process and implement the story based on two genres. In a between-subject study, we evaluate the suitability and understandability of the story and the influence of different navigation concepts on user experience. Finally, we discuss reusable concepts for further narrative medical visualization projects.},
publisher = {The Eurographics Association},
ISSN = {2070-5786},
ISBN = {978-3-03868-177-9},
DOI = {10.2312/vcbm.20221183},
pdf = {pdfs/Kleinau_2022.pdf},
thumbnails = {images/Kleinau_2022.PNG},
images = {images/Kleinau_2022.PNG},
}